
Two Echelon Distribution Systems: Applications to a

Luxury Goods Retailer

October 11, 2015

We have so far been concerned with the theory of multi-location multi-echelon supply chains

with capacity constraints.

In this chapter, we consider a luxury goods manufacturer and retailer, and use our insights

from previous chapters to develop some quantitative planning methods that may prove useful to

this retailer in managing their supply chain.

Our methods, of course, require as inputs information about the supply chain in question. Using

data pertaining to this luxury goods company that we were able to obtain, we develop strategies

to estimate the parameters required as inputs to our quantitative planning methods.

We begin by describing the supply chain in question. We then provide a description of the data

that were provided to us, together with various summary statistics pertaining to these data. We

then discuss the estimation problem of using past demands to estimate future demands. Finally,

we use insights from previous chapters to design some quantitative methods that may be useful in

these settings.

1 Introduction

The high-level structure of our company’s supply chain is as follows. The company has two large

depots in North America (in California and New Jersey respectively). These depots order inventory

from manufacturing plants, at high fixed cost and with lead times ranging from a few weeks to a

few months, depending on the shipping method used, and supply various regional retailers in North

America. Each retailer is assigned to one and only one of these depots.

Deliveries from the central depots to the retailers are contracted out to a courier service. De-

liveries leave late at night or early in the morning. Some of the retailers benefit from so-called

‘custom critical’ (CC) shipping, and receive those deliveries before they open each morning (we

1

Federgruen, Guetta, and Iyengar Optimizing the Supply Chain at a Luxury Goods Manufacturer

The store allocation problem

8/10

California New Jersey

Figure 1: The supply chain at the luxury goods manufacturer studied in this thesis. The two upper

circles represent the depots in California and New Jersey (which are restocked from manufacturing

plants), and the lower circles represent retail locations around North America, which face stochastic

demands. The small yellow clocks represent the delays (‘lead times’) that are experienced between

orders and deliveries, both at the depot and at the individual retailers.

classify these retailers as having a lead time of zero). Other retailers only receive these shipments

later in the day (we classify these retailers as having a lead time of one).

Figure 1 illustrates this supply chain diagramatically.

Our company has 132 retail outlets in North America, for which we are provided data. One

of these outlets (number U120) was annotated “currently closed”. The remaining outlets are

partitioned as follows

• 52 retailers on the west coast. Of these

– 25 have zero lead times, thanks to custom critical (CC) shipping.

– 27 have one day lead-times.

• 79 retailers on the east coast. Of these

2

Figure 2: Store areas at the luxury goods manufacturer studied in this thesis. Stores are classified

as either ‘east coast’ stores (NJ) or ‘west coast’ stores (CA), and as receiving either custom critical

shipments denoted CC or normal shipments.

– 29 have zero lead times, thanks to custom critical (CC) shipping.

– 50 have one day lead-times.

We were also provided with the floor area of each retailer. These data are summarized in

figure 2. Unfortunately, these floor areas are difficult to interpret because no data is provided as

to the storage area occupied by each product, or as to the configuration of each storage area (i.e.,

whether any shelves are available, how tall they are, etc. . .). It is therefore difficult to know how

many of each product can fit in each store given its area.

We were provided with one year’s worth of sales data, and we restricted our attention to the

top 106 SKUs only, which accounted for 55% of all sales.

We found that daily sales were all integer-valued and ranged from −68 units to 41 units per

day. Negative sales were interpreted as returns.

• 87% of sales figures were not given; we assume that no sales were made on these days.

• 0.5% of sales were equal to 0. It is unclear exactly how these differ from the missing sales

figures, but our contact at the company hypothesized that these may correspond to situations

in which a sale was followed by a return on a given day.

3

Figure 3: Summary of aggregate sales over all products at the luxury goods manufacturer studied

in this thesis. Each point corresponds to a single retailer. The x position of that point represents

the average weekly sales at that retailer, and the y position represents the frequency of these sales

in our sample. The size of each point represents the coefficient of variation of weekly sales at that

particular retailer.

• 9.29% of sales figures were equal to 1. (This corresponds to 74.37% of all sales that were not

missing or equal to 0).

Our sales distributions were therefore heavily skewed, with most of their density at 0 or 1.

Figure 3 summarizes aggregate weekly sales over all products at the retailers in our sample.

Given the large number of SKUs, it is clear from these data that each individual SKU averages

much less than one sale per day.

1.1 Current supply chain practices

Based on various discussions with our contact at the company, our understanding is that current

supply chain practices revolve around a heuristic order-up-to policy.

Every day, the inventory in each retailer is observed, and demands for the next day are predicted.

A lookup table is then used that maps these two quantities to the amount that should be ordered.

4

2 Estimating Future Demand

Any effort to make optimal shipping decisions in this supply chain must begin with daily demand

estimation for each SKU and each retailer. Indeed, without a reliable estimate of future demand at

each of the retail locations, it becomes difficult to decide how much inventory should be allocated

there. This estimation problem is complicated in our case by the fact daily demands are so small.

Indeed, when demands are large, they can be modelled using continuous distributions – any round-

ing errors on large demand numbers are bound to be small. When demands are small, however, we

are forced to use a discrete distribution.

There is a vast literature on demand estimation. Most papers, however, focus on consumer

choice (see Guadagni and Little (1983), Cooper and Nakanishi (1988), Berry, Levinsohn, and

Pakes (1995), and many more, dealing with increasing levels of complexity), but these methods

seek to model market share rather than absolute demand. The literature seems to be sparse on the

estimation of absolute demand, possibly because when demand is continuous (as is often assumed),

the demand estimation problem reduces to a simple regression. Indeed, to our knowledge, only

Bajari et al. () have very recently begun to study this class of problem using machine learning

techniques, but even their work assumes continuous demands.

2.1 Picking covariates

Before we discuss the kind of statistical model most appropriate for the task of demand estimation,

we discuss the choice of covariates we may use to predict future demand. These are summarized in

Table 1.

Clearly, the retailer and product in question will be the two most crucial elements in estimating

demand. It is unclear, however, whether these are best included in our model as covariates, or

whether a different model should be fit for every store/product combination (or indeed, for every

store and every product). We will experiment with each option.

2.2 Estimation model

If demands were (or could be assumed to be) normally distributed, a simple linear regression of our

demands against the set of covariates discussed above could be used to find the mean and standard

deviation of these distributions.

Unfortunately, when this assumption cannot be made, a linear regression can at most provide

5

Store The store in question

Product The product in question

Day The day of the week (Mon-Sun)

Month The month of the year

Trend

The number of days that have elapsed since January

1st 1900. We use this as a ‘trend’ indicator, to cap-

ture any systematic increase in sales across the period

considered

tM1
The sales on the day before the day in question. In-

cluded to track 1-day correlations

tM7
The sales seven days before the day in question. In-

cluded to track 7-day correlations

Table 1: Potential covariates we may use to predict future demand. The first four covariates are categorical, the

remaining ones are continuous.

the mean of each demand, rather than its full distribution. Furthermore, linear regression is likely

to result in a non-integer figure for each daily demand, and rounding would result in a large error.

Looking at more sophisticated methods, two options are available to us. The first is to make

some parametric assumption about the demand (for example, to assume that the demand has a

zero-inflated Poisson distribution), and fit a model to estimate the parameters of this distribution.

The second is to use a completely non-parametric model to estimate the distribution.

We use the non-parametric estimation route for two reasons. First, we have very little prior

information to inform a choice of parametric distribution, other than knowledge of the fact each

demand distribution is supported on a small set of points (as discussed above, most demands are

0, 1, or 2). Second, this small support makes a multinomial distribution particularly easy to fit to

our data.

We consider two different models to fit a multinomial demand model. To describe these models,

we shall need some notation. Suppose we have N observations of demand D1, · · · , DN with cor-

responding covariates X(1), · · · ,X(N), each in RP . Suppose further that we assume (or observe)

that demands can only take values in a finite set {d1, · · · dK} of size K.

Our models are then as follows

Multinomial logistic regression is a natural extension of logistic regression to cases with mul-

tiple outcomes. We assign one parameter vector β(k) ∈ RP to each possible outcome, and

6

let

P(Di = dk) =
exp

(
β(k) ·X(i)

)
∑K

κ=1 exp
(
β(κ) ·X(i)

)
(Note that adding any fixed vector to each β leaves the probabilities unchanged, which means

this model is not identifiable. To avoid this difficulty, we set β(1) = 0, and find the probability

of other demands with respect to this ‘baseline’ demand.)

Ordered logistic regression is similar to multinomial logistic regression, but makes a stronger

assumption. In particular we only estimate one vector β ∈ RP , and a set of parameters

{γ1, · · · , γK−1}, and set

logit (P(Di ≤ dk)) = β ·X(i) −
k∑

κ=1

γκ

where logit(p) = log(p
1−p), and γK ≡ ∞.

To understand the rationale behind this model, recall that the logit of a probability gives the

odds of that probability. In this model, the mean of each demand depends on the covariates,

but once the mean is determined, the odds of observing one demand over another is fixed

and does not depend on the vector of covariates. (This explains the name ‘ordered logistic

regression’ – the outcomes are ordered by the γ parameters).

In our specific example, this means that the overall scale of demand is determined by the

covariates, but that the odds of buying two products vs. one product (for example) is fixed.

This is clearly a far more restrictive model, but it does have the advantage of requiring the

estimation of far fewer parameters (P + K − 1 parameters v.s. P (K − 1) parameters for

multinomial logistic regression).

2.3 Model fitting

Fitting these models should – in theory – be as simple as using the equations above to construct

a likelihood and maximizing this likelihood with respect to the parameters. Indeed, packages are

available that do precisely that and perform reasonably well.

When the size of the data increases, however, fitting becomes far more complicated for three

reasons. First, the resulting problems are very high dimensional, especially if some of the covariates

7

are factors. Second, the expressions for the likelihood are not simple. And third, the scale of the

data makes each step in any algorithm computationally costly.

As we shall see in later sections, the best-performing models for the data we were provided

require the solution of a separate model for each SKU/retailer combination. Since each of these

models require only data from one SKU at one store, they are relatively small, and the standard

packages provided in R are sufficient to fit them. The algorithms in this section, therefore, are only

used to initially evaluated the larger models. Nevertheless, this material is of intrinsic interest and

we therefore present it here. The rest of this section, however, may be skipped without interrupting

the flow of this chapter.

The algorithm we use to fit these models on large scale data is based on FISTA, introduced by

Beck and Teboulle (2009), which uses a quadratic approximation to the function to be optimized,

and does not require the calculation of second derivatives. Readers are directed to the paper in

question for details of FISTA, and we relegate the details of calculating first derivatives of the

log-likelihoods to Appendix A. We evaluate our FISTA based algorithms – both for ordered logit

regression and for multinomial logistic regression – on a simulated data set containing 10,000 points

and a varying number of covariates. We also run R’s built-in functions on the same datasets.

2.3.1 Multinomial logistic regression

Figure 5 compares the accuracy of our FISTA-based function and of the built-in R function for

multinomial logistic regression, and figure 4 compares their running times.

It is clear from both these figures that our algorithm performs better and faster on a models

with a large number of covariates. When the number of covariates is small, however, the built

in R function does better. Indeed, FISTA requires a set up step to approximate the Lipschitz

constant of the likelihood function in question. With complicated functions like ours, this step can

be particularly slow. If the model is large enough, this time is more than compensated by the fact

Hessians do not need to be calculated at each step, but for small problem instances, it does slow

our algorithm considerably.

2.3.2 Ordered logistic regression

Figure 7 compares the accuracy of our FISTA-based function and of the built-in R function for

multinomial logistic regression, and Figure 6 compares their running times.

The situation is somewhat more complicated than that we observe for multinomial logistic

8

Figure 4: Runtimes for our FISTA based algorithm for multinomial logistic regression as compared to the built-in

R function. The x-axis indicates the number of covariates in our artificial model, and the y-axis indicates running

time as a fraction of the time taken by our FISTA algorithm. All models were run on 10,000 data points. Note that

the FISTA time quoted only accounts for the FISTA iterations themselves. Because our FISTA algorithm is written

in C++ and the data is generated in R, some work is required to prepare the data for processing. Because the R

function, which works directly on the R data, does not need to perform these steps, their runtime is not included

above.

Figure 5: Accuracy of our FISTA based algorithm for multinomial logistic regression as compared to that of the

built-in R version. The x-axis indicates the number of covariates in our artificial model, and the y-axis indicates the

maxium KL-divergence (over all points in our sample) between predicted outcome probabilities and actual outcome

probabilities. All models were run on 10,000 data points.

Figure 6: Runtimes for our FISTA based algorithm for ordered logistic regression as compared to the built-in R

version. The x-axis indicates the number of covariates in our artificial model, and the y-axis indicates running time

in seconds as a fraction of FISTA times. All models were run on 10,000 data points. Note that the FISTA time

quoted only accounts for the FISTA iterations themselves. Because our FISTA algorithm is written in C++ and the

data is generated in R, some work is required to prepare the data for processing. Because the R function, which

works directly on the R data, does not need to perform these steps, their runtime is not included above. Note that

the point at 400 covariates is missing because the R function was unable to converge for this dataset.

Figure 7: Accuracy of our FISTA based algorithm for ordered logistic regression as compared to the built-in R

version. The x-axis indicates the number of covariates in our artificial model, and the y-axis indicates the maxium KL-

divergence (over all points in our sample) between predicted outcome probabilities and actual outcome probabilities.

All models were run on 10,000 data points. Note that the point at 400 covariates is missing because the R function

was unable to converge for this dataset.

regression. Indeed, whilst our algorithm performs very accurately, and faster than the R version,

there is a small number of models (at 100 and 150 covariates) for which the R version converges

significantly faster. Furthermore, there is one model (with 400 covariates) at which the built-in R

function is not able to converge at all, and returns no results.

This is not surprising. As discussed in Appendix A, the computational details involved in evalu-

ating the ordered logistic regression likelihood and its derivatives are significantly more complicated

than those for multinomial logistic regression (indeed, as is discussed at length in Appendix A, a

number of modifications to FISTA had to be made to ensure rapid convergence). It therefore

follows that the corresponding algorithms will display greater instability.

2.4 Evaluating Model Performance

We shall be fitting four kinds of models. The first will include all our data, with SKU and stores

as covariates. At the other extreme, we shall be fitting a different model for each SKU/Store

combination. Finally, we shall fit one set of models for each SKU, and one set of models for each

store. In this section, we devise some measures that can be used to evaluate the performance of

each of these models, and decide which yields the best results.

In a simple linear regression, model evaluation is comparatively simple. An in- or out-of- sample

R2 or mean squared error can be calculated and used as a measure of the model’s accuracy. With

binary classification, ROC curves can be plotted.

Unfortunately, model performance is far harder to assess in a multinomial setting. For a given

set of covariates, a multinomial fit provides a set of probabilities for each outcome {d1, · · · , dk},

and it is unclear how we should asses how ‘accurate’ these outputs are.

The two most obvious options are a deviance-based measure, and a generalized χ-squared test.

Multinomial logistic regression is an example of a generalized linear model. As in all generalized

linear models, a deviance-based goodness-of-fit test could therefore be used. In ordinary least

squares models, the ‘sum of squared residuals’ is often used as a measure of fit. The deviance is a

generalization of this measure to models that produce a fit by maximizing a more general likelihood.

Further details are available in texts on Generalized Linear Models (McCullagh and Nelder (1989)

is the seminal reference). Unfortunately, the deviance works best when comparing two versions of

the same model using a different selection of covariates. In our case, however, we need to compare

entirely different models, each fit on different datasets.

A second tempting measure is a variation on the chi-squared test adapted to multinomial

13

distributions, developed by Fagerland, Hosmer, and Bofin (2008). This tests first groups data into

a number of clusters, based on the probability of observing the first outcome d1 (in other words,

the first cluster contains points with low probability of observing d1, the second cluster points with

slightly higher probability of observing d1, etc. . .). A contingency table is then constructed, listing

the predicted count of each outcome in each cluster, together with the real count, and a simple

χ-squared test is run on this contingency table. Unfortunately, for this test to be statistically

significant, a minimum number of observations is required in each cell of the χ-squared contingency

table produced in the test, which makes it unusable in this instance, since some outcomes (‘−1’

demand in particular) are extremely sparse.

Instead, we suggest the following four measures of performance:

‘Count measure’ (CM) : Look at the outcome with the highest predicted probability, and com-

pare it to the actual outcome. Find the proportion of points for which these two outcomes

do not match. We shall call this the ‘count measure’ (CM).

The higher the CM, the worse the fit.

‘Probability measure’ (PM) : For each point i in our data set, look at the predicted probability

vector, and consider the probability corresponding to the actual outcome Di for that point –

call this probability p. We then assign to this point a score of −p log(p). We find the average

of these scores over all points, and call it the ‘probability measure’ (PM).

The higher the PM, the worse the fit.

This measure is motivated by the KL-divergence. Indeed, this score is precisely the KL-

divergence between our predicted probability vector and a vector of zeros containing a ‘1’ in

the position corresponding to the actual outcome.

These two measures are intuitive, and will be useful in deciding which models to pick. However,

there are likely to paint a very dreary picture – indeed, with so few covariates available, it is unlikely

the model will exactly predict the right outcome with such high probability.

Instead, therefore, we develop two new measures that we call ‘rolling measures’. Recall that

each of our points represents demand at a given store for a given product on a given day. Our

new measures consider a rolling window of 40 days, and looks at the performance of the model in

aggregate over that window. The results over each rolling window are then averaged.

‘Rolling Count Measure’ (RCM) Our first measure simply looks at the total demand forecast

14

CM PM RCM RPM

Full 0.53 0.30 0.25 0.11

By SKU 0.51 0.29 0.14 0.06

By Store 0.51 0.30 0.20 0.09

Individual Models 0.46 0.28 0.07 0.02

Table 2: Results from four multinomial logistic regression models. The first row corresponds to a model in which a

model is run on all 11 stores and 11 SKUs, with the store and SKU as covariates. The last row corresponds to average

measures over models in which each SKU/Store combination has a single model. The middle two rows correspond to

average measures over models including either only one SKU (but multiple stores) or vice versa. The four measures

(CM, PM, RCM, RPM) are described in the main body of the text.

in the window, and compares it to the actual demand observed in that window. We use the

average absolute difference per day in our window, averaged over all windows, as our RCM.

‘Rolling Probability Measure’ (RPM) Our second measure tests the accuracy of the split

among the different outcomes. For each window, we find the predicted proportion of obser-

vations from each outcome. We then compare these proportions to the actual proportions

observed using the KL-divergence. The average such KL-divergence is averaged over all win-

dows.

2.5 Results

We fit the four models described in the previous section, and calculate the four measures described

above for each of these models. In all cases, ordered logistic regression performs very poorly; clearly,

the additional assumption in the ordered logistic regression model is too restrictive.

We therefore use multinomial logistic regressions, and our results are listed in Table 2, and

illustrated in Figure 8. Note that in all cases, we used the same data for fitting and evaluation.

Whilst we would ideally have split our data into a training and test set, the large numbers of

parameters to estimate and the relatively small number of data points available (especially for the

individual models) required the use of all data available for fitting.

These results make it very clear that by all measures, individual models for each SKU and store

combination perform better than any combined model. It is interesting to note that in general, SKU

models perform better than store models. This implies that there is far more variability in demand

across different SKUs than across different stores, a result that is not particularly surprising.

It is also heartening to note that these models tend to perform very well indeed. The CM

15

Figure 8: Diagramatic representation of the data in table 2.

measure (which we expected to perform poorly) correctly classifies 54% of points, and the rolling

count measure implies that every day, the demand is miss-estimated by only 0.07 units on average.

3 Optimizing the Supply Chain

Having discussed methods to obtain reliable estimates of future demand, we are ready to consider

methods for optimizing the supply chain itself.

Ideally, we would use the methods studied in the previous chapters and apply them to this

specific supply chain. Regrettably, this would yield poor results in the current setting. Indeed,

because most demands observed are very small, the resulting mean demand is tiny in most cases,

and the resulting coefficient of variation is very large. For coefficients of variation as large as these,

the gaps observed between the upper and lower bounds discussed in the previous chapters are very

large.

We propose, instead, a simplification of the models discussed in the previous chapters to this

particular supply chain. We first note that because the leadtimes to the depot in this case are much

longer than those to the individual retailers (sometimes by an order of magnitude), and because

fixed order costs to the depot are so large (orders have to be placed from manufacturing plants and

production initiated), the depot will always have abudant inventory to supply each of the retailers.

This means that we do not need to concern ourselves with optimizing the entire supply chain – it

is enough to simply consider each retailer individually. Having determined the optimal allocation

16

for each retailer, we can be sure that the depot will always be able to supply as much inventory as

needed to fulfill this optimal need. This, effectively, reduces our two-echelon multi-location problem

to a single-echelon, single-location problem, albeit one with capacity constraints.

We now formulate a mathematical program – similar to the heuristics discussed in the previous

chapters – that will allow us to determine the optimal allocation for each store under such a scheme.

We then use simulation to compare the performance of this heuristic to other, more naive, heuristics.

3.1 Finding the optimal allocation

All notation in this section will echo the notation in our handling of the multi-location, multi-

product case. In particular, recall the following definitions:

• uij,(t→τ) denotes the sum of all product-i demands at retailer j from time t to time τ + `j :

uij,(t→τ) =

τ+`j∑
τ ′=t

uij,(τ ′)

and µij,(t→τ) = E
(
uij,(t→τ)

)
Note, therefore, that µij,(t→t) ≡ µ̃

i
j,(t), and uij,(t→t) ≡ ũ

i
j,(t).

• We let

Qij,(t→τ)(X) = pij,(τ+`j)E
[
X − uij,(t→τ)

]−
+ hij,(τ+`j)E

[
X − uij,(t→τ)

]+
Let us first consider the myopic problem at store j. Suppose we are in period t and that we

place orders
{
w̄ij,(t)

}I
i=1

– these orders will arrive in period t + `j , and the expected holding and

backorder costs in that period will be given by
∑I

i=1Q
i
j,(t→t)(x

i
j,(t) + w̄ij,(t)).

Assuming we take this myopic view, therefore, we can find the optimal orders
{
w̄ij,(t)

}I
i=1

by

solving the following optimization problem

max

I∑
i=1

Qij,(t→t)

(
xij,(t) + w̄ij,(t)

)
s.t. w̄ij,(t) ≥ 0 ∀i

I∑
i=1

max
(
xij,(t) + w̄ij,(t) − u

i,[αj]

j,(t→t), 0
)
≤ χj,(t+`j)

The first constraint insists that all deliveries to the store be positive. The second requires that

the current inventory in the store, plus any deliveries, does not exceed the capacity with a certain

probability.

17

As we have seen in previous chapters, this sort of myopic thinking often results in results that

are suboptimal.

We did, however, also see that looking a few periods into the future can result in far better

results.

As in previous chapter, we therefore consider a less myopic approach, that considers several

periods in the future when deciding on optimal allocations for this period. Specifically, suppose we

look κi periods forward for product i, and let w̄ij,(τ) denote the allocation of product i to our store

in period τ . Our non-myopic problem then becomes

max
I∑
i=1

t+κi∑
τ=t

Qij,(t→τ)

(
xij,(t) +

∑τ
τ ′=tw̄

i
j,(τ ′)

)
s.t. w̄ij,(τ) ≥ 0 ∀i, τ

I∑
i=1

max

(
xij,(t) +

τ∑
τ ′=t

w̄ij,(τ ′) − u
i,[αj]

j,(t→τ), 0

)
≤ χj,(τ+`j) ∀τ

Note that because each the κi may be different for different products, the capacity constraints

for later periods will not necessarily include every product. Because we will only be using this

program to decide on allocations in period t, however, the fact later capacity constraints may not

be comprehensive will not affect the validity of our results.

Finally, we note that in this application, the demand distributions are discrete, and ũij,(t→τ) is

supported on a finite set of consecutive integers {−L, · · · , U}. Each of the Q are then piece-wise

linear and convex, and the optimization program above becomes

max

I∑
i=1

t+ki∑
τ=t

Θi
j,τ

s.t. w̄ij,(τ) ≥ 0 ∀i, τ

Cij,(τ) ≥ x
i
j,(t) +

∑τ
τ ′=t w̄

i
j,(τ ′) − u

i,[αj]

j,(t→τ) ∀i, τ

Cij,(τ) ≥ 0 ∀i, τ∑I
i=1C

i
j,(τ) ≤ χj,(τ+`j) ∀τ

Θi
j,τ

≥ pij,(τ+`j)µ
i
j,(t→τ) +

[
(pij,(τ+`j) + hij,(τ+`j))F

i
j,(t→τ)(u)

−pij,(τ+`)
] (
xij,(t) +

∑τ
τ ′=t w̄

i
j,(τ ′)

)
+(pij,(τ+`j) + hij,(τ+`j))[∑u−1

u′=−L F
i
j,(t→τ)(u

′)− uF ij,(t→τ)(u)
]
∀i, τ, u

18

This is a linear program, solvable using a number of standard packages.

3.2 Performance

Ideally, we would test the strategy suggested above on the data provided by our luxury goods

retailer, and compare the performance of this strategy with the methodology currently in use there.

Unfortunately, this is difficult to do for two reasons. (1) We do not have access to meaningful data

about store capacities; we have data pertaining to the area of each store, bu no data bout the size

of each product, or about the shelving configuration at each of these stores. (2) For most of the

time period our data pertains to, we are only given sales data, not inventory data, at each of the

stores. It is therefore difficult to know what ordering strategy was used.

As a result, we devise some other basic heuristic policies, and benchmark the strategy above

against these heuristics. It is important for our benchmarking heuristics to ensure the capacity

at each retailer is not exceeded. Indeed, with no capacity constraints, a simple (s, S) policy is

proveably optimal, and would by definition perform better than our suggested strategy above.

These are the four allocation strategies we consider:

Non-myopic constrained algorithm : this is the optimal algorithm described in the previous

section. It looks at four periods into the future for each product and implicitly includes

capacity constraints in its formulation.

Myopic constrained algorithm : this algorithm is identical to our optimal algorithm, but it

only considers one period into the future instead of four.

Non-myopic unconstrained algorithm : this algorithm is identical to our optimal algorithm,

but it does not include any capacity constraints. As a result, the optimal allocations as

prescribed by this algorithm – if blindly followed – will result in severe capacity overflows.

To (at least partially) mitigate this problem, we correct the output of this algorithm at each

step by ensuring that the sum of all inventory delivered is equal to the sum of all inventory

delivered under the optimal algorithm. We do this by randomly subtracting delivery amounts

for randomly chosen products, until the total allocation is small enough.

The correction method is designed to replicate what may happen when such a policy is im-

plemented. Presumably, when inventory arrives that consistently exceeds available capacity,

excess inventory is returned or discarded as it arrives.

19

Figure 9: Performance of our non-myopic allocation algorithm compared to heuristics. The x-axis

corresponds to the capacity of the retailer and the y axis gives the average cost per period, as a

multiple of the cost of our optimal algorithm.

Myopic unconstrained algorithm : this algorithm only looks one period ahead, and does not

include any capacity constraint. A similar fix is applied to ensure the capacity constraints

are not too severely violated.

We simulate each of these algorithms on a sample problem with 10,000 periods, stationary

demands and non-stationary holding and backorder costs. We use 10 products and a lead-time of

3. The total aggregate demand for all products in each period is 12, with a standard deviation of

3. We run simulations with capacities equal to the mean demand, one and two standard deviations

below the mean demand, and one, two, five, 10, 100 and 1000 standard deviations above the mean

demand (the last simulation was designed to model a situation in which capacity constraints are

not binding). We consider the average cost per period using each of the algorithms above.

The results of these simulations are illustrated in figures 9 and 10. Some salient points:

• Our optimal algorithm clearly performs much better than any of the heuristics.

Not only are the optimal costs better under our algorithm than under the heuristics, but the

probability of a capacity overflow is also lower. In other words, despite the fact our algorithm

20

Figure 10: Capacity constraint performance of our non-myopic allocation algorithm compared to

heuristics. The x-axis corresponds to the capacity of the store in question and the y axis gives the

probability of the capacity at the store being exceeded minus that probability when applying our

optimal algorithm.

does a better job at staying within capacity, it also performs at a lower cost.

• It is interesting to note that the cost-advantage of using our algorithm over the heuristics does

not monotonically decrease with capacity. This could be because at extremely low capacities,

all algorithms are bound to do poorly regardless – as such, the improved performance of our

algorithm is less pronounced.

• It is surprising that our heuristic algorithms result in more capacity violations than the

optimal algorithm. Indeed, recall that the heuristic policy constrains the total deliveries to

be identical to those in the optimal algorithm; one might therefore expect a similar number

of violations in both cases.

The difference arises because backordered items are not counted as ‘extra space’ in our retailer.

In other words, if the capacity is 10 and the retailer contains 15 units of one item and −5 of

another (ie: 5 backordered units), the capacity is still violated. Our optimal algorithm knows

this, and assigns inventories bearing this fact in mind. Our heuristic algorithm does not.

• It is interesting to note that moving from a non-myopic to a myopic algorithm worsens

performance, but not by much. This may be because we are considering a situation in which

the demands are stationary – only the holding and backorder costs vary from period to period.

There is therefore not as much to lose by using a non-myopic policy.

• As the capacity of our store increases to infinity, both non-myopic algorithms converge to

the same performance, as may be expected. The myopic algorithms (whether constrained or

unconstrained) also converge to the same cost, though that cost is slightly higher than that

of the non-myopic algorithms, as may be expected.

• As the capacity of our store increases to infinity, the probability of capacity violation converges

to zero for all our algorithms, as would be expected.

4 An Interactive System

The results in the previous section are promising. Unfortunately, they could be difficult to imple-

ment in practice in a business environment. Indeed, they require the solution of a non-trivial linear

program – this could be challenging for non-technical business executives. In a high-pressure, fast-

moving environment, methods such as these are unlikely to be adopted unless they can seamlessly

22

be integrated into existing workflows.

To make our method easier to integrate into a typical workflow, therefore, we construct a

browser-based system that takes infrastructure data (including holding and backorder costs) and

demand distributions at each retailer, and automatically calculates the optimal allocation to each

retailer using the strategy above by running a server-side R-Script.

The system is best experienced ‘live’, but some screen shots are included in figure 11.

5 Conclusion

We were provided with demand data for a luxury goods manufacturer. We experimented with

multinomial logistic regression as a method for estimating future demand, with a number of different

model choices.

Having estimated future demand, we considered methods for optimal allocations in such distri-

bution systems. Unfortunately, the methods discussed in our previous chapters are not suitable in

this case, where the coefficients of variation of the demand distributions are very large. We noted,

however, that the likely abundance of inventory at the depot made it possible to consider each

retailer individually. We constructed an linear program to solve the optimal allocation problem

for each of these retailers, and showed that it performed significantly better than heuristic policies

that could have been employed to artificially meet the capacity constraints in our system, both in

terms of optimal cost and in terms of capacity violations.

Finally, we constructed an interactive online system suitable for use by non-technical executives.

The system allows the input of holding and backorder costs as well as demand distributions, and

returns optimal allocations to the retailer in question.

References

Bajari, P. et al. “Demand Estimation with Machine Learning and Model Combination”. https://www.utexas.edu/cola/ files/sr8456/DataMiningDemand2015-

2-4.pdf, retrieved May 6th, 2015.

Beck, A. and M. Teboulle (2009). “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear

Inverse Problems”. In: SIAM J. Imaging Sciences 2.1, pp. 183–202.

Berry, S., J. Levinsohn, and A. Pakes (1995). “Automobile Prices in Market Equilibrium”. In:

Econometrica 63.4, pp. 841–890.

23

Cooper, L. G. and M. Nakanishi (1988). Market Share Analysis. Kluwer Academic Publisher,

Boston, MA.

Fagerland, M. W., D. W. Hosmer, and A. M. Bofin (2008). “Multinomial goodness-of-fit tests for

logistic regression models”. In: Statistics in Medicine 27, pp. 4238–4253.

Guadagni, P. M. and J. D. C. Little (1983). “A Logit Model of Brand Choice Calibrated on Scanner

Data”. English. In: Marketing Science 2.3. issn: 07322399. url: http://www.jstor.org/

stable/184043.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. Chapman and Hall/CRC.

A Using FISTA to fit Multinomial Logistic and log-Logistic Models

In this section, we consider the practical details of estimating the models in section 2 using FISTA.

In particular, we will show that the resulting log-likelihood is concave, discuss numerical issues

involved in its calculation, and calculate its derivatives.

With one exception that will be discussed later, we used the standard FISTA algorithm for

convex optimization, as devleoped by Beck and Teboulle (2009). For this reason, we will not give

a detailed account of our algorithm – readers are directed to that paper for details.

We shall assume throughout this appendix that there are N observations of demand {Di}Ni=1,

each with a corresponding set of covariates
{
X(i)

}N
i=1

. We assume that each demand Di can take

one value in the set {d1, · · · , dk}.

B Multinomial logistic regression

In multinomial logistic regression, we assume that each demand is distributed as follows

log

(
P(Di = dk)

P(Di = d1)

)
= β(k) ·X(i)

where {β(2), · · · ,β(k)} are vectors in Rp to be estimated. For notational convenience, we shall

define a vector β(1) ≡ 0.

This immediately gives, for every k,

P(Di = dk) =
exp(β(k) ·X(i)∑K
κ=1 exp(x(κ) ·X(i)

and

logP(Di = dk) = β(k) ·X(i) − log

(
K∑
κ=1

exp(β(k) ·X(i))

)

24

B.1 Concavity of the log-likelihood

The log-likelihood is trivially concave by the concavity of the log-sum-exp function.

B.2 Evaluating the log-likelihood

Only the second term may cause a problem when evaluating the log likelihood. Indeed, if one of

the exponential terms inside the logarithm is extremely large, the entire expression could overflow.

To solve this problem, we re-write the second term as follows

log

(
K∑
κ=1

exp(β(k) ·X(i))

)
= max

k
(β(k) ·X(i))

+ log

(
K∑
κ=1

exp

[
β(k) ·X(i) −max

k
(β(k) ·X(i))

])
This ensures that every term in the logarithm is reasonably sized, and makes the evaluation of this

expression far more numerically stable.

B.3 Derivatives of the log-likelihood

We define a set of matrices
{

E(1), · · · ,E(k)
}

, each in R(K−1)P×, as follows

E(1) = 0(K−1)P×P

E(k) =

0(k−1)P×P

IP×P

0(K−k)P×P

We then have that

∇β logP(Di = dk) = E(k)X(i) −
∑K

κ=1 exp(β(κ) ·X(i))E(κ)X(i)∑K
κ=1 exp(β(κ) ·X(i))

C Ordered Logistic Regression

In ordered logistic regression, we assume that each demand is distributed as follows

logit [P(Di ≤ dk)] = ln

(
P(Di ≤ dk)

1− P(Di ≤ dk)

)
=

(∑k
κ=1γκ

)
− β ·X(i)

≡ −ζik

25

Where β and {γ1, · · · , γK−1} are parameters to be estimated, and we assume γK = ∞. We

constrain γ to be strictly positive. This immediately gives

P(Di ≤ dk) =
1

1 + exp(ζik)

and

P(Di = dk) =

1

1 + exp(ζi1)
k = 1

1

1 + exp(ζik)
− 1

1 + exp(ζik−1)
1 < k < K

1− 1

1 + exp(ζiK−1)
k = K

Simplifying, multiplying the second line by exp(−ζik) and remembering that ζik−1 = γk+ζik, we find

that

P(Di = dk) =

1

1 + exp(ζi1)
k = 1

exp(γk)− 1

1 + exp(−ζik) + exp(γk)
[
1 + exp(ζik)

] 1 < k < K

1

1 + exp(−ζiK−1)
k = K

Taking logarithms

lnP(Di = dk) =

− ln
[
1 + exp(ζk1)

]
k = 1

ln (exp[γk]− 1)

− ln
[
1 + exp(−ζik) + exp(γk)

[
1 + exp(γik)

]]
1 < k < K

− ln
[
1 + exp(−ζiK−1)

]
k = K

C.1 Log-concavity of the Likelihood

Before we consider any algorithm to optimize the likelihood, we will show it is log-concave. Before

we prove this, let us prove the following lemma.

Lemma 1. The function

f(a, b) = ln
(

1 + e−a + eb + ea+b
)

is jointly convex in a and b.

Proof. First, consider that

∇f(a, b) =
1

1 + e−a + eb + ea+b

 ea+b − e−a

ea+b + eb

26

and

∇2f(a, b) =
1

(1 + e−a + eb + ea+b)
2D

where

D1,1 = ea+b + e−a + ea+2b + eb−a + 4eb

D1,2 = D2,1 = ea+b + 2eb + eb−a

D2,2 = ea+b + 2eb + eb−a + 4ea+2b + 2e2b + 2e2a+2b

Setting K =
(
1 + e−a + eb + ea+b

)
, we find that∣∣∇2f(a, b)

∣∣
K

= a2a+2b + 2ea+2b + e2b + 4e2a+3b + 2ea+3b + 2e3a+3b

+eb + 2eb−a + eb−2a + 4e2b + 2e2b−a + 2ea+2b

+e2a+3b + 2ea+3b + e3b + 4e2a+4b + 2ea+4b + 2e3a+4b

+e2b + 2e2b−a + e2b−2a + 4e3b + 2e3b−a + 2ea+3b

+4ea+2b + 8e2b + 4e2b−a + 16ea+3b + 8e3b + 8e2a+3b

−e2a+2b − 2ea+2b − e2b

−2ea+2b − 4e2b − 2e2b−a

−e2b − 2e2b−a − e2b−2a

simplifying ∣∣∇2f(a, b)
∣∣

K
= 4e2a+3b + 2ea+3b + 2e3a+3b

+eb + 2eb−a + eb−2a + 4e2b

+e2a+3b + 2ea+3b + e3b + 4e2a+4b + 2ea+4b + 2e3a+4b

+e2b + 4e3b + 2e3b−a + 2ea+3b

+4ea+2b + 3e2b + 4e2b−a + 16ea+3b + 8e3b + 8e2a+3b

This is clearly positive. Thus, f(a, b) is jointly convex in a and b.

We are now ready to show that the likelihood is log-concave.

Proposition 1. The likelihood above is log-concave.

27

Proof. Consider that we can write the log-likelihood as

lnP(Di = dk) =

−f(−ζi1,−∞) k = 1

ln (eγk − 1)− f(ζik, γk) 1 < k < K

−f(ζiK−1,∞) k = K

where f is defined as in Lemma 1.

Now, the first part of the second term can trivially be shown to be convex. Then, convexity of f

and convexity of affine combination and sums immediately shows that the likelihood is concave.

C.2 Evaluating the log-likelihood

When any of the ζik are very large, the log likelihood can be difficult to evaluate numerically. In

this section, we consider the numerical evaluation of this log-likelihood in such cases.

In the discussion that follows, we let ε represent a large number – say 50.

We now consider each term in the log-likelihood separately

• k = 1 In this case, if ζi1 ≥ ε, we can simply set

− ln
[
1 + exp(ζi1)

]
= −ζi1

• k = K Similar considerations apply.

• 1 < k < K Both terms in this part pose difficulties

– For the first term, if γk is very small, we can write

ln (eγk − 1) = ln(γk)

– For the second term, consider two cases

∗ If γk + ζik < 0, we can write

ln
[
1 + exp

(
−ζik

)
+ exp (γk)

[
1 + exp

(
ζik
)]]

= −ζik + ln
[
1 + exp(ζik) + exp

(
γk + ζik

) [
1 + exp

(
ζik
)]]

In this case, since γk > 0, we are guaranteed to have ζik < 0. As such, every

exponentiated term above is small, and evaluation poses no numerical problem.

28

∗ If γk + ζik > 0, we can write

ln
[
1 + exp

(
−ζik

)
+ exp (γk)

[
1 + exp

(
ζik
)]]

= γk + ln
[
1 + exp (−γk) + exp

(
−ζik − γk

)
+ exp

(
ζik
)]

If ζik > ε, then this entire expression reduces to γk + ζik. If not, every exponentiated

term is guaranteed to be small, and evaluation poses no numerical difficulties.

C.3 Derivatives of the log-Likelihood

We now consider the computation and evaluation of the derivatives of the log-likelihood.

To do this, we first note that ∇βζ
i
k = X(i). Having said that, algebraic manipulation yields

∇β lnP(Di = dk) = X(i)

− 1

1+exp(−ζi1)
k = 1

1−exp(γk+2ζik)

1+exp(ζik)+exp(γk+ζ
i
k)+exp(γk+2ζik)

1 < k < K

1
1+exp(ζiK−1)

k = K

The derivatives with respect to γ are considerably more complicated. Letting e(κ) denote a vector

of zeroes in RK−1 with a single 1 in the κth position, and e(1→k) =
∑k

κ=1 E(κ), we have that

∇γζ
i
k = −e(1→k). We then obtain

∇γ lnP(Di = dk) =

1
1+exp(−ζi1)

e(1) k = 1

− 1−exp(γk+2ζik)

1+exp(ζik)+exp(γk+ζ
i
k)+exp(γk+2ζik)

e(1→k)

− 1+exp(ζik)

1+exp(−[ζik+γk])+exp(−γk)+exp(ζik)
e(k) 1 < k < K

+ 1
1−exp(−γk)e

(k)

− 1
1+exp(ζiK−1)

e(1→K−1) k = K

C.4 Evaluating the derivatives

Evaluating the derivatives will also cause some numerical problems. Let us consider each part of

the derivative.

C.4.1 Derivatives with respect to β

The k = 1 and k = K terms will not pose any numerical problems. For the 1 < k < K term, the

denominator is always ≥ 1 and so we need to worry about dividing by zero. We do, however, need

29

to worry about a situation in which both the numerator and denominator get very large. This will

only occur if γk + 2ζik < ε (once again, we let ε represent a large number – say 50). We deal with

this situation as follows

• If ζik > ε, then exp(γk + 2ζik) will dominate the denominator, and set the entire expression to

−1.

• Otherwise, γk must be large, and so exp(ζik) will be negligible compared to terms involving

γk. As such, set

1− exp(γk + 2ζik)

1 + exp(ζik) + exp(γk + ζik) + exp(γk + 2ζik)
≈

exp(γk + 2ζik)

exp(γk + ζik) + exp(γk + 2ζik)

= − 1

1 + exp(−ζik)

C.4.2 Derivatives with respect to γ

Once again, the k = 1 and k = K terms will not pose any numerical problems. For the 1 < k < K

term, we note that the denominators are always ≥ 0, so we need not worry about dividing by

zero. Once again, however, we need to worry about each of the first two terms to ensure both the

numerator and denominator don’t get too large

First term : problems arise if γk + 2ζik ≥ ε. In that case

• If ζik > ε, then exp(γk + 2ζik) will dominate everything, and we can write

−
1− exp(γk + 2ζik)

1 + exp(ζik) + exp(γk + ζik) + exp(γk + 2ζik)
≈ 1

• If not, γk must be very large, and any terms not involving it with vanish. We can

therefore write

−
1− exp(γk + 2ζik)

1 + exp(ζik) + exp(γk + ζik) + exp(γk + 2ζik)
≈ 1

1 + exp(ζik)

Second term : problems arise if ζik > ε. Furthermore, recalling that γk > 0, this would also make

the second and third term in the denominator very small. We can therefore say

−
1 + exp(ζik)

1 + exp(−[zetaik + γk]) + exp(−γk) + exp(ζik)
≈ −1

30

C.5 Modifying FISTA

One last details remains to be discussed. Whilst FISTA is a very reliable method for general convex

optimization, it unfortunately fails to converge quickly enough on multinomial logistic regression.

The reason is that this particular log-likelihood involves two very different kinds of variables.

The β variables on the one hand, and the γ variables on the other.

Standard FISTA uses a symmetric quadratic to approximate the function to be optimized, with

a single curvature constant L. This forces the same curvature to be used in the β dimensions and

in the γ dimensions, which results in poor convergence.

To mitigate this problem, we adopt an approach in which a few preliminary steps of the algo-

rithm are carried out with a single L value, at which point a re-calibrating step is carried out, in

which the dimensions corresponding to γ are given a different L value than those corresponding to

β. The algorithm then proceeds as normal.

31

F
ig

u
re

11
:

S
cr

ee
n

sh
o
t

o
f

th
e

in
te

ra
ct

iv
e

a
ll

o
ca

ti
on

sy
st

em
w

e
d

es
ig

n
ed

.
(T

op
le

ft
)

A
n

in
te

rf
ac

e
to

al
lo

w
th

e
u

p
lo

ad
of

d
em

an
d

ch
ar

ac
te

ri
s-

ti
cs

fo
r

th
e

sy
st

em
.

(T
o
p

ri
gh

t)
A

n
in

te
rf

a
ce

to
al

lo
w

th
e

u
p
lo

ad
of

in
fr

as
tr

u
ct

u
re

d
at

a,
in

cl
u

d
in

g
h

ol
d

in
g

an
d

b
ac

ko
rd

er
co

st
s.

(B
ot

to
m

)

A
n

in
te

rf
ac

e
to

la
u

n
ch

th
e

R
sc

ri
p

t
to

d
et

er
m

in
e

al
lo

ca
ti

on
s,

d
is

p
la

y
s

th
es

e
al

lo
ca

ti
on

s,
an

d
m

ak
es

th
em

av
ai

la
b

le
fo

r
d

ow
n

lo
ad

.

32

Figure 12: This diagram illustrates the effect of using a FISTA algorithm with two different L values – one for

the β dimensions, and one for the γ dimensions. Both algorithms use a single value of L for 12 iterations, and then

diverge. The algorithm in red continues using a single value of L for all dimensions. The algorithm plotted in black

uses two different values of L and clearly converges faster.

