Probability Preliminaries

 Set operations

Note the following basic propeity of unions and intesections of setsfJ_ 4|

equiralently: [ J, 45 = [, 4]

o Proposition: Let {4} be a sequence of (measutable) events such that P(4)=1 for all n. Then
P(N.4,
Proof First consider that [} 4, =(J, 4. Then consider that, using the union bound
P(U, )< B ()

simply states that if we add the probability of events without subtracting their intersections, the

N4 o

=30,1-F(4)=),0=0. The union bound, used in the first line,

1esult will be greater than when considering the union (which leaves out intersections). W
Definition (limsup and liminf): Let {a} be a ienkvalue sequence. Then we wiite
lmsup,a, = inf sup,,_a. This i the least upper bound on that sequence. Similaily

liminf,a, = sup, inf,__ a,. Note that these limits need not be finite. Remarks:

If limsup, a, < a, then a, <a cventually (ie: for sufficiently large ). If limsup, a, > a. then
4, >a infinitely often — in other words, there are infinitely many elements in the sequence

ahove a.

Similarly, Iminf o, >a=a, > aex. and lminfa, <a=a_<alo

o Definition (limsup and liminf for sets): Let (A‘) be a sequence of measuable sete. Then
limsup, 4, =, U, 4, =lim,_ U,..4,

liminf, 4 =J N, 4 =lm, (. 4

We can interpret these as follows. The lim sup of A, is the set of events that are contained in

infinitely many of the A, (but not necessarily in all the A, past a point — the event could “bounce in
and out” of the A){lim=up 4 }={we@ wea io}. Simiary. the lm inf of A, is the set of
events that eventually appear in an A, and then in all A, past that point

{timint, 4,

{0en:wed ev} Clearly, if an event is in the lim inf, it also appeats infinitely

often (because it appears in all the A, past a point, and g0 liminf, 4 C limsup A4

{a e =[U.N,n

Remark: Take {4,.ev} = {timing 4} Then

= ﬂ,{(ﬂm A)} = MU, A =timing, 4 = {4, 10}

o Proposition: Let {4} be a sequence of measurable sets, thenP (liminf, 4,) < limin¢ P(4,) and

P(limsup, 4 )>limeup, P(4_). (The first statement can be thought of as a genexalization of Fatou's

Lemma for probabilities)

« Interchange arguments
o Theorem (BDD - Bounded Convergence) Let {X,} be a sequence of tandom variables such
that [X,| €K <o (where K is a deterministic constant) and X, — X almost surely, then
E(X,) = B(X)
o Lemma (Fatow) 1f {X} is a sequence of nonmegative random variables, then
B (liminf, X, ) < liminf, B(Y, ). (Note: there is no converse for lim sup)
o Theorem (DOM — Dominated Convergence): Let {X, } be a sequence of random variables such

that

<Y with E(Y)<ou and X, — X almost sueely, then E(X,) — E(X).

o Theorem (MON - Monotone Convergence): Let {X,} be a sequence of random variables such

that 0< X, <X, - as, then (1) X, /X (poss. c0) almost surely. (2)E(X, ) / E(X) (poss. o).
o Proposition (Fubini I): Let {X,} be with X_ >0 for all n, then E(Y] X, )= B(X,)

o Prop. (Fubini I1): Let {X,} be a sequence with B(Y |

X

) <o Then B(Y, X,)= 3 B(Y,)
o Definition (u.i): A sequence of random variables {X, } is snid to be uniformly intcgrable (u.i.) if for

all &0, there exists a K() < oo such that sup,_ EU,\

‘x > K(=)) = sup_‘lE(

x|z,
-1
o Proposition: Let {X,} be a sequence of xandom variables and suppose X, — X almost surely (1) If
{X.} are uniformly integrable. then E(X,)— E(X). In fact. a stronger reault applies ~ that
5

[X, = X[)— 0. (2) It X, > 0 for all nand B(X,) — B(X) < ou, then {X,} ateui

o Prop (Sufficient conditions for w.i.) (1) 1f sup, B|

<ou for some p > 1, then {X,} is

uniformly integrable. (2) 1f |X,| <Y, and {¥,} is uniformly integrable, then {X,} is i, (3) It {X,}

and {Y,} ave uniformly ntegrable, then {X_+Y,} i ui
«  Kolmogorov's 3-Series Theorem
o Theorem (Kolmogorov 3-series): Let {X,} be a sequence of independent random variables. Then
37, X, converges if and ouly if for some (and therefore every) K > 0, the following conditions hold:
(1) 3, P> K)< o (clearly, for example, if the X, ate IID without bounded support, we'll
never be able to satisfy this). This i 2 statement that the “mass in the taile” must decrense with n.
@ B X [sK)<n @ 3, var

caistence of the expected value and the variance in the last two points because these are taken over a

<K)<ro. Note that there are no issues of

finite vange — namely on X, € (~K.K)
o Proposition (2 version of 3-series theorem): Let {X,} be independent random variables with

E(X,

0 forall m If 35 Van(X,) < oc. then §, =377 X, converges almost smely

o Prop. (Skorohod Representation) Let {X,} be a sequence of random variables such that

X, = X Then there exists a probability space (9,7, F) supporting a sequence {X/} and X" such

¢

that X7, and X'ZX And X!~ X' almost surely
o Prop. (Continuous Mapping Theorem — CMT): Let {X,} be such that X, = ¥ Let fbe a
function with w(x €D,) =0 with p; being the set of discontinuity points of £ Then f(X,) = f(X)
o Proposition (Converging Together Lemma - CTLY: If {X,} s a sequence such that X, = X
and {v,} ie a sequence such that ¥, =a (whete a is a deterministic constant), then (1)
X, +Y, = X4a (2) XY, = Xa (3) 3= 1Y provided a =0
« Introduction to Large Deviations

o Theorem: Let X,

X, be TID with mean /¢ and such that M(8) = E(c") exists for all 0 € R, and

asume  B(X,=p)<l. Then for any a>p, logP(S, >na)——Ia) Where

1(a) = 3up,., [fa —log M(O)] = 3up,, |60 — (6)]

o Ezample: Let X, X, be IID N{jo0%) variables variables. Fix a> . We sow, eatlier that

B(s, >nu)§exp(fnl(a)):exp( 4} The contral limit theorem allows us to “handwave”

S, ~ nju+oVaN(0,1). Using this result, however, we can be more exact - we can find a sequence a,

such that S, eventually lies below ng-+a, ns. Consider: B(S, >npta,

<exp-n ). For
summability, choose a, =21+ d)o’nlogn . This is very close to ¥ , which we might expect to
work given the CLT. P(5, > nu+a,)<n™"*" . Use BC-L

o Theorem (Moderate Deviations): Under the conditions of Cramer's Theotem, for any sequence

@, such that (1) § — co (2) 2 — 0. then for any a >0, =logP(S, > np + aa;
" T i '

Random Walks & Martingales

«  Random walks
o Definition RW is §, =" X, with the {X,} TID, and independent of 5,
o Definition (Stopping time): Suppose T is a non-negative integer-valued random vaxiable. Then 7 is

eaid to be a stopping time with 1espect to an underlying sequence {¥, } it. {T =4} £, Yk

°

Proposition (Wald's First Identity ) Let, §, be a 1andom walk §, = 3" X with § = 0. and let. T

be a stopping time wit the sequence {F£} (1)X,>0=[E(S,)=BTEX,) @) I

X < 00 B(T) < o = B(S;) = BT)E(X, )
Proof Let 5, =Y X, = Y27 X ;. Then E(S,) = E(Zf Xl)

Now, let us do both paits

that the fist statement is simply o shorthond for P(se0:we A, io

Proof of (i): Let us define B, ()4, . Then we know that -

In other

words, the sets B, increase monotonically to
B=,B, =U,N,..4, =liminf, 4,

Since the events are incrensing, a simple form of monotone convergence gives us that P(B, )/ P(B)

7z m because B, is the intersection of all events fom

But we also have that P(B )< P(4 )
A, onwards, so its probability is less than or equal to the probability of any single event. Thus

B(B,)<int,_, P(4,)= sup, F(B, ) <sup, inf,  B(4,)= P(B)<liminf, B(4,). And given how we

have defined B, P(liminf, 4 } < liminf, P(A_)As required
o Borel-Cantelli Lemmas €& Independence
o Proposition (First Borel-Cantelli Lemma) Let {4} be a sequence of measurable events such

that 37 P(4,) < 0o, Then P4 io)=0. Inother words, P(limsup, A )=0.! We offer two proofs -

the first is someswhat mechanical. the second is more intuitive.
Proof  (version 1) Consider  that  lmeup A =[] |, A As such
Pllmsup, 4, ) <P(U,.. 4} <X, P(4,) 0 As required L]

The second proof will require a lemma
Lemma (Fubini’s): 1 {X,} is a sequence of real-valued random vaviables with X, >0, then
B(L,X,

exchange a summation and an integration.

>, B(X, ) (which could be infinite). This is effectively a condition under which we can

fwed
Proof (version 2): Let X (w)= oo, Note that B(X,)=P(4,). We also have

that 37 P(4,) = 3, B(L, )= B(X,1, ) < . This means that the random varinble 3° I, must
be less than or equal to infinity for every outcome in 2; in other words Y. I, <nv as
This means that T, =1 only finitely many times. So, A, occurs only finitely often

o Definition (independence): A sequence of random variables {X,-,X,} are independent iff

TIL (X <2) foran

2, €R

Tt might not be cleas that the statementa (4 .0) = 0 and P(limaup, 4) =0 nte equivalent. T see this more clesly, note

This is clemsly identical, by definition, to

B(imau, 4)=0

o

Ezample: Set X, =Y, /n wheie the ¥, are TID exponential tandom variables with mean 1. Does

the sum § =Y X, converge? The deterministic series 1/n does not converge, and we wonder
whether the exponential variables will be close enough to 0 often enough to *fix” that. In light of the
tesult we derived in the previous lecture (that draws from an exponential will be arbitsarily large
infinitely  often) one might expect this series ot to conveige. First condition:

Py,

> K)=P(%> K) =P(¥, > k) =™ This does indeed sum to a finite number.The first

condition is therefore met. Sccond condition: E( <K)=B(%Y, <nk) =25(Y,:¥, <nk)

But we note that B(Y;:¥, <5 W¥s > 0. 1t is clear, therefore, that candition 2

ﬁ‘yc" dy >0

s violated, because the sum of 1/n diverges. So, a3 we expected, S, does not converge almost surely

°

Ezample:  Set X, = Y/n  whete the Y, ae 1D random variables with

-1

p. Once again. we wonder whether §, =Y " X converges. The

—B(Y,

intuition here is that the deterministic series Y (~1)" /n docs converge. Our version is this sum,
but instead of deterministically flipping between positive and negative, we randomiy switch between
positive and negative. We wonder whether this will “spoil” the convergence. We fix K = 0 (say K =

1) and test the three conditions: First condition P(|X,

>1)=0 So clearly, the sum does converge.

Sccond  condition (X,

Lm:(y v.|<n) im'_):L We know, however, that
n " E

v
4 diverges. so the infinite sum of these expectations only converges if p = ', in which case the

%)

numerator is 0. We therefore restiict our attention to that case. Third condition (assuring p

EYH-0
n

var(Y, |

v, The infinite sum of the variances

s therefore fnite.

./, where Y, are TID random vatiables with probability % of being 1 and

o

Example: Set X,
probably % of being 1. Again, the deterministic sum ) (~1)" /¥ converges, and we wonder

whether adding randomness will make a difference. Since, in this case, E(Y,)=0, we can simply

1 (X"
apply the second form of the series theorem: Var(X, | £1) = —Var(¥, B ) The
" "
infinite sum of these vaviances clenily diverges, and so S, does nof converge.
« The Strong Law of Large numbers
o Theorem (SLLN): Let {X,} be IID with B[, < o, then 2577 X, —B(X,) as.
B
L
o (Cesaro Sum Property): {a,} be real valued sequence a, —a_. Then — 3" SN
n

o (Kronecker’s Lemma): {a,} real valued sequence. Then, EL%‘ mnvﬂgml:\[iz:::va ao]

First part: X, = 0, and indicators are always positive, 2o by Fubini I, we can interchange the

expectation  and  the sum (S,

=Y B X‘ﬂ[‘,)) Consider,  however,  that

So Ly €y Thus

17.)

Using Fubini 1 again

:ZLIE[

E(S;) = BB 1y | = EAX,JEAT)

Second part: Triangle inequality
E(z;\x J) = mrye
o Proposition (Wald TI): Suppose {X} are IID bounded random variables, and B(X,)=0,
E(XT)
Va(S,) = o*BAT)

¥4

< . The result then follows by Fubini IL

By pat 1, however,

%

o* Let T be a stopping time with respect to {Z}. and such that HT")<eo. Then

* Martingales

© Consider that if we let D, = M_—M_ we can wiite M, = 5" D + M,

« Optional Stopping Theorem for Martingales

o Corollary I Let (M, :n>0) be a martingale with tespect to {%} and T be a stopping time such
that T is bounded (in other woids, there exists a K <o such that P(T<K)=1). then
E(M,) = EQM,)

o Corollary II: Let |1,

vl

<7, with E(Z)< oo, Then by dominated convergence, the interchange
holds and E(M,) = E(M,)

o Corollary IT Let (M, :n>0) be a martingale with respect to {7} and T be a stopping time
such that E(T)< oo, Provided the martingale differences are uniformly  bounded  (
IEHDJ | F.

€ <o), then B(M,) = E(M,)

Proof  We have SUD MM, is integrable.  Now consider  that,

")

<3 ID|= S27 D[ - Let us now take expectations. By Fubini 1, we can then swop

the expectation and sum, since the summands are poeitive

=X 5 o) 17|
Since the martingale differences are uniformly bounded bt C, this is = CET). As such
|ar,,.| < cB(T)+ M, is integrable, and by the statement of the theorem, E(T) < rv. As such,

martingale bounded by integiable variable.

Defininition (independence): {4, 4} are said to be independent if and only if the sequence ot
random variables {I, L, } are independent.
o Proposition (second Borrel-Cantelli Lemma): Let {4} be o sequence of independent

mensurable events such that 3 P(4,

= o0, then P(4, io)=
Proof We showed in a remark above that {4_.i0
Then using 1 -2 < ¢, we get B A7) =TT, P()

=Lt -B(4) <[] ep(-PA)) =exp(-3 PA))=0.  But  we  have  that
PUp N t) <SP0,

o Notions of convergence

Aevy =1, .4 Let us fioxm = 1

0. As required L]

o Definition (convergence almost surely) X, — X almost suely if P{oe 02X (

More genenally, {X,} converges almost surely if P(lim sup, X, = limint, ¥,

©  Ezample: Consider the sequence Y, =2U[0,1]. We claim that X, — 0 almost aurely

Proof In this case, 0 =[0,1]. For any w we might diawn, we will find 0< X,

required. [ =}

o Definition (convergence in  probability) X, —, X s n—oco if fo all £>0

P(X, - X|><)—0 s n - oo
o Definition ( gence in ion) - also called L, We say that X, =, X as
n—co if BJX, - X| =0 asn oo

o Claim: X, =, X implies that B|

and E(X,) — E(X)

o Theorem (Markov’s Incquality): Let X 0 have fite expectation. Then for all a -

1?(x>a)<wmuaj E(X) = B(X.X >a)+E(X,X <a) 2 B(X,X > a) 2 aP(X >a)
@

o Claim If ¥, —, X then X, —, X

Proof Fix >0, use Markov's Inequality P(|X, ~ X] > £) < E(|, - x])/= = 0
o Ezample Let X, be a sequence of IID random variables with exponential distribution with
parameter 1. We will prove that limsup(X, /logn) =1 s

e

Proof  Take >0, Consider  P(X > (l+z)logn)

1t Thus

PIRIEERED

logn) < ov . By BC-LE(X, > (1+¢)lognio)=0. So. X,

(1+5)logn ev. ae.

1

imilarly P(X, > (1-2)logn) = —— = 3 P(X, > (1—e)logn) =ox,

W

o Bzample Let {X_} be an IID sequence of random variables with B(X,)=0 and B(X?)= 0" <o

Let S,

e
i (1ogn]™ . log n grows extremely slowly. so

X, and consider 8, /a_ with a

this is really very close to n Vi growth. Consider that Var(X, /a,)=o* /Jn(logn)! ", and this

implies that Y7 Var ( X

<o Thus, by the Kolmogorov 3-series theorem, 3, & converges almost
surely, and by Kronecker's Lemma, this means that 8, /a, — 0. Thus, we see that even with such a
small-growing a,, an almost-sure result still holds. However, it is interesting to note that if we take

a, =V (slightly smaller), then no almost surc result holds anymore. The best we can say is

8,/ — o)
+  Weak convergence & the Central Limit Theorem

o Definition (Weak convergence): A sequence of random vaiables {X,} is said to converge weakly
to a 1andom vatiable X, denoted X, = X as n— oo if and only if B[f(X,)]— B[f(X)] for all
bounded continuous functions . Comments. Tf X, — X almost sutely. then J(X,) = /() because
Jis continuous, and B{f(X, )] = E[f(X)], by bounded convergence (since the functions ave bounded)
Thus, almost sure convergence implies weak convergence.

o Definition (Weak convergence): A sequence of real valued xandom variables {X,} converges
weakly to X if and only if F,(z) — F(z) for all continuity points of F. where X, - F, and X - F

o Definition (Tightness): A sequence of random variables {X,} with coresponding distiibution

functions {F, } is snid to be tight if V= >0, 3K()<ov st Sup‘ﬂ”{

x| > K(e)} <e. Equivalently

sup_‘lfo [K(s))l,g Comment: A sufficient condition for tightness if sup, E|X,| < 0. To see

why, with &~ 0, and consider that by Markov’s Inequality P\, | > K) <

o Proposition: Let {X_} be a sequence of random variables (1) If X, = X , then {X,} is tight (2) If

{X.} ie tight, then there existe a subsequence {n,} such that { } converges weakly. This is

somewhat isomorphic to the concept of compactness in real analysis
o Definition (Characteristic Function): A chavacteristic function (CF) of a random variable X is

given by, (0) = Blexp(i6X)| 0€R Remarks (1) ¢, (0)=1 (2) |0 S1. because by

Jensen’s inequality,

o @) < {Elespiox)

}=1 @) ¢10)= B, provided B

o | <oo @y x
and Y are independent, . ,.(6) = . (8).(8) . though the converse iz false.

o Proposition (Levy characterization theorem): Let {X,} be a sequence of random variables

with distiibution functions {£,}. 16y, (6) — ¢(6) for all §€ B and ¢(9) is continuous at 0 [kind of
a tightness condition], Then X, = X and X has characteristic function (6)

o Odds & Ends

+  Martingale Limit Theory & Concentration Inequalities

such

o Proposition (Martingale SLLN): Let {M, :n >0} be a martingale with respect to {7,

that sup  E(D!)< oo (thie. as we saw above, is a requitement for the increments to be

uncouelated) Then % 04

Proof Put M, =)' % (where, as usual D, =M,~M,_) Clealy and
i 2. wp, 1 , N
B{N, 17 = B[S0 2 £ |- A+ LB(D, 1 £ = N, B for all n,
S
due to the conditions on the second moments of D,. Thus, it is a matingale. Now
- . DD,
| E > 2| The second texm is equal to 0, since the D are uncorrelated.
% -5
sup,, E(D} s
"“"(AT“QN “This implies that sup,_, B[
by the Martingale Canvergence Theorem, M, M, as Now, let
A:{u > "-;*AMNM] ,IP(A):IB:{“; B D,(m)a@] By Kroenecker's Lemma
. o
A Thus, P(B)=1. This proves our Thearem. [

o Proposition (Central Limit Theorem for Martingales): Let {M, -n > 0} be a martingale with

<o @) [|/=0 @3

respect to {£} and put

D] 1t (1) sup,”

377, D? = 0” (deterministic and finite). This makes our martingale “similar” to a random walk.

Thenge M, = oN(O.1)

o - (“ H 120} be a martingale with tespect to

{7} sueh  eha

Then, for  all  n>0X>0,

P(u, - ) >/\'£2exp(7

Remark: Suppose that |D,| < ¢ vk, then we can re-write this as P(|M, — 1,

.
> ,\)szw[ ﬁ]

‘:Jﬂﬁ):‘?exv‘fj} O, choosing  A=yfmlogn, we  obtain

o P, - M,

P, ~ 2] = rntogn) <

sequence, which can be used to obtain an almost sure result.

2exp| S8 Choosing, for example, k= le produces a summable
o5 % p P
n

« Stochastic stability
o Proposition: Let {X, :n >0} be an ireducible markov chain on a countable state space S°. Let

K be aset containing a finite number of states. Then, if there exists a function ¢ — B, such



e andsome=-0  and

that  (recall  E

EL|Y Eg(X,) - gl2) <

E,g(X,)< 0o Vee K Then (X, n >0} is positive recurient

o “Application’: Consider the stochastic system Y, =aX, + 2, with {2} id and X,

want conditions on o and distributions of Z such that X, is stable. Use glz)=

E,g(X,) = E, +B|Z)|. So if E|Z|< oo and [a| <1, then we might be able to make

| <lel

this work, because we would then have E_g(Y,) - g(2) < ‘a‘ 71]‘1‘ 4 E(Z) < —= provided |X]

Martingales

if (1) X, €%, (2) B(X)<oo (it is often
B[, 1] X,

Definition: {X,} is a submartingale with respect to {

convenient to work with the stionger condition E|X,|<oo] (3) gives a super-

gl

E|
gives a martingale]. Implies the weaker property |

martingale

+ Remarks A convex function of a martingale is a submartingale. (2)An incrensing convex function of a.
submartingale is a submartingale. Proof (i) and (if) are sinple. E[f(X, )| %= f(BLX,, | £]) = f(X,)
+ Erample Let S, = Y27 X, where the X, are IID with E(X,) =
o 8,is a martingale [E[S, | < nE|X,|] (the mcan martingalc).
o If Var(X,) = o® <o, X? —o*n is a martingale (the variance martingalc). 01
«  Ezample (the ewponential martingale): Let @(0) = E(c™). M, =c™ /¢"(6) is a mmtingale. For

example, if 5, =" X, is an asymmetric random walk with p

1-PB(X, = 1), then

[22)" i& an expanential martingale, with ¢’

*  Ezample Suppose an umn starts with one black and one white ball. We pull out balls from the wm, and

retun them to the wn with another, new ball of the same color. Y, the proportion of white balls after n

draws. is & martingale (mean %). o
 Bzample: Let {X,} be a Markov Chain with transition matiix P(z, y) and let h(z) be a bounded function
with h(z) = 3 pla,y)h(y). {(X,)} is then a martingale. )

Optional stopping
*  Definition (stopping time): If T is an integer valued random variable, we eay it is a stopping time with
tespect to a filtvation %, if {T'=n}e 7 for all n (or {T <1} € % for all f, in continuous time).

Remark: 1f T, and T, ave stopping times, zo are T, + T, T, AT,.T, VT,

Theorem: If {X,} is a (sub)martingale and Tis a stopping time, {X,, } is also  (sub)martingale. If {X,}
iswiso it X, ). Proof Wiite X, =377 X1+ X1, . Clealy, this is % measurable, and

50 it is integiable. Conditioning follows.

(X7,) < Bl /]

to show i, fiust note that {X7,_} is
[the

PRy

<B[x|

also a submartingale, and so

last inequality follows by wi of {X}]. By the theorem in the mmungalc convergence section,

Ezample: Let X, - U01], and X, | X, - U0.X,_]. Let ¥, =2'X, . We can wite X, . with each

UTID U[0,1]. This is a martingale, and, by the SLLN tlog¥, = log2+ L)' logU, — log2 + E(logU,) < o

a5 S0 ¥, — 0. Note, however, that Vax(X ) 1. Again, the variance blows up. 1
* _Theorem When (‘\;} is o martingale, the following ave equivalent (1) X, is u.i. (and therefore converges
almost surely) (2) X, —, X (3) X, can be written as a Doob martingale; X, = B[X| % |, with E|X| <o
For submartingales, only (i) and (ii) are equivalent,
+ Ezample (Polya’s Urn): Consider the example of Polya’s Un, discussed above. Let X, be the proportion
of ved balls in the wrn after dvaw n. By symmetry, E(X,) =1
Quening

o Sample path methods

o w={(t,5,):n € Z}. 5, is work, f, is amival time. Processing at unit rate. () is work in system
at time ¢ X;(w) is work in system at time ¢ if empty at 5. X;(w)=lim,___ X!(w) exists because
variable is monotonic.

a
fa—1)"
o Now IW(w) = (a—t)"+5, These are called Lindley’s Eugations.
o, —t-ty
(7, -] +5 t=t,

o Proposition It p <1, then X, < as. forall t

Proof Fix te B and we 0 and define T7(w) = sup{r <t X(w o}, Tnst empty time before time

t. Now
e sy T
B S SIS DT JE5 SIS

Now clearly, for ' <s. T7 <T’. Thus lim___ T} =T, existe. Let us assume that 7, > —oc

This implies that thexe s some finite time in the past at which the system was empty. which implies

that the amount of work at ¢, X; . is finite.

Show p<1= 7, > —noas We do this by contradiction; suppose p <1 and T, = —ou on a set

w of sample paths From the second line above, we have, X; = E,ds"u( i —(E=T7). Now,

however, that X; >0 (there can never be negative work in the system), and so, dividing by ¢ —
5

.
throughout, we. obt«m%lzl Note that if we were to xeplace T with s, the LHS of this

expression would form a sequence with limit to p as s — —co. By the definition of a limit, however,

this ia also true for any subscquence of that sequence. But since we have assumed T — —ov as

1An|XL

Lol A i the first term tends to A by assumption 1. The
T | AW A | T

second term tends to @ by a similar logic as above, and by noting that since N(z) < oo, the second
term in brackets tends to 0. As such, we get hm.n(,v% [ Ve as zl*% Since this is true for all

>0, this, together with the lim sup above, proves our theorem [

o Single-server queue; IID case

© We now specialize our analysis to a situation in which the worklonds and inter-arrival times are TID.
Letting 7, =, —{, | be the time gap before the n** job arives, this situation requires the {S,} and
{7} to be IID. There is, once again, only one server. We often denote this situation GI/GI/1

o We also denote by w, the time that the n job has to wait in queue before it is served. In that
0 St =(d,~1,,,)" As such

0, 4, > 1, e

tespect, d, =1, +w, +8,. Now, consider that w,, =

)| Tet 2, =5, We then havew, , = (w, +Z,,,)" = max(0.u, +2,,)

Since the 7, are 1D tandom varinbles, this is a random walk “capped off" at the origin. Letting

g, = Z“’_,z‘ s we getw, = max(Z,,0) = max(v,,0) and then w, = (w, +Z,)" =

Generally, w, =g —min,__ . The second term takes into account the reflected tandom walk, to
prevent it going negative.

© Oue thing the GI/GI/1 framework gives us over the G/G/1 framework is that we can now say
something  more  about  the  distubution  of  the  waiting times
w,

the Z and =, max,, {3°" 7,

., —min,_, 0, =max,,_ {0, ~0,} =max,.,_ {377_,. Z}. Since IID, we can change indices on

o,}=M, Since M, is a nondecrensing sequence,

M, — M, =max,_ 0, Assuch w, = M_nsn— oo [Note: convergence in distribution is the
best we can hope for in this case, because M, has some structure (the fact it’s non-decreasing) that w,
does not. However, since this is a Markov chain, a stationay distsibution is all we could really want]
o If the random walk has positive duift — in other words, if B(Z,) = E(S, )~ E(r,)> 0 — then the
tandom walk duifis o infinity and the waiting times get infinitely ntge. Thic 15 consistent with owr

findings in the G/G/1 queue. since B(r,,)>[(S,) ¢ p<1. On the other hand. if the random walk

has negative drift, the chain is stable and the waiting times return to 0 infinitely often almost surely
(we motivated this result in homework 2 using a simpler reflected random walk).
«  The single-server M/M/1 Markovian queue
o We now consider the most tractable of all single-server queue models; the M/M/1 in queue. In that
case, we assume the (s} ate TID and exponentially distiibuted with parameter 1 wherens the {7, }

are 1D and exponentially distributed with parameter A

with B|X,

< oo Finally, consider m‘

Simply split it over 1, and I, , diop

these indicators and use integrability of X, and ui of {X,} ]

Baample: Consider a gombler’s ruin with wealth S, at time ¢ with S, = ¢ and with probably % of going each
= P(Probability we hit N >, at which point we stop)

And let
1~ p = P(Probability we hit 0, at which point we'te ruined)

direction at each time step. Let

T=inf{n:S, =N or S, =0} We can now use the OST OST says that E(S,)=E(S,)=i. Logic

sys that  E(S,)
E(S:-T)=B(S?) =, and so B(T)=E(S2)
E(T) =i(N 1) o

Counterezample: Consider the example above, but with T'=inf{n:§, =

PN+0. Together, we obtain  p=i/N OST  says  that
7. Logic says that E(S1)=pN’+0. Together,

> i} This is well defined, in
that B(T" <o)
eventually be visited) but blindly applying the OST gives E(S,)= i, which implies that N = i. Clearly.

1 (because the xandom walk is an ineducible Markov chain, which means every state will

something has gone awy o

o .Theorem: It T <n, as thenSX,] = BX, |. Proof BLX,]=BlX, |=HX] ®

« Optional stopping: BLX,| — lim BN, | = Ellim X, | = BLY,] [wi ok for eg]
. <ou for n = Tand E(T) < oo is enough
« Ezample (Wald’s Identity): Let {X} be IID with E|X | < oo and B(X)= 4. Let T be a stopping time

with B(T)<oo. Then B(S,)=E(T)E(,
required yesult, given that EUsk -5,

). Proof Consider {sﬁm‘) Applying the OST gives the
B[,

Eazample: Consider an  asymmetric random walk with P(X,
= mr{n S, =-ao n) We would like to find p, = B(S, =b). (1) Try the exponential martingale o™

(where p =

=2). Note that 0< M,,; =p*" < p** V1; it is therefore bounded, and we can apply the OST
to deduce that 1 = E(p") = B(p"). Also, E(p") = p'p, + p"(1 — p,). This allows us to find p, (2) Now use the
mean martingale {S, —n(p—g)}. OST gives B[S, —T(p—g)]=0=E(S,)=
work out (S, ) and find E(T)

Note that the OST does not necessarily require P(T < o) = 1. Indeed, E(X,) = E(X,I,

(p—q)E(T). Using p,, we can

X,

e
if the stopped martingale is ui. X must exist
It is important to remember that when we invoke the martingale convergence theorem so say that

Xy o, Xp, we are implicitly implying that F(T < o) = 1

Martingale Tnequal

o Doob’s Inequality/The Mazimal Inequality

Motivation: Markov's Inequality states that aP(|Y] > a) <

°

°

Theorem: 1f {X,} is a submastingale and 4 = {max,_,_, ¥, = o}, then aF(4) < E[X,[,] < BX]]

LHS nbove is such n subsequence. Thus, letting s——ov, we find

o Proposition: It p <1, then coupling time T, < ov .5

Proof WLOG, assume 7 =0 and denote 11

17" [work in system at ¢ given started at 0 with a

Assume that a > X'(w). Then T,

= mf{z >0:10° :0} Assume p <1 and suppose 7, =0 on a

set of nonzero probability. This implies that 1V* >0V >0 and that the server is constantly working

U ewanpg T
for all £ 2 0. As such 0 WS = ‘o +:Msn|,, g~ t - Dividing by ¢ and rearanging,

we obtain 1< 2+ PN —,_., p. Contradiction

p{we. e doemz, e a}-p{x, e 4

Whete A+ 4 are measurable sets and for all (7,

o

Proposition: 1t p<1 sup,

)~

Lt )ER" and a > 0. Thie is called convergenee

is total variation and is stronger than weak convergence.
© We can compare to what happens in Markov chains. Consider a finite-state, irreducible Markoy

chain, & consider ‘nv(,\;

<, B {7, > 0} < (max,, B )

1%,

© Proposition: 1f p>1, then for all a>0, Jiminf,_ "S> 0 almost surely. In other woids, the

workload increases linearly with time.

Proof Demote the cumulative idle time up fo time t as I We then have
W2 =0t 380y oy ~ (6= 1) 2 a8y, g~ Dividing by ¢

1>0

Dty Letting

£ 0. we get that liminf,_ 12> p

o

Proposition: Busy probability of an atbitrary server i p. Proposition: By Little’s Law, p is aleo
the expected number of customers in sexvice [anival A, sojown +]

o Little’s Law (Conservation Laws)

© We now consider a setting in which work (£,.5, :n € Z) entets a system and then leaves the system

ata time (4, :n€Z). Welet 6, be the sojourn time of the u* job in the system. given by d,

We define the following quantities A(t)=sup{n:, Sl}:numben of aurivals in [0.t]  and

Dit) = mumber of of departures in [0.#] and N(t) = A(t) ~ D{t) = work in the system at time ¢

The only two assumptions we make is that the following e true for every sample path (1)

( Zob

lim, _ =AE(0.) (2) lim,_ e (0.m0)

o Proposition Under these assumptions, % [V ds 37

© Consider the process X() = Numbes of jobs in aystem at time ¢ >0 {X(t): ¢ >0} is CTMC.

M+ o(h) J=i+t
Hk+ oh) i-1

—(A+ )+ ofh) J=i
olh) otherwise

Our transition matrix P then takes the form (rows sum to 1)
S 0
[ R S}
B=1+0  u (k) A Ofhto(h)
0 "
0
P, =1+Qh+olh)

Q

7B =a". w20, 7 c=1. Feeding owr expression for P, into the fiat equation, we obtain

s the rate matiix, defined by Q=lim, ;% The steady-state equations in this case are

7T+ 7 Qh+ofh) =" =x'Q=0. For ow particular matrix, this give —Av,+4m, =0 and

LA N)T, bpm,, =0, Letting p=\/p and assuming p<1, we obtain 7=

e — (L4 pm, +7,,, = 0. Solving this recurence relation, we obtain 7, = ¢

Se=1-pSo|r, =(1-p)s" n > 0| This expression passes a “sanity check” at n

—2 which we would expect to be

= 0: the probability the chain is empty is given by 7,
the average amount of time the system is empty
o We can uge Little's Law to good effect; consider the following two examples: the fist is trivial, the
second less so
* Consider the server as the “system”
As

Let § be the mumber of items in the server. The average sojourn time in the server is

such, by Little’s Law E (S)==p. Note, however, that $=1-1,__ . +0-1__

As such, B (S)=P(System is busy) = p. The result above is therefore consistent with
what we would expect.

* Consider the queue as the “system”
Let Q be the number of items in the queue. The sojown time in the quene is simply the
waiting time, w. As such, by Little’s Law E (@) = \E () (where wis the waiting time for

any new item that joins the queue). Now. note that Q(f)=(X(1)—1]" (we subtrnct item

currently in the server). Thus E, (@)=Y (n—1){1—p)" = Thus p /1~ p)

© We know consider the more difficult problem of deriving the probability distribution of waiting times.

P, (w > ). Once again, vecall w is the wait time experienced by a random job entering the queue.

o Ifwelet §,=0 and § =377 X were the X, ave IID with BX,]= 0, Vai[X,| = o”, then {5, } isa

martingale, and {K_} = [sj} is a submartingale. As such, we get Kolmogorou’s Incquality:

-
< B na’

(s, P, 1, 27) < B
© Theorem (Azuma’s Inequality): Let {Z} be a zerc-mean martingale with bounded MG
differences (ie: —a < Z,~7,, < for a.6>0). Then
- 2m
(UL 2| > ne) < 2ex0) e
This bound is not as tight as the CLT’s, but it requires less.
o Definition (Doob Martingale): Let X be a tandom variable in L, and F, be a set of filtratione.
Then X, = E(X | 7,) is a martingale.
Proof B(X,.,| £)=B[B(X| £.,)| £|=B(X | £)= X, L[]
o Let X =(X,.X,). whete the X, are independent and with CDF F, Define 7 = o(X, . X,)

Finally, let 4:R* — R such that, if @ differs from y in only one component, [h(w)~ h(y) < ¢, for

some €>0. Then S, = B[i(X)| % is a Doob martingale. Provided we ean prove |5, —S_| <

can apply Azuma’s Tnequality with -+ = € to 8, = h(X) P{[h(X)~ E[00| ws)

Martingale Convergence

Theorem: 1f {‘(} is a submartingale and sup, <o (this is & weaker condition than u.i), then

X, = Xas and B[A]<co. Remark sup B|X|<ro s equivalent to sup B(X[)<oo because

= <|ff = 22" ~ 2, and so, for example, B|X,| = 2B[X}] - E[X,] < 26X} ]~ E[X,]

Proof. Note that (X, —a)" < X" +M and write the upcrossing inequality msE[L’nlﬁ%ﬂ =K<
[using the fact | X] dominates X* and the condition in the theorem). However, U, is incteasing by definition
and therefore tends to some U (possibly o). but by monotone convergence, E(U,) — E(U) < ov. Thus, the
mumber of up-crossings must be finite. and so Plliminf X, < a < b < limsup X,) = 0. This is true for any a
and b, and so P(lim inf X,

limsup X,) = 1. Integiability of the limit follows by Fatou @

* Corollary 1t {X,} is a supermartingale and X, — 0. then X, — X and E[X]<ELX,]

*  Proof Let ¥, =X, — this is a submartingale with E[Y"]=0. The condition of the theorem above (see
the remark) is therefore satisfied. Note. however, that almost sure converge docs not imply convergence in
the means or variances, as the next two examples illustrate.

+ Brample Asume X, =i>0, and X, | X, , - Po(X,_,). Cleatly, this is a martingale, and once we hit 0, we

stay there. Let T'=inf{n: X, =0 or X, zb} By optional stopping, E(X,)=5(1—p), whete 5>b and
p=P(X, =0). But E(X,)=i. As such, 1-p—¢—0 as b—oc. Thus, p—1. How do we know
stopping time is finite? Note, however, that E[X?]= B[E(X? | X, )]= E(X?,)+i. As such, Vax(X,)=ni

the variable iteelf tends to 0, but the variance blows up. o

Proof ! " Nis) ds

Assuch Ns)= 33,1

arrive after s won't be counted at all, and any events that arrive and leave before 5 will be counted by

A(s)=D(s) ds. We con wiite A(s)=3" 1, and D(s) =)

 (The last equality follows because any jobs that

both indieators and therefore cancel out). Swapping the summation and integiation (Fubini)

fﬂ‘N(s)da =3,

We can bound this above by considering the sojourn time of all aivals up to and including time ¢

ryl B Amount of time job n was|
Yy 9= oo the system during [0,]

(though some of them may overrun past £) and lower bound it by considering the sojourn time of all

Job that depart before time t (even though some jobe that leave after ¢ do spend some time in the

system before f). This gives 370, '.) N(s) ds < 37", Where n, s the index of the & job to

jrt
leave the system (since we have no assumed FIFO processing discipline, we cannot assume that
6, = 1), Before we continue, we will need the following claim

Claim: Under the twa assumptions above 6, /1, =, 0

Proof. Consider that % SXLhFe Ly, 77V‘ 6, ~T-F -0
n

o =

Consider also that l’—’ y X s t, oo Finally, ’—'lﬁ —0.a=0
L nt,

Now by our claim, for all & >0, there exists an N(2) such that for n > N() & This

implics that 4, < (1+ ), Yn> N(=). This means that all jobs after the N(<)" job that anvive in [0,

4 will have departed by time #(1+<). Therefore 37/ 0 <37""""g . Putting this together

with the bounds developed above, we find that

1 o . 1 dsen
L 6,<—— N(s)ds
t(1+s)2"-““‘ "7 4 e) “ f(l+€)2
Let's first consider the upper bound
e, _ (A0 o -
Afase) )
6, = | — AR
(1+ ]z Hl+e) ,4(¢(1+:))Z "

The first term tends to A, by assumption 1. The second term tends to 7 because (1) By assumption

L% .7, which means any subsequence thereof also — 7

1, A(t)~,_, v (2) By assumption 2,

Since A(t(1+)) — v, the second term above is precisely such a subsequence. This implies that

limsup, } fn “N(s)ds < 2T Now the lower bound

1A 1 i 1

i
Tle ot .4(:)E"=‘w5"1+=

P (v>2) =0-P(X =0)+) " P (w>e| X = k)P,
SR (0 2| X = K) - p)
Now, note that gince the exponential distribution is memoryless, we can write

Py M A b

s, +Z”s ., Exlang(k, 1)

(the Exlang distribution is the distribution of the sum of exponential variables: it is a special case of

the Gamma distribution). As such

148) = Yo T U p) = e = p)p 3 S = e
1 th prob
Andso w - E’p(“é R lpm ? and B(w>q]
Prop 6.1 (M/M/c queve). i = i if 1 < ¢ and . otherwise. by = . Then P(L =) = o = poe if 1 < ¢ and
,wm otherwise. Summing the probabilities to 1, po = ( b +m) where v = X and = p. We still
need p < 1. EyLq = poggil. Waiting time distribution is P(Wy > w) = s pe=(#=N% When n > ¢ the system
output is /'rrr»uu with meant e and the distribution of the tne for the 1 — ¢+ 1 completions 1s Erlang type n— c + 1
Prop 6.12 (M/M/c/K queue). jin = npu ifn < c and eyt o.w. Ay =X ifn < K and 0 o.w. Then P(L =1) = pn = pidis
ifn < cand pogegs if ¢ < < K. Sinee a fraction pyc of arvivals do not join the system, by the PASTA property
effective arvival rate scen by the servers M(1 = p) = Aegy. Thus in Little’s formula, we use Ay ExWy = ExLy. In an
M/M /1K ol the liiting distibution is trancated geometric: py = F if p# 1, and py = g i p=1. And
L= 1% -4 "/;M‘." fp# 1, and Ly =S if p=1. Note u(1 =) = X1 = pic).
Prop 6.13. Consider a M/M/1/K queuc. Then, qu — Zaic, ive.: PASTA docs not hold

rop 6.14 (M/M /o0 quene). pig = np and Ay = . Then P(L = n
Jor M/G/ox). Steady state solution exists .

= pu = o3 where po = ¢ and v = 3 (also valid

Prop 6.

(M = if n < M and 0 o0 Then P(L
Tnle! Apa(M —m) =

n<M+Y and0 o

u inite source queue ) o= i< and e o
i and por™ o ¢ < n < M. Effective arrival rute: Aegy =
,\ul,u //.m oo F sparar hon M= MAFOE < ¥, (M~ nt VA ifY

Def 6.1 (Busy period). A busy cyele i the sum of the busy period and the idle period. For al
we have E(Thy) = 75 and E(Tic

/G/1 type queues,

-

o The M/G/1 queuc

o Also requite R(f). To sidestep this complication, we will consider the following cmbedded Markov
chain X, Let T, be the time at which the " job concludes processing. and denote
X, Number of jobs m,:he i We then have X, 1) 44

" immediately after the 2" job as departed ot e
whete A, is the number of aitivals during the processing time of the (n + 1)* job. Tn this case, by
assumption, the A, ate IID, and (4, |5, = s}~ Po(/\s);»\hexe A is the rate of arrivals.

o Now. using the ergodic theorem for DTMCs (and assuming we have stability; ie: p<1). we have

B(X, = j) >, 7(j). Futhermore, from the G/G/1 case, we know that for each sample path



X(t) = X, existe, which implies that P{X(t)

) —,_... #(j). The challenge now, however. is o prove

that 7 = 7. Theorem: =i

142
o The PK formula B () = — %

Def 6.20 (Departure Point Steady State). Let the imbedded Markon chain at the departure points be P = {pi;}.
Py = P(Xni1 = 1% = 1) = [ SO AR (1), Letting oy denote the probababity of n arrivals during service tune
S = t, hn = [% RO (t) and thus py = A, i+1. Let my denote the probability of n in the aystem at a departure
point in the steady staie Ficgere Deting TI(:) = 55732t and K(3) = £ bl by
ltiphing the abovs equation by 54 and memming over t, we obtain Ti(z) m MY T11); expected syatem s
“Thim 621 (Erlang os formula, (1/G/k/K) (sl for M/NK/K)). The limiting distributon of te mmber o cusomers
in the system is P(n) = SPESRIC and given that there are n in the system, the residual times wre id with the
equiibrium distribution of G, given by Gy(e) = S0

o Addendum on PASTA

°

The principle of PASTA (Poisson Arivals see Time Averages) states that for any stochastic process

X(#) over a state space S, and for any AC S

1 - 1 pt
TS WY ST

provided the ¢, form a Poisson process — in other words, 4, —f,_, = exp(\)

6.6 G/M/1: General input and exponential service

We now consider the system just before an arrival and \, will represent the number in the system that the ith arrival sees
sipei obnfigtho aystern: Thian X = (X +1BoJ+ehiors By, da thermben of susiomers varved diring therinterarrival
jeen nth and n + 1st arrivals. Let us denote its cdf by A(t). Then P(B = [ P(B = b|T = 1)dA(t)
2 S8 4A(E). Define pig = P(Xonys = j1Xn = i) and then for j = 0,1 )

time T" bef

i we have puigyy = f3°

The formala for pip = J5~ T2 1 a0 dA(t) Let by = P(B = n) and q be the corresponding steady state solution
that an arrival finds ' in the system. Then P = q and ql = 1 yields q = Y520 qraksby for i > 1 and go =

555200 (1= Shoobe). The solution is of the form g = ¢ where ¢ = 1= § and § = [(* 0= dA(t).

Renewal & Regenerative Process

o Renewal processes

o

Let {X,} be IID, with B(Y,)=p<ro and P(X, =0)<1. Let 8 =37 X, with § = 0. Let

Nty =sup{a=1:8, <t} {N(t):1> 0} is called a rencwal process.

o

Definition (renewal function): The rencual function is defined as m(t) = B[N(t)]

°

Eaample: Let X, ~ exp(l /1), {N(t): ¢ >0} is then a Poisson process. Gonsider, incidentally, that in
a Poisson pracess, the following two facts ate true. Much of our work in this section will be conceined
with generalizing these results to general senewal processes

= B(N(t) = m(t)= ut = B(X,)t (generalizes to the clementary rencwal theorem).

This is an cquation of the form above, the solution of which s
P(z\:ﬁ(rn_ﬁ H(t—s) dm,(s). We now find lim__P(t). To do this, we note that
(o) =0, and that, by the key 1enewal theotem, m}(s) =1/ f,. Thus

I5("On” time per cycle)
"~ E("On" t. per c.) + E("Of" t. per c.)

A5 ds
lim,__ P()
o Pl B(F)
o The Ezcess and the Age

* We define the following three random variables (

) M) =5, 1] s the age at ¢~ the

amount of time since the last renewal. (2) is the cacess/residual life at t - the

amount of time till the next renewal. (3) [L(1) = Y1)+ A1)= 5, ~5,,] is the lngth of

the time interval between the two events flanking the time point 1

As usual, let X, be the anival time distributions. Use altemating renewl
« Age To find P(t)=P(4() <), let the cycle be “on” for the first @ units of time

ince its last, tenewal, and “off” thereafter. We then have
B(Length of "on’ time)  E(min[X.z)) [ P(min[X,0]>y) dy [ Fy)dy
E(Length of cycle) " " E(X)

lm_ P(t) =

* Residual life: To find P(t)= P(Y(t) < 7), we consider a cycle to be “on” until the

last 2 units of the renewal cycle. We then have
E(Length of "off" time) B (min[X 4]) fu Fly) dy

lim,__ P(t)
(Length of cycle] " E(X)

Renewal-reward processes
© In a renewal-reward process, a veward R, is eamed at each renewal. The renewal-reward stochastic

process is then given by R(t)= Y ""/R, . We may assume that R, depends on X,, the length of the
n* renewal interval. We assume, however, that the pairs (X, R,) are TID.
o Theorem: With probability 1, R(t)/t — E(R)/E{X). Where X is the length of a cycle (ie: between
renewals). This theorem simply states that the average long-term reward is the reward per cvele
R(z) _ R, w»
N(t)

divided by the length of the evele. Proof We waite By the strong law for R,.

the first term tends to E(R). By the strong law for renewal processes, second term to 1/ E(X)

Assorted examples
o Let P(X,=-1)=B(Y, =1)=%, and lt N=min{n: X, +-+X, =1} N is a stopping time

Wald's Equation leads a contradiction, and E(N

o Independent increments if the number of events in disjoint time intexvals are independent
o Stationary increments if the distaibution of events that occur in any interval of time depends only on

length of interval. Eg, distribution of N(t,)— N(t,) must be the same as that of N(t, +5)— N(t, +s)

The Poisson Process

© Definition: A counting process

V(#),t = 0} s said to be a poisson process having rate A >0 if (1)
N(O) = 0 (2) The piocess has independent inciements (3) P(N(s+ 1)~ N(s))-Po(\t). This
automatically implies the process has stationary increments, and that B(N(t)) =

o Definition: A counting process {N(t),¢ > 0} is said to be a poisson process having rate A >0 if (1)

N{0) = 0 (2) The process has stationary and independent increments. (3) P(N(h) =

(4) P(N(h) = 2) = ofh). Where, if we say fis o(k), we mean that lim,_, f(h) / h =0

Inter-arrival and waiting time distributions
o Let X, be the time of the fist event. and X, be the time between the r and

(n - 1" events (1) Fust. mote that P(X,>t)=P(N(t)= ¢ (2)Then, note that

&) s, P(Oevents i (s,544]) =, ¢ Thus, X,

P(X,>t| X,

= P[0 events in (5,5 +1]| ¥,

s also an expanential yandom variable, independent of X,
© Now, consider the airival time of the 7 events, §, =52 X,. It can be shown that S, ~T(\,n) in
thiee ways: (1) Using moment generating functions. (2) Noting that N(t)>n S, <¢, which
implies that P(S, g.»):

P(N(t)zn) =7 L Differentiating leads to f{1). (3) Using the

independent  increment  assumptions 1?[5" & (tt+dt
Eiehing N
Sy Xe-+o(d) Which, leting dt — 0, lends fas required.
n—
«  Conditional distribution of arrivals times
o I ¥.+¥, e nrandom varinbles, we define the " order statistic ¥, = ¥" smaller value among the

Y.If the ¥ e TID with density /. then f(Y,

) =15 g,

This is because given a specific set, of y. there are nl ways to permute them, and each have probability

Mf(y).  Specifically. i the ¥ e uniformly distibuted i (0. ), then

)=z 0<y <

¥y =u v

B <t

o

Theorem: Given that N(f) = n. the n anival times S,---.8, have the same distiibution as the order
statistics corresponding to n 11D U(0, ) random variables. In othex words, each of the §, are IID U0,

P

T(X,) (generalizes to the key rencual theorem) o
o Proposition: m(t) =Y 7" F,(). whete F,(t)=P(s, <t)

-
Remark The CDF of , is the nfold convolution of the CDF of each individual RV X
F()= R+ F(}x ¥ F(). For example, F(t)= [ F(t—n) dFin)

Proof. Note that N(t

3 = BN 377 B(S, < 1), using Fubini T

o Notethat N(t)=n<¢ S, <t

o Amalogies: m(t) = At, B[N(t+h) = N(t) = 1]~ M

o P(S,, <s)=F0+ [Fe—yamy)  o<sst
Some Theorems
o Proposition (SLLN for rencwal processes) 24— i as
Proof Gonsider that §,, <t<S,, = Assuch 32 < o< Sum M Logt erm goes to 1 as.,

and by the SLLN, % — E(X,). Feeding this into the above proves our theorem.

© Proposition (Elementary/Baby Renewal Theorem): % =20 1
Proof. Stap. at Nty + 1 renewal. Stopping time, Decause
Nit)+1=n & Nt)=n-1e X ++X_ <tand X, ++X >t Also

E(s

o) = (6 +1]

o Proposition (CLT for remewal processes) Suppose that VarlX,]=o” <o then

i I@, N{0,1) O in other words Nm:;ﬁ < Im NO1)

1 I 1
—|se——
B (x| (X, {Ex,
© Definition: A distiibution F is said to be of Lattice-type if thete existe an h >0 such that F is

supported on {X,

= {nh:n e Z} For example, the Poisson distribution is lattice with 1 = 1

© Theorem (Blackwell’s Theorem): If Fis non-lattice, thenm(t + a) —m(t) @ Va>0

I
e BN

Remark: not implied by

8 — . beeause this theorem concerns increments in m

© Definition: A function f:R, — R, is dircctly Ricmann integrable (dRi) if (1) [ﬂ “Te) dz< oo (2)

Tw =20

0. Where
L

up{f(e):bn<a < (k+1)n}|wmw
(@)= T gme{f@): bn <2 < 0+ D)l )
Remark: If f: R, — B we simply require both f* and f to be dRi for fto be dRi,

JIiwar- [Crwar—,,

Remark Any of the following conditions are sufficient, for /: %, — R to be dRi (1) fis contimuous
with compact support. (2) fis bounded and continuous, and |;"Z(z) da < oo for some k- 0. (3) fie

non-increasing and J: f(2) de < oo

© A computer includes thiee paits, with exponentially distributed lives (parameters A\, ,). Repairs
take a time X, X, X; to come, with arbitrary distributions and means 4.4, i,
®  The length of time of an uptime is the minimum of three exponential variables, and so it is
~exp(h, ). Similarly, the probability part i fails is A, /),
® Consider a renewal-reward process in which one cyele is an uptime and a downtime. The long-

1un proportion of uptime is then  E(Uptime) / E(Uptime + Downtime). And note that,

E(Downtime) = N P(Part ¢ fails)E(Downtime|Part i fmledy,E;—‘u Similatly, if we'd like
to find the amount of time part 2 is in suspended animation, all we need is

T(Part 2 suspended) / E(Uptime + Downtime). Where E(Part 2 suspended) =

o A truck driver goes fiom A to B at a fixed speed ~ U(a.b). He then goes fiom B ta A at a speed of
cither a or b (with equal probability). He then tepeats with no break.
* By considering this as a renewalreward process, with a cycle being A— B— A th

propottion of time spent going fiom A to Bis E(4 — B)/E(A — B — A). And note that if

the distance between the two locations is & B(4 — B)=d [ 'L o= 4 1nl3 and
). a
11 11]_deta)
B d)—dls -
BB =) [Za b} 2ab

* Similarly, we can find the proportion of time spent going at 40 miles per hour, by noting that
the only time this would ever happen is going back fiom B to A at that speed. If we assign
that  event & reward  of 1 per umt  tme.  were  good
B(Reward per A — B — A cycle) =44 +0

Regenerative processes

© A regenerntive process is a stochastic process with time points at which. from a probabilistic point of
view, the process restarts iteelf. A gaod example i CTMC (for example, cortesponding to an Af/AI/L

quene). We consider that the process “resets” each time the queue empties.

o Definition: Let (X(1): ¢ >0) be a stachastic process with a sample path that is right-continuous
with left limits (RCLL or CADLAG). Without loss of generality, we let the 1enewal occur at
X(t)=0. Now, define the following quantities:

= (n+1)=inf{t = 7(n): X(f) = 0.X(1_) = 0}, the time of the " renewal.
* 7, =7l —r(n), the inter-renewal time
. X(rn-1)+t)  telor,
. Rm= (("A )+t) [ <) where A i outside the state space of X,
Then X is said to be regencrative if
P <evas Yo

o Proposition: Consider a situstion in which, 13 events anive at time s, they get classified into
category # with probability p(s). Then N(f), the number of type-i events that have arrived by time ¢,
s an independent Poisson random variable with mean Atp,, where p, =
Proof: Consider that

PN PN K)P(N)
lP('\'(t )=n, ¥i| N(©)=n,)P(N()=n,)
Now. consider an arbitrary event, in the interval (0, ). We know that the time at which that event
aceurred s uniformly distributed n (. 0. o
p, = {15 twpe i)= [P(105 type i Oceured at o) P(Occured at o) dt :% [ n)as
And s0 N(t)=mn, Vi| V(@) =n,) is simply multinomial:
!
i | N(t) =n,) = =11, o And s0 {noting that
RANTITN!
e - (\tp )
L QU OB ik proves our theorem
it ]
© This theotem is useful when considering the distribution of customers that are still in service at o

time £ For example, in an infinite-server queue with processing time distribution G, let o type-l
customer be one that, completes its sevice by time & Then for a customer that amives at s,
P(9)=Glt—s) for s<t

Nonhomogeneous Poisson Processes

o Definition: A counting process {N(f),¢ > 0} is said to be a nonhomogencous poisson proccss having
rate \>0 if (1) NO) = 0 (2) The pocess has independent inciements (3)
P( V(s)) - Po(mit+ )~ m(1)). where m(t) = ["A(s

o Definition: A counting process {N(¢),¢ >0} is said to be a poisson process having rate A >0 if (1)
N(0) = 0 (2) The process has stationaiy and independent increments. (3) P(N(k) =1) = Nt +o(h)
(4) P(N(h) = 2) = ofh)

o IF A(f)< A (ie: it is bounded), the process can be obtained by running a larger Poisson process with

1ate A and  counting  an  event  at s  with  probability

Als)/ X To see why, consider that

P(One event counted € (1.t +8)) = P One event & (1t-+) 40 M | oy
= hA{t) + ofh)

© Theorem (Key Renewal Theorem): Providing the usual assumptions on " holds (IID increments
with finite mean that are not masses at 0) and that the renewal process is non-lattice, then for any
bR, R that i dRi o), 4 [bs)ds. Where o is o solution to renewal equation
a=btarF
Laplace Transforms & Co.
o The Laplace Transform of a function of a distribution with CDF F(a) is defined as
Fis)= [e dF(

* In CDF form. if F= 4+ B. then F(s)

J7 e (@) de. A fow important results
(5)B(5)

* Note that if fis a density function, then [£(s)| :‘ f; e

“ dF(z) <1

o Together, the points above imply  that

ite) = 307 PO =

F(s) = {22 Thus, there is a I-to-1 conespondence between Fand m.

Similarly, re-aranging

© Theorem: If b(t) is bounded on any interval, then the solution to the following rencual equation

a=btasF (o aft

80+ [ alt—9) AF(E)) 1o a = b8 (or )= bt) + [ b1~ 5) dm(s))

0 >t

o Ezample: Consider that E[N(t)| X, L+ BV - N o) X Lemt—)  ast

Now Mt):lE[N(c)]:";NlﬂN(t)\X (] dF(z) f“'[umu—u] dF(z)

F@+ [t 2) dP@) = F@) +(ma FYO. This is a tenewal  equation, with olution
mit) = Fit)+ | [ Ft—s) dm(s)
Applications of the Key Renewal Theorem

o Alternating Renewal Processes

Consider a system which can be “on” or “off”. The distribution of “on” times is H, the
distribution of “off” times is G and the distribution of an on-off cycle is F. We also let
P(t) = B(System is "on" at time £). and we let the system begin, at £ = 0. at the start of an

“on” period

We can wiite down the following rencial cquation P(t) = Ty +0-+ [ P(t~5) dF(s). This
equation reflects the fact that. at f (1) Either the fist “on” period hasn't finished vet... (2)

or it has finished and we've in the “off” period... (3) ...or it has finished, and so has the
subsequent “off” period, and the total cycle took a period s < f. In which case, we simply

restaut with P(t— s)

t e n— oo
- are independent

+ ate identically distributed (the first renewal might have a different distribution if

the system doesn’t staxt “empty”)
o Definition ( A

process is ent if B(r,)<ou and null

recurrent otherwise.

o P (SLLN for reg Let (X(t):t>0) be a regenerative process

)

over a state space S with E(r,)< oo, and let f:8 —R be such that IE“ [r(x@) ds]\"\/

Then
IE“ Y p(x) dx]
1 o
;Jv/()\lx)) dngl) as ast—o0
o P (CLT for Let (X(t): 1 > 0) be a regenerative process on a

state space S with B(r7) < . Let f:8 — R be a function satisfying B(Y,(| f|’) < ov. Then

Lot dgm}(;(:l))) = ono)

With o = B(Y/(£))/E(r,) where £()= ()~

o

Theorem: Let (X(t):1>0) be a positive tecurient regenesative piocess on a state space S C RY
Suppose that either of the following conditions hold

= F(z)=P(r, =) bas a density and there is a function 4 R* — R that is bounded

*  F(@)=F(r, = z) is non-lattice and there iz a function h that is bounded and continuous
Y h(x(6)) ds|
Then  B{h(X(t))] i ast—s 0o Then X(t)= X(o) ast—ou and
TR

Remark: 1 X{0) =, X(ov), then (.

(£): £ = 0) is stationary.

The Poisson Process

Definition: A stochastic process {N(¢),t >0} is said to be a counting process if N(t) represents the
“number of events that have occurted up to time . Hence: (1) N(t) = 0 (2) N(1) is integer valued (3)
s<t= N(s)< N(t) (4) For s < 1. N(t)— N(s) = number of events in (s,]

Tn addition, the counting process is said to possess

o Proposition: Consider a situation in which, as events arive at time s, they get classified into
category i with probability p(s). Then N(2), the numbex of type-i events that have airived by time £,
is an independent Poisson random variable with mean p, = fn Ae)p,(s) ds
Proof: Consider a larger Poisson process with tate A > A(f). From our previous proposition, we then
have that p, AJ 7p (6)ds = [ \s)p,(s) ds

Compound Poisson Processes

o If XX, me D with distribution F, independently of N -Po(\), then V' = \”_l,\' ie n

compound Poisson variable.

o Properties

v M= B(e") = ]El]](exp‘sx‘ ))”] = G{M,(5)) = exp (ML (5)- 1))
* E(V)=\E(X) and Var(W) = AE(X?)
o Tmportant application: consider a Poisson process with 1ate o in which an event at time s will
contribute an amount X, whose value is a random variable with distribution F, Even though the X,
ate neither identical nor independent, the variable IW(¢)= """ X is then a compound Poisson

random variable with rate ) = at and distribution F(z) =+ [D ) ds

Proof Consider a given event i at n time 3 € (0,1)
P(X, Sz\.s): F(z)

But we know that s ~ U(0,¢), g0

B(X, <a)=B[p(Y, gr\:)]:%f F2)d
Now, consider that

=5l

E‘IE("‘* ) M\‘(.»)"] = mp().r{;\{\‘ -1}

This is the MFG of a compound Poisson as quoted above.

o Important application II If F is discrete, such that P(X, = j) = p, . and we define \, = number of

exents of type j that occur, we can also write 1V =37 N, N, ~ Polrp))

Proof: Consider numbers n,.-,7,, and note that

S B(N, =, vi|

P(N
=P(N,=n | N=nP(N=n)

And note that the first probability is multinomial

Conditional Poisson Processes




o Conditional Poisson processes are Paisson processes in which the patameter A has been mixed over a
distribution G. So, for example F(N(t +5)— N(s) = n) f“c'”@ dem)
Joo T
Is  Poisson processes, because N(t +35)— N(s)=n| A = A ~ Po(At)
o Given N(f) = n, the conditional distribution of A is

B(A<zand N(oy=n) ["P(A<zand Nt)=n]|2
B(N(t)=n) -

=) da(e)
J;“W(Nm =n|A=2A)de)
BN =n 2 =¢)doe B fﬂ'c'“(w dae)

F(A<z|N@t)=n)=

TR = na =N aeey [Teour dan

Assorted ezamples

o If Y =min(X, X,) and Z=max(X,,X,), finding the covariance between them i simplified by
wiiting 7= 1+ IV, where 11"is independent of )" Note that 1V is a mixture distribution: it either
takes the puvameter of X, ot of X,. with probabilities defined at the start of this section (“Tmportant

properties of the exponentinl”).

o N1t) = N(f) + Nt Probability that fist event of combined process is from ie
w(y,(r):lm(n: 1= PF(N,(f) = LN,(1) = 0)/ P(N(1) = 1)

o Find the joint distribution of S §,. 5, We know the joint distyibution of X, X,. X, and we know
that (S,.5,.8,) = (s,8,.5,) & (X, X, X,) = (5,5, 5.5, — 5,)

o N(t) is Poisson process with rate A. Mark fast event after s. If haven't stopped by 7, lose. If event
ocews before T and after mark, lose. B(Winning) = P(1 event € (5.T)} = AT — )™

o Cars aniving with Poisson process; cross if next ear will arive in more than T minutes. Condition on
toodl o mext  ewr B(Wait)= [“E(Wait|Nextinz)de™ dr, and  note that
E(Wait | Next in 2) = {z + B(Wait)} I, ,

o Shocks ocer with Poisson process. Each might cause failure (independently) with probability p. Can
consider two Poisson processes: “failing events”, with 1ate Ap, and “non-fhiling events”, with 1ate
M= p). Num shocks | T = t ~ Po(\(1 - p)t)

o Number of trials is Po(A). Each results in outcome i with p, Y, is total number of outcomes that
ocowss j times. Waite X, =31, whete I, is 0 if event § occurs j times

oy (o N(t) = n}: use the fact that 5, is the  smallest of n random variables. 1= 1 of these vatiables

must be ~ ¢ than i, and 5 - i of them must be < & Thus

] I
g(umn:m:%]rm] |F|™ 1)

=

Where fis the distribution of a uniform (0, £)

to abtain the RHS, we add an additional constraint to the LHS. For example, the LHS of the
first equation talks of getting from j back to j in n + m steps. The RHS talks of going fiom j

to iin n steps, and then back to jin m additional steps.

These two equations imply that d(j) divides both n + m and n + m + s and therefore also
divides their difference, which is equal to s Thus any s that is divisible by d(i) is also divisible

by d(j). A similar argument yields the other direction. giving d(i) = d(j)

Intuitively, we ave simply finding a way of getting from state j back to itself via 7. and then
1ealize that we can add s to that number no problem by looping at § an appropriste number of

times.

Definition (Recurrence): For any states i and j, define f7 to be the probability that,
starting in i, the first transition into j occurs at time n.
£=0 ;=B(x, )

We let f, =3 [ It is the probability of ever making a transition into state j. given the

=

n-11X,

process staits in i We say state j is recurrent if and only if f, =1, and transient otherwise.
Theorem: Sate j is recunient if and only if )0 P} =ov

Proof State j is recurvent if and only if E(Number of visite to j| X, = j) = o (if the state
were ot tecurtent, each time the state was entered, thete would be & fixed probability of

never returning there, leading to a geometrically distributed number of visits with finite

mean). We can then write
B(Number of visits to j |

)= 300 B (s, )=

Theorem: Recursence is a class property; if ¢ — j and ¢ is recurtent, then j is recurrent,

Proof Tntuitively, if we can get, from j to i and back (since i — j) and we know we'l alwaye

et back to i if we leave from there, then we can necessarily also always get back to j.

More formally, find m and n such that B’ >0 and P! >0, we then have

B PR 0. A such YOP 2 RIS P = o0

Another way of defining a recurrent state is to let, T, be the first return time to state i when
the system starts at X, = i An event is transient if and only if F(T, = ro)>0. Even for

recurtent events, the capectation of T need not be finite. Indeed, we define.

Definition (positive recurrence and null recurrence): Let

" o if i is transient,
4 =BT =l
o =BT Son s recunent

We say event i is positive recurrent if 1, < v and null recurrent otherwise.

Proof: detailed balance equations reduce to mw, /)7,
w0 5,/ 3,0,

©  Theorem: If we have o Markov chain with transition probabilities P, and we can find a vector 7

ww, /3] w, . We have, that

T,/ 3w, = e w, . Since the 7 must sum to 1, the result s as above,

and a mateix P7such that P, =7 P then the e stationary probabilities and P is the

transition matuix of the reversed chain

Assorted examples

© Consider a 3 by 3 mid in which an unfortunate mouse is free to move (but not diagonally). The cells
are labeled 1 o 9, left-to-right and then top-down. This is a periodic markov chain with period 2,
since we can only ever go from an odd state to an even state and vice-verea. We can work out vavious

limiting probabilities intuitively

. because by symmetuy, the probability of being in each even state is equal in the

long-run. So P)j = P\ 7}y = P2 and the sum is equal to 1.

. because the long vun probability of being in any even state, starting at any

state, is equal. Or in other words, P4*' = PPy + P, Pl)

because (P*),, = B3R, + BLTP,

. becawse B =3, PAUR, =434 Altematively, note that the

probability of being in any odd cells adds up to 1, and the probabiity of being in each of the
cella 1,3, 7and 9 is {
. because P =37

R,

pass

°

Consider an M/G/1 queue. Let, X, be the number of customers loft in the queu just affcr the

customer has departed. This is an embedded Markov chain. Let ¥, denote the number of customers

X ) X, -14Y,, X, >0

that anive duing the service time of the n* customer: X, =1"" -
Y, X, =0
(v, =)

cleatly, P(Y, :,):J:’c**““—afd(y(l):a] and B, = {B(Y, = j—i+1)=

0 otherwize

The chain is clently irreducible. Let’s try and check whether it’s positive recurrent or transient. We

P,
have that, for j = O o e We introduce the generating functions
ma,+ X wa

#s)= 07,7 and Als)= 307,05 We then multiply the abose equation by  on both sides,

and sum over j

o M/G /< queue. Type I event if depaits in (s, s + f). It's a Poisson process, with the right rate. To
prove independent. type 1 if leaves in 1, type U if leaves in I, (1,11, =2 ) and type IIT otherwise,
All independent

o Note that

Cov (N(t,). N(t,)) = Cov (N(t,), N(t,) + N(5,) — N(t,)) = Cov Vet ). N (1))

Markov Chains

We assume everything is time homogencous

o i~ jmeans that P,(T, <o) >0

Definition (Positive Recurrence): P, (T, <o) =1 means the state is recurrent. If B,(7,) < ou means

that it's positive recunent.

Result: I the chain is irreduciblc, the following are equivalent
o Some state is positive recurrent
o All states are positive recurrent (and therefore the chain is positive recurrent)

© The chain has an invariant distribution 7

The “ratio” formuln for the steady state distribution is
w =P {x,

In the finite state space, it is enough to solve the following set of equations to find the steady state
distribution

TP=x"

Whereas for a countable state space. we need those twa equations and either 7 > 0 or ZM <oa

Result: For  finite state space, suppose we have P! — 7 as n— o for some j. i, then , is the invatiant

measute of the state j

Definition: A state i i aperiodic it P >0 eventually

Theorem: For a irteducible, aperiocic Markoy Ghain for which there is a stationary distribution 7 .
" an—ooVijeS

In other words, E, (X, = ) = B (X,

Let X;in 2 0 be o Markov Chain on a state space § which is iveducible [countable state space] Let X be any

distribution over §. The nfor X, ~ \lambda,

Forall i€ 8

Theorem: Assume the same setup as previous ergodic theorem and in addition that the chain ie positive

recurrent and aperiodic. Then for any bounded ffor f:8 — R, then
SELIE) = BAX) = 3 )

. & Transition

Theorem: Null securzence iz a class property
o Types of Markov Chains — more formally
* Definition (aperiodicity). A class ie eaid to be aperiodic if it has period 1. A Markov chain
is said to be aperiodic if every one of ite classes has period 1
* Definition (irreducibility): A Markov chain is eaid to be irreducible If it ha a single clase.
* Definition (ergodicity): A state is sid to be crgodic if it is aperiodic and positive

recurrent. A Markoy chain is said to be crgodic if every one of its states is ergodic

Irreducible Markov chains
o A probability distribution 7 is said to be stationary for o Markov chain with probability transition
matrix Pif w = #wP, where m is considered to be a row vector.

©  Theorem: An irreducible, aperiodic Markov chain belongs to one of the following two classes:

Either all the states are transient or null recwrent [in which case, lim,__ Pf =0 Vi,j, and

there existe no stationary distribution]

Or all states are positive recurrent, with 7

7 i a stationary distribution, and there exists no other stationary distribution. Notes: (1) Tn
that case, the chain is ergodic. (2) The distribution = can be found by solving m = mP
together with Y m, = 1. (3) Note that if the Matkov chain has a finite number of states, this

i the only option. (4) It turns out that 7, =1/ 1, the long-term probability of tiansitioning

into a state is the reciprocal of the expected time till the state is returned to. Thus, if 7,
our state is null-recurrent.
o If the chain is periodic, things change slightly. The stationary vector m is still the long run

proportion of time the Markoy chain is in state j, but because of the periodicity, this is now equal to

lim, == =7, To see why, consider that £ is the avernge proportion of time spent in state ¢
amongst all the other states in the same “periodicity class”. We need to divide by d to ensure we are
accurately finding the proportion of time spent in al the states

Non-irreducible Markov chain

© We now consider non-ireducible Markoy chain. The interesting case is one in which there are some
. LY -
recurrent clnsses. We partition the trasition matrix as follows: P=| . Where Q only contains

teansient states (ie: it denotes the probabilities of motion amongst the transient states), and R
contains the one-step absorption probabilities. The matrix ¢ will be equal to [ if all recurrent states

are abeorbing; otherwise. it 1epresents the probabilities of motion amongst the recurrent states)

o) = mdle) + 7, 20

ifs) = mAs) + 4307 )
is) = mpdls) + 4307 w8 T a8
)+ T =T

(s—
5= Als)

is) =

Tofind 7, we Jet s — 1 and note that lim_ A(s)= Y27 0, =1, wheress lim,_, #(s)= Y 7,7,

Using 1 Hopital’s rule, we find: lim, _ 7(s) =, |1 74'11)]" Consider, however, that

A1) =27, ja, = B(Arivals during service time

B (Service time) = p

Thus Y

only ocour when p <1, in which case 7, =1 p. In that case, we get

(1=p)(s =1} _ (1=2m(s))(s 1) As)
A(s) 5= Als)

Fon the chain to be recurrent, this sum must be equal to 1. Thus, this can

ils) =

Now, note that:
* We can take the derivative of this, and let = —1. This gives us the expected number of
people in the system. The details are horible, and involve multiple applications of L'Hapital's

(r_’+l)

Rule B(Q2)=p+ Whete ¢ = Vax(8) / E(S}

o Let B(X, = j)=a, where j=0.+1,42 Let §,=0 =30 X,. Then , is a Markov
chain, for which P, = a, . Consider the situation in which @, = p and @, = 1 - 7. Tt i then clear
that the chain i iweducible and periodic with d = 2 thus, PZ* =0. However, using
al-n™ierlr | we have P = |2:|)1"\l —pr= %[pu —pf - ﬁ[nzu ~p)f . The series
0Py thetefore only converges if 4p(1—p)< 1. which only occwrs at p = %. Thus, the symmetric
simple random walk is recurrent, Other simple random walks are transient,

© Suppose a battery fails at period i with probability p, whete p, a3 aperiodic and 3 ip, <o Let X,

denote the age of the battery in use at period m This is o Markov chain, with probabiity
P =1-P, =

i=1. To find the stationary distribution, solve = mP_ Tn this case,

this reduces to 7, =) wp, =7, =

L. 0-2)=730

to be 1, we get that 7, =1/E(X). Thus, we find

1-p) i1 Tierating the sccond equation, we obtain

=7 P(X >i+1). Using the fact that the sum of all the 7 has

P(X =)/ B(X), which can easily be seen to

satisfy the first equation above.

o F(X,, =JlX,

P, This is called the Markovian property.

© We let P denote the matxix of one-step transition probabilities P, Since the cntents of this matrix
ate probabilities, we have P, >0 LB =1

© The mmstep transition probabilities P! give the probability that a process in state § will be in state j

after n additional transitions P} = P(X,.. | X, =1) n>0 020

Chapman-Kolmogorov Equations: The n-step tuansition probabilities can be found using mattix
multiplication P**" = P'P"
Proof: Consider that

=k

nm >0

=il% =)= P(X,,, =iX, =kl X, =)
X, =ilX, = i)Y, = k| X,

=SB = 51K, =, = P(X, =k X, =)= X R

Types of Markov chains

© Markoy chains come in different types and flavours. The main distinction is
* Irrcducible /ergodic Markou chains in which every state can be reached from every other state.
* Non-irrcduciblc Markou chains. in which some states cannot be reached fiom other states. An
example is chains containing one o more absorbing element i, for which P, = 1
o Classes

* Definition (Communicating states): Siate j is said to be accessible fiom state i if, for

some n = 0, F

o7 > 0. I two states are accessible to each other, we waite ¢ <> j and say states i

and j communicate. Notes:

Gommunication is an equivalence relation. Tn other words: (1)i — i (2) i+ j & j =i

(3) i jandjok=ick

Two states that communicate me said to be in the same class. Any two classes are
either digjoint or identical, co the set of states ie partitioned into classes.
* Definition (irreducible chain). 1 a Markov chain contains only one class, it is clearly
inteducible, since every item in the clase can be reached from every other item.
o Properties of states

Definition (Period): State i is said to have petiod d, denoted d(i), if P =0 whenever n is

not divisible by d, and d is the greatest integer with this property. (1) A state with period 1 is
eaid to be aperiodic. (2) T P! =0 for all n - 0, then we say the period of i is infinite
Theorem: Period is a class property: if i = j, then d(i) = d(j).

Proof Suppose P!

>0 in other words, s is divisible by d(i). Furthermore, choose some m
and n such that PIP >0; this is clearly possible since the staes communicate. Then

P 2 PP > 0= P = PIPIPY > 0. To see why these inequalities hold, consider that

o Theorem: Tf p is a tecmtent class of states and 1 € p,j = p , then P,
Proof i and jare in different classes. and therefore da not communicate. Thus, if we had P, = 0, we
would have to have P =0 for all n. Hence, if the process starts at i, thete Is a positive probability it
might end up in j and then never retunn to 4 this contradicts the fact i is recurrent.

o The question arises. therefore, of how many times we visit any given state befote being absorbed. Let
N, be the expected number of times spent in transient . given we stasted in state i
Now, we write N, = 377 F(End up in j after & moves if started at i) =[_ +Q, + Q] +Q} +--
Since @ is a matrix of tiansient states, its 1ows do not sum to 1 and Q" =0, so the equation above
makes sense. Tn matiix notation, we have N =1 +Q+ Q"+ = (I - QIN=1I=N=(I- Q)"
This is called the fundamental matriz of the Markov chain

© We can also find the expected number of step until absorption given a start in state i — denote this
M, Clearly, this is simply the sum of the times we will spend in each transient state. Thus, M = N1
Another, equivalent, way of obtaining this quantity is writing each equation manually
M =14 Y PP e

o Similarly, let B, be the probability of being absorbed into state ( given a start in state i We can

nite Be = o1 (Absorbed into state € after step k if staated at i)
R+ 2, QR +30, Q.08+

In matiix form B +QR+QR+-=(+Q+Q +--)R=NR. Again, in the absence of a
computer, we often need to do this manually. This can be done using a recurrence relation
B,= ¥ BB+ ¥ B

Time-Reversible Markov Chains

o ‘Take a Markov chain whose initial state is chosen to be equal to 7. We can then imagine the chain
was started at £ = —oo The “veverse chain” i then also a Markov chain, with tiansition probabilities

A L

P(x,, =i) £

HE )]

We say a Markov chain is time reversible if P =P’ in other words, P satisfies the defailed balance

°

cquations %P, =7 P, ¥i,j. These equations imply m = 7P (to see why, simply sum over j); thus,
it i enough to check for the second equation. These equations can be interpreted ae stating that the

1ate at which the process goes from i to j is the same s the reverse rate,

o

Consider a graph with a positive number w, associated with each edge. Suppose a particle currently
w, /3,
irreducible, then it is, in steady state, time-reversible with stationary probabilities given by

LRI NDINIA

on vertex i moves to vertex j with probability This s a Markov chain, and if it is

During each time period, every member of a population dies with p. and Po(A) new members join.

°

X, the population dwing period n, is a Markov chain Note that if X, =a. then
- Pofa(l = p)+ A]. Thus, if we choose a to satisfy @ =a(l—p)+ A [ a=\/p], the chain is

stationary, with 7, = P[Po(3) =

o

Let P, be the probability that, starting in state i, the Markoy chain will end up in state j without
ever passing thiough state k We can show that Py =) Pj*P'. Intuitively, we can split our
Journey fiom 4 to j into two parts — the first part perambulating around and poseibly retuining to  a
mumber of times, and the lnst part finally heading from i to j To prove. let )" be the last time we
Now P} =P(X, = j| X, SR, =Y =k[X,
= SLBX, =AY =k X, =i X, ==Y B(X, =5 =k| X, =iB(X, =i| X, = 1)

=", PP To go from the second to the thiid step, the thought-process involves the fact that

leave state i

(.

we're conditioning on the position we 1each at time k so that should somehow be involved.

Continuous-Time Markov Chains

Introduction

o P(X(s+1)=j| X(s)= 0.9)) = B(X(s +4) = j| X(s) =)

o P(X(s+0)=j|X(s)=i) is a transition probability We will typically assume stationary ot
homogencous transition probabilitics: T(X(s +1) = j| X(s) = ,) =P(X(t)=j| X(O)=3) =P ()

o We define limiting probabilitics as follows o, =lim,__P, (t)=1lim,

P(X(t) = j| X(0)

Providing the chain is irreducible, a; does not depend on the initial state.

Modeling CTMCs

© We consider four methods of modeling CTMCs.
© Method 1 ~ DTMC with Ezponential Transition Times
* Our fixst method involves modeling our CTMC as a DTMC in which the time till a transition
out of state i iz exponentially distributed with rate
*  Though this is not necessary, we assume that there are no one-step transitions from any state
to itself — in other words, the diagonal elements of the transition probabilities of the DTMC
(P,) are .
© Method 2 — Transition Rates and ODEs

- " ar)
* Wedsfine @, = P/(0°) =lim,, -

1t i more usual to define



PO)=T
(h)=Q h+olh) oash|0ifj=i
Qh+ofh) ash|0

For a finite state space, the above implies that —Q,, =" _ @, Furthermore, since we have

assumed P,, = 0 in the fust appronch, we have —Q

* This kind of appronch is useful when we have a rate dingram that shows the exponential rates
of going from one step to anothex. @, is then equal to the exponential xate of zoing from one
state to another (with negative dingonal elements)

o Method 3 - Competing Jobs with Eaponential Timers

* Method 1 worked because all cxits from statc i were exponentially distributed with the same
1ate v, We generalize this to a case in which exits to different states have different means

® For each state i, we nssociate a clock to each state j to which the process could move, and we
let T, be the time at which that clock goes off. Whenever a clock goes off, we move to the
conesponding state and teset all active clocks at the new state. By the lack-ofmemory
property of the exponential distribution, 1ecetting running timers is equivalent to not resetting
the times

* Let’s analyze this. Let 7, = min (T,) N, = argmin (7},). By the properties of the

exponential distribution, 7, and N; are independent, and 7, ~ Exp(v,) and (N,

Whete v, =-Q,_ =37 Q. As such. we can model our CTMC as a DTMC with transition
probabilities @, /v, and waiting time v,

*+ We can also go the other way. Given a DTMC with transitions P and inter-transition times

Q=29 ="

* A CTMC is uniquely defined by a given Q. It is also uniquely defined by a given (P.)

v, we can wiite @, = VP,

provided P, = 0 (az we have assumed). Otherwise, we can transform owr chain into one

satisfying this property by defining a new DTMC transition matiix P We let P, =0 and

B, = (i goes to j| i doesn't go to i) =

We the change the holding time at i to 2, >, to reflect the fact we removed “stay at

Uv .,
P

transitions 1/ 7,

v(1-P)

Theorem: This leaves the chain unchanged

Proof Note that (1) transition rates determine transition probabilities (2) transition

determine di 1 ©) d ! are

« Tneach case, growths have Q

)y = A, except for state 3, which has growth 0 — this
incorporates blocking.
* Q= but all the other decrensing Q are @, =2j¢ because two customers are
being served at the same time.
The long run proportion of time each barber is busy, for example, can be found as
la,+0,+0a,+a,+a,
* Balking Consider the situstion above, but in which an awiving customer finding both
barbers taken will stay with probability 5 and balk otherwise,
« We then model this precisely as above, but the Poisson anival process for 2 — 3.
83— 4and 4 —5 will be a thinned Poisson process, with rate OX
The PASTA (Poisson Auivals See Time Averages) principle is also useful in ealculating some
quantities of interest. It states that the proportion of customers that see come state upon
anvival coicides with the proportion of times the process spends in that state, provided the
anvival process is Poisson
Thus, for example, the proportion of customers that balk is (1—f)(a, +a, +a;). The
proportion that are blocked e simply a,. And the proportion that enter upon amval is
1-(1-8)a, +a;+a,)—a,
* Abandoning. Consider the situation above but in which any customer having to wait more

than X for service will leave, whete X - Exp(6)

The death rate for 1—0 is still 4. The death rate for 2—1 is still 24 The death
rate for 3— 2, however, is now 24+ , because it is the minimum of thrce varinbles:
loss of patience and either barber finishing service. Similarly, the death rate 4—3 is
2j1+20 . because it is the minimum of four variables — either customer losing patience
and either barber finishing.
The rate of customer abandonment can then be caleulated as followe:

* When the process is in 1 or 2, customers are not abandoned.

« When the procese is in 3, abandonment oceurs as ~ Exp(6) . and o customers are

abandoned at xate 8 per hour

When the process is in 4, customers ate abandoned as ~ Exp(26) . and so customers ate
abandoned at a rate 20 per hour

« Similarly for 5
Thus. the tate of customer abandonment is 6a, +20a, +30a, . To find the proportion of

customers that abandon, we just divide by the anival rate

Similatly, if we wanted to find the long-run proportion of potential customers eventually

served, we could simply calculate 1 minus balking, blocking and abandoning. Another way is

* Notes: (1) As functions of r, theyre all as above. OF is decreasing and convex as a function of ¢ (2)
B =BT and T = AT\ ; application of Little's Law, and true not just for Poisson demands and constant
leadtimes, provided the averages exist.

Theorem: 1f BW denotes the limiting distribution of waiting times, and D(BIV) denote the demand during
BW. Then if r _ -1, B = D(BW). In paticular, this gives E[B]=AEBI] and

Var|B| = XE[BIT| + \*Vax[BW]. = can be shown that for a given s $E[B(B—1)]= G*(s). We can weigh that

actoss different s to get the quantity generally. and use that to find the vaxiance of B.

Other

o Exponential. f(x)=)Xe ™ F(x)=1—e ™, BE=\" V=\", M(0) =
o X~exp(A), ¥~ explu) min(X,Y)~ exp(A -+ 1)

b=
[P(min>2z)=P(X and ¥ > 2)]
max(X,¥) = (X+¥)—min(X,Y); P(min(X,¥)=X)=X\/(A+p) [=B(X<Y), condition on ¥ = y
and itegate]. {min(X,¥) =X} L {min(X,¥)>t} [take [P of both events, condition on X = z, integral

then goes from t — 00

« Normal f(x):ﬁexpl i(xfu)ll M(O) = explud+10°0’].  E[Z')=4. B[z']=10:

2w

Fl e ST <gie ™ 2l = o)

o Gunma (@, A): £l = FgAx e B2y V

(25)7: sum of @ exp(\) RV

T(n)=(n—1)!
* Lognormal. f(x)=+¢(logx): Fx) = D(2[logx— ). E =explp +307)
© Beta: 2°'(1—2)*"' / B(a,3) mean a /(a+ /) vaiance a3/ (a + 8)(a+ 5 +1)
="Cp"(1—p)*: B=np: V=np(1—p); M(0)=(1-p+pe’)

 Negative binomial (r,p): Number of successes before r failures occur (success probability p)

* Binomial: [P(=

Pi=

=*71¢, (1—p) p* (support 0. 1. ). E=£:V “f;], M(ﬂ):(fpg) (0 <—logt). When r

= 1, geometric,
« Poisson: [P(=k) =
variance A . MGF M(8) = exp(\(¢' ~1))

Ae™ sum of Poiseon RV results in sum of parameters (prove using MGF). Mean and

Other

ok

+ F0)~g(x) if lim, 19 — 1 Doesut mmply either function converges

e

Jor 2 s [Ty < g

« Hazard function is A(t) = f(t) / Fit)
o Cov(X.¥) = B{(X = p, (Y - )} = B(XT) - B(X)B(1)
o Var(30 X)) =30 Vai(x,)+ 27, Cov(A

the probability law of the CTMC. So all we need to show is that the transition rates nie

unchanged. Q, i, =v (-

o Method 4 ~ A DTMC with Poisson Transitions
* Imagine, in the first approach, that all the », were equal. In that case, we could represent our
GTMC as o DTMO with transitions governed by an independent Poisson process. In fact, if

the mean transition time s 1/v, for all states, {¥,:n>0} is a DIMC with transition

t20

matiix Pand {N(t): ¢ >0} is a Poisson process with rate v, . then X(t) Y

)
)=k

* Any finite-state CTMC can be represented in this way by uniformization, which involves

And P(1) = B(X() = j| X(0) = i) = Y, PB(N(t)

intraducing fietitious transitions from states to themselves

We generate potential transitions fiom a Poisson process with rate \> v, Vi, and we then
independently thin this Poisson process by making the transition a “teal transition” with

probability », /A and a “fictitious transition” with probability 1

Specifically, we define

7=

B

Or. in matrix notation, I+x'Q
Theorem: Pesforming the uniformization process above leaves the chain unchanged.
o Limiting probabilities

© Limiting probabilities are not the zame as stationary probabilities

A limiting distribution is lim, __ X(t)

* A stationary distribution is a vector 8 such that P(X(t) = j)
P(X(0)=j}=5,

o Theorem: For ineducible, finite-state CTMC. the story is simpler. There exists  unique stationary

3, for all t and j whenever

vector. which ie also a limiting vector
o We consider four methods for finding the limiting probabilities.
*  Theorem: Given a CTMC chaacterized as a DTMC with transition matiix P and
transitions according to a Poisson process with rate \
, Vi
Where

to note that the service iate is 6 in state 1 and 29 is other states, whereas the avival 1ate is

b+ 200, + a0y +
. so the total praportion served is ﬁJZT“i—“ﬂ—“L’ These give the same answer

The M/M/1 queue: Arivals are rate X, services times me ~ Exp(u) and there are in
infinite number of waiting spaces. The number of customers in the queue is Q(f), which is a
birth-and-death process with infinite state space. To guard against pathologies, we require

p=A/u<1. Applying an obvious extension of the birth-and-death process in this case, we

7, = /. This implies that a is the geometric distribution ~ in other

words lim,__ F(Q(t) = j| Q(0) = i) = o, = (1 - p)o’ which has mean p /(1 - p)

If we had, instead, considered the M/M/1/r quening model (with one server and r waiting
spaces, we would have r + 2 states with a truncated geometric distribution
a=p .
(1=p

« Reverse-time CTMC

al 0< j<r+1. This applies without limits on p

o A stochastic process {X(): = < ¢ < oo} is snid to be reversible if it has the same probability law as

{X(): o<t <o)

o We define reverse transition probabiliics as
S ak
we start our chain with its stationary distribution @, the above becomes P, (1) = > Which, it
o
can be shown, docs sum to 1. Similarly, the transition-rate matrix for the reverse chain is
_ ag
U=
a
o This. hawever, is not enough for the chain to be time reversible. It can be shown that the extra
required condition is for § = @ , o equivalently a,Q,, = i j
Effectively, this requites all steady-state transitions from ¢ — j to be equal to those from j —
o It can be shown that all birth-and-death processes mre reversible
© We can also consider {runcated proccsscs, in which all transitions out of a subset of states A< § are

disallowed. Tn other words, we set @ =0 for i€ A, j& 5\ A, and as usual, we set Q|

sy

Theorem: The truncated process is also reversible and has stationary probability vector

Vj € 4 whete a is the stationary probability vector of the original process.

 When dealing with moments, recall that ¥,

* Markov: P(X

a)<E(X)/a [al,, <X, take expectations]

* Jensen: E(f(z)) > f(B(X)) for convex f [take taylor series, second devivative +ve]

* Tail-integral formula: For a non-negative RV, B(X") = f:n'""f(t)dl For a non-negative integer value RV,
BV BN )

« For conditional var, Vax(X)

oG, =n!/[kn— k)]

© MGF: M(t) = Ec™| and CF = M(it)

 The ¥* order statistic of n U[0,1] RVs is B(k.n+1—k)

E(S?)— E(SY, write in conditional form, replace the first by Vax(S| N)

ce=lix /2 log(lx)

sum_{n=1}*{\infly} x*n / n

* Geometric: y_ar*
—r

o Law of total variance: var(¥) = E(var(¥ X)) + var(E(Y 1 X))

Sums, etc.

* a, and b, only positive and @ /b — L = 0 then if sum b, converges, so does sum a,. An example of this is if a,
b,

170 <lim a,., /g, < 1, then cum o, converges

* Two possibly non real sequences a, and 4, 1f a, = 0.and b, > infty and a,b, = ¢ then (1 + a,* > ¢*

o Iflim, ., )= {and lim, _, g(a) = L then lim,

/=6

. &(f(x)) = L, provided g defined and continuous at

Introduction
* Definition (Strong Stationarity): The process {X(1): ¢ = 0} is stationary if
(X(),20,). 0+, X(1,)) =, (X(, +n), X(t, + )., X0, +n)

Forall t, <t, <<t and n>0. In other words, a process is atationary if it is “hift invariant™

Definition (Weak Stationarity): The process {X(t):1>0} is said to be covariance stationary if
BX()]=m (ie: it has constant mean) and Cov [¥(2), X(s)] = BJ(X (1)~ m)(X(s) — m) = B(\us\). where R

& some function of [t~ only

Note that a Gaussian process is entirely defined by its mean and covariance; as such, for a Gaussian process,

stationasity implics covariance stationarity

Theorem: Give a CTMC characterized in tems of o DTMC with one-step transition matrix

P and exponential tranition times with means 1/ v,

Where 7 is the unique solution is

m=nP =1

Theorem: Given » CTMC characterized by its transition-tate matrix Q. a is the unique

solution to

These are “global-balance equations™ — all probabilities of transition into a state must be equal

to transitions out of it

Theorem: Given a OTMC characterized by ite transition function P(t). a is the unique

solution to

aP()=oforany t>0  al=1
Y e, =a forallj Y a =1

« Birth and Death Processes

o Bitth and death processes are those in which only tiansitions up and down one state is possible. Tn

such processes, the global-balance equations aQ =0 take the simpler form of detailed-balance
cquations.

© Theorem: For birth-and-death procesces, the limiting probability vector a is the unique solution to

the  detailed-balance equations ), = a,, i, 1 This eflects

YO0<j<n-1. With a
conservation of flow again: transitions from j to j + 1 must be equal to transitions fiom j+ 1 to j

o Theorem  For a  bithand-death  process  with  state  space {01}

AN,

[y

1 "

0<j<n whae 1, ;

@, =r,a,. This is precisely the above. To get the final form, we use the fact that af=1

o Assorted ezamples and applications
* Blocking Consider a barbershop with two chaiss (exponential services times of rate 1) and
three waiting spaces. Customers arvive at Poisson ). Any customers arriving when both

waiting chairs ate full are lost;

© This is a birth-and-death process with states 0, 1,2, 3, 1 and 5.

o Assorted examples

The depatures from an M/M/s queue (with p

/s <1) in equilibrium is also a Poisson
process, with departure 1ate equal to A. To see why, simply note the CTMC consisting of the
number of people in the quene — Q(f) — is & reversible CTMC. Running it backwards changes

antivals into departures.

Inventory management

*  Notation: \ is the demand 1ate, L i¢ the arder lend time, g is the batch eize. r is the re-order point. Df, u)
is the demand in that interval, (1) = IN(f)* is the inventory on hand, B(f) = IN(#f" are the backorders
outstanding, IN(f) = I(t) = B(#) is the net inventory, A(t) s the stockout indicator IN(f) < 0), I0(1) s the
inventory on order, IP(1) = IN(#) + [O(t) is the inventory position.

*  Performance measures A average stockout frequency. B average back-orders. T average inventory. OF

average order fiequency. T is the equilibrium inventory, IN is the equilibvium net inventory, A is the

equilibrium stockeut indicator. B equilibtium back-orders, IP equilibyium inventory position, D = Dit, ¢ + L]
leadtime demand (Poisson AL). BIW average customer back-order waiting time. TWW time a unit spends in
inventory

 General strategy: find IN (for which we need TP and D) and uze it to find T, A and B.

*  Base-stock policy (q=1): [Order 1 batch when IP falls below 1] Let s = r + 1. I0(f) = D[t = L, t) =
Poisson (AL ). IP(f) is always kept at s, and so IN(t) 10(t) ; IN = s - IO Alternatively, IN(t+L) =
Dit, t+L) and IN = 5 = D, where D =, D(t, t+1]

*  Performance measures The g denote the PMF (probability mass function) of D, G its inverse CDF and
GO =BD-dr 1=, 6D ==Y, 6°G) We then et

G- B BIN) = B(D )" = o)

~AL+G'(s). Of course, OF =X. For Poisson demands, A is also the

proportion of demands that ends up having to wait (by PASTA). Bl

=B/) is the average customer

waiting time and TW =T /X is the average stocking time (the time a unit spends in inventory).

* Notes (1) Evervthing only depends on AL (2) B is decreasing and convex as function of s (3) T is
incrensing and convex in s (4) A is decreasing in s and convex only when AL <1 [not trivial

+ General bateh sizes (any (r.q) (A) IP-Ulr+lrtg (ind conesponding DIMC) (B)
IN(t+L)=IP(t)~ D(t.t + L] (IN at ¢ + L is equal to IN at ¢ plus 1O at t; which will get there by ¢ + L)
(C)IN=1P-D.

 Performance measures Now, we know [IN | IP

s s as given in the base-stock policy. But we know the
L3700 As). Same is true for B oand T. Waiting
Gd)=Y7, 6 ) =300 ~ Z”[M‘G'u). we also have A 2(r) -G (r +q)]
and T=14(g+1)-r—A\L.+B. OF

distribution of IP is uniform. So, for ez A(r,q

Yo' -6+ B=1

/4 since orders come in at rate A and orders are made every ¢

demands.

Theorems

s Theorem (Weak Ergodic Theorem): If {x‘) is covariance stationary, then X —, X. where

377X, . Note that in general, X will be a random variable. Under one of two equivalent conditions,
it is a deteiministic constant equal to E(X,) =m
o Var(X)—0

o Cov(X,X,)—0

s Theorem (Strong Ergodic Theorem): If {‘(} is stationary and X €L then X — ¥ as and

X, =4 X. Again, X is geneally a random variable. Under crgodicity (defined below). it is constant. An
intermediate step in proving this is.
Lemma (Magimal Brgodic Lemma): Let {Y.} be stationary and let S,

s, } Then BY,)1,, 20z

=V ey, and

= max{o.s,

*  Definition (Shift Operator): o is a shift opevation. If @ = (z,,z, ) then w(z) = (z,.z,-+). We say the
set A is shift invariant if € A= p(c)€ A. For example, the following two sete are shift invariant (we can
teplace _ by _ and = and lim sup by lim inf)
4=, 2 = o, 2 Sa}

*  Definition (Ergodicity): X (.\' J is ergodic if P(X € A =0 or 1 for all shift invariant A
Note: We can use this definition of ergodicity to show that X is constant.

P(Xed)=Pfim_ T<aj=, P(¥T<a)=0a1

Thus, X is a constant.
*  Definition (Mizing): X =(X, X,
lim, | B((X,. X, ) € A(X,

SRR o

) is mizing if

)€ B)=B((X, X, ) € A} B((X, . X,.-) € 4)

Where A and B are sets of infinite sequences (not necessarily shift invariant). We can look at pieces of size k
instead lim,_ P((X, . X, )€ A(X,, X, )€ B)

Theorem: If  sequence is mixing, it is ergodic.

Proof Let A be any shift invatiant set
p =P((X,. X, )€ 4)
s B(050, X € (X, X, o) € 4)
= e B, X ) € A) P(X, X, ) € 4)
5
=p
And s0 p must be equal to 0 or 1 [ ]

*+ Brample Let X, =Y wp. pand Z w.p 1~ p. where ¥.Z € L,. Consider two cases
o I X

Ywppand Zwpl-p
o I'X, = X, X=EY)wppand EZ)wpl-p

Neither case is ergodic.



