CONVEX OPTIMIZATION

Chapter 2 — Convex Sets
« Basics
o A st is affinc if it contains any line through two of its point Alternatively.
@ew, €00, =1 6zt 0z €0

°

The affine hull of a set of points is the set of all affine combinations of these points.

o

The affine dimension of a set is the dimension of its affine hull. Its relative interior is its interior
selative to its affine hull
relint € = {w € C': Bla,r)1aff € € € for some r > 0}

o

The most general form of a convex combination is E(z), where Pla €)=

Aset C isa concif 2 C.0>0=0neC

°

o The set {(:E [ < z} s a norm conc associated with a particular norm.

o The conic hull of {2} i {\z, +-+ N, A >0}

o

A hyperplane is a set of the form {@:a-@=b}. Hypewplane with normal vector a, offset b from the

otigin: can be wiitten as {2 :a- (2~ @,) =

@, +at

°

Given k + 1 affincly indcpendent pints (ie: v, —v, linenrly independent), the k-dimensional simplez
determined by these poiuts is € ={Y 6v,:6,20,0, =1}. We con describe this as a polyhedion as
follows:

o Wiite B

++46,] All points =€ ¢ can then be expressed as

provided 0/ >0 and 1.0 <1

B has tank k (by assumptions) and k - n, and so there exists a A€R™ such that
4,5] ll

48|~ o

Multiplying the boxed equation by A, we get 0' = Az — Av, and Az

4,9, We can therefore
express 0/ >0 and 170’ <0 as linear inequalities. Together with A = Av, . they define the
polyhedron.

o Operations that preserve convewity

o Intersection (including infinite intersection) - also preserve subspaces, affine sets and convex cones:
+ Ezample: The positive semidefinite cone 57 can be waitten as [_{X £, 27Xz > 0}. Each
set in the intersection is convex (since the defining equations are linear), and 5o 7 is convex

o

o Restrict to a line fis convex if and only if g(t) = f]f@, +(1—t)a,| is convex over [0.1] V z.z,. For
example. f(X)=logdet X . Take the line X = Z + 1" restuicting to values of f for which X » 0. and
wlog, assume it contains ¢ = 0.

a(t)=fZ+tV)= mdm‘z”ﬂl + 427z )70
= logdet{(T +777VZ" ’)ZL logdet Z + Y log(1 +1),)
Where A, are the cigenvalues of Z?VZ"?. Taking derivatives of g, we find that the derivative is
always — 0. Thus, convexity
o Use the epigraph: Consider f(x.Y)=a"¥ 'z It is convex over R" x5,
i f={@ Y0 e Y e <ty =0k =l@ Y, Yoo
7 1

iO,Y>D]

(We used Schur Complements). This is a set of LMIs, and therefore convex.

o Jensen’s Inequality fconvex « [ (Ele]) < B[f(e)], Ve st. Plz e dom ) =1

o Operations that preserve conveaity

o Non-negative weighed sum.

o The perspective function g(a.t) = ti(z /) [¢ > 0] is convex if fis convex
Ezample: The perspective of the negative logarithm gives the relative entropy and Kullback-Leibler
divergence o

© The pointwisc mazimum sup,_, f(x,y) is an extended-value convex function, if f(-.y) is convex for
ench y €Y [note that we do not sequire joini convexity of fi This coresponds to intersections of
epigiaphs.
Ezample: Let flz) be the sum of the r largest elements of @ Then we can write flz) as the maximum
of all the possible sums of r elements of @ 2}

Ezample: Support function o,(x

up{z-y:y e C}. Convex a]
Beample: )_(X) = sup{e"Xo || < 1} family of linear functions of X' o
Note: Every convex function f:R" — B can be written as
(@)= sup{gl@): g affine, g(z) < f(2) vz}
Cleatly, f'(z) < f(z). Fusthermore., epi fis convex and so at any (,t)€ epi f. IA.u)= 0 such that

A
|

o

) ;, 0= Arf@—2)+ ju(f()— ) <0 for all @ Now, (1) we must have 1> 0, else as we take

t—co violated and (2) we must have p=0, ebe we get A=0. Thus, can wiite

9(z) = fla)+ tX (@ —z) <t Choosing a point on the boundary of the epigraph, ¢ = f(z) and so

(=)=t = f(2). As such, it’s a global underestimator with gi) = f(z) 2}
min  f(@)
st f@)<0

@)=

© D is the feasible tegion of the problem
o Bquivalent Problems
o Informal definition of equivalent problems: from the olution to one problem, a solution to the other is
readily found, and vice versa
©  Change of variables — consider a one-one function ¢: R — R" with D C o(dom ¢). Then teplacing
by ¢(z) leads to an equivalent problem.

« Ezample (Lincar-fractional programming). Consider

min st de =bGr <h

Simply write the objective as ¢-(727) + d(7). and min ey +d=
o Transformation of objectives & Constraints - suppose:

+ 4B~ R is monotone incrensing

R — R satisfy ¢;(u) Su s us<0

o Ut R—R

atisfy ¥,(u) = 0 u =0
“Then composing fand b with these functions leads o the same problem.
o Eliminating equality constraints — say we find a function ¢:R* — E" such that @ satisfies the

equality constraints if and only if it can be written as & =

). Then we can eliminate the equality
constraints and optimize f,(é(2)) e.t. £(6(z)) <0 over z For example, the equality constraint Az = b
with 4 € R™" (with solution ;) can be replaced by @ = Fz+,, with F & R™""* 4 This preserves
convexity, since this is an affine transformation.

Optimizing over some variables ~ it is possible to optimize over each variable one-by-one; this is
especially true when some constraints involve only a subset of the varinbles. For example, take
m

in, ;o @' Pa. Minimizing over 3, only gives an objective of &S, Thus, the problem is equivalent

tomin, S5,
o Epigraph form — the problem above is equivalent to minimizing ¢ subject to f(z)—t <0
Particularly useful for minimax problem.

Ezample: min, max,__ e~y |=min, ot t2|e—y[ vi-aqogr O

o Implicit € Eaplicit constraints  if the objective function hns a restricted domain, it can often be
unrestricted by adding additional constraints instead, and vice versa.
«  Convex problems

A convex optimization problem is

* Deample  S-f{acR"

> 2 cos(it)] <1 tor te

55} em  be  witen as
ﬂd“‘{\ €8, 1< (cost -, cosmt) T < |}.and 50 is convex. a]
o Affine functions: An affine function has the form f(z) = Az +b. The image and inverse image of o

convex set, under such a function is convex.

Eeample: S, +8, = {z+y:2€5,y< S} is the image of § 8, = {(,.2,): 2, € 5,2, € 5,}

L+, o

.G = d} is the inverse image of B, x {0} under f(z) = (b~ Az,d - Ca)

under f(z,.2,) =

Eeample: {o: A <
o

Ezample: {.1 Alw)= a4+t d = E} is the inverse image of the positive semidefinite
cone S under f(z) = B - Alz) 2}

Ezample: {z (@—a) Plz )< 1}( where P8, is the image of a unit Euclidean ball
under f(u) = Pu+a, o
o Perspective function: f(z)=2/t, whete i > 0. It normalizes the last component of a vector to 1

and then gets 1id of that component. The image of a convex set under the perspective function is

convex:
o Linear-fractional function: A linea-fiactional function is formed by compsing that perspective
function with an affine function. They take the form f(z)=(d@+8)/(c-z+d), with domain
ferew+d>o}
Separating & Supporting Hyperplanes
© Theorem: If CND =@ then Ja =0 and beuch that a-z < b ¥a £ C and a @ >b Yo £ D. In some
cases, strict sepnaation i possible (ie: the inequalities become strict).
o Ezample: Consider an affine set D = {Fu+ giue IR”} and a convex set ¢ which are disjoint. Then
by ow  Theorem, there exists @=0 and b such that a-w<bVeeC and
a[Fu+g]>b=a"Fu>b—a g ¥u. The only way a linear function can be bounded below is if it’s 0
~assuch, a’F =0, and b<ag
©  Theorem: Consider two convex sets € and D . Provided at least one of them is apen, they are digjoint,
if and only if there exists a separating hyperplane.
Proof: Gansidex the open set — a-z cannot be 0 for any @ in that set, else it wauld be geater than 0
for a point close to @ Thus, a - is strictly less than 0 for all points in the open set. W
o Ewample: Consider Az < b. This has a solution if and only if ¢ = {n —Az-ze IR‘} and D=R", do
not intersect. By the Theorem, this is true if and only if thete exists A =0 and g€ R such that
A y<p¥yeCoand Aoy =y ¥y e D, Inother words, there is nof separating hyperplane iff

A=0 Az0 ATA=0 Ab=0

© The minimum inf_, f(z,y) is convex provided it is > —oo and f(z.y) s jointly convex in (z. y) over
R x B and ¢ CR” is convex. This conesponds to the projective of a (convex) epigiaph onto the
subspace of

© The composition with an affinc function f(Az+b) is convex. provided f(-) is convex

o The general composition f(z) = h (g,(x).--~,g,(x)) behaves as follows

Result | I3 | h | g
Convex Convex | Nondecreasing |  Convex
Convex Convex | Nonincreasing |  Concave
Concave |  Concave | Nondecrcnsing | Coneave

Coneave | Coneave | Nominereasing | Gonvex
These can be derived (for the case k = 1 and @ sealar) by noting that the second derivative of fis given
by

(@)= 1" (g@)[g @+ (9(2)9"(@)
Conjugate Functions
o f(w)=suwp,.,, (y-@—f)). It's the maximum gap between the linear function g(z) = yo and £ If f
s differentiable, this occurs at a point at which ['(z) =y

Basic ezamples

@) £(z) Dowain | [ fe) [ £ | Domain |
i [ W ] e T o T =
—oee lee/w-t| R | [y | et | R |
o vy | ®,

Ezample: f(x) = +2'Qz with Q€ 87, . Then y = —42’Qr which is bounded above and maximized
at y—Qe=0=2=Q"y and f'(y) = j4'Q7y o

Ezample: Let I () =0 if € S.0v otherwize. Then the conjugate of this indicator i the support

function I(y) = sup,_(y- @) = 0,(y) o
Eeample: 1 f(z)= o] then f(y) = Indicator * of {y [ >1} To see why: if [y, 1. then

Szstyoz> 141 Take =tz and let ¢ — oo 1f [y,

1 then oy < o, <[] Thereore,

0 maximizes @y o] maxed at 0. o

and

Eeample: f(z) =log(Y " ). Differentinting y- z— f(x) and setting to 0. we get y =" /3.
S@) =Yy logy, it y > 0,1y =1 and o otherwise [this is valid even if some of the components of y
are 0] o

Ezample: Company uses 1esources 7 at price p prices produces revenue S(r). The maximum profit that,

can be made from a given price is M(p) = sup, [S(r) — p- ] o

©  From the definition, we get f(z)+ [ (y) >y

min f(e)  convex
st f@)<0  convex
alz =5 — afine

If Jy is quasiconvez, the problem is a quasiconve optimization problem. In either case, the < -suboptimal sets
ave convex. An optimality condition for @ is

Vi(@) (y—2)=0 Wy feasible
Geometrically, V() is a supporting hyperplane to the feasible set at 2. Altematively, anywhere feasible we
try to move from  yields an increase in objective.
Proof. For a convex function, f(y)= f,(x)+ V(@) (y—a). If the optimality condition is met,

1) f(@) ¥y Converscly, suppose Ty sit. V(@) (y—) < 0. Then consider =(t) =iy +(L—t)e,i € [01]

This is feasible, but < f,(2(t))_, = V/,(@)"(y — ) < 0. So close to 0, we can decrease ; by moving away from
! L]
Examples:

*  For unconstiained problems, Vi (z)

« For problems with Az = b, every solution can be wiitten as y=z+vve)

Vi(@) v=0¥0e N(4), but this is a mullspace, so Vf(#) v =0%vEN(A)In other words,
V(@) € VA =R(A"). ie: I st V(@) + ATv =0

For problems with 2= 0. need Vf(2)2 0, else Vf(@)(y—x) unbounded below. So reduces to

Vjj() > 0. This gives complementary slackness.

Examples of convex optimization problems.
o Lincar programs (LP)
« Ezample (Chebyshev Center). Consider the problem of finding the largest ball
B5={e +ulfu < 7} that lies in a polvhedron. Requite that B lies on one side of a- <b is
equivalent to requiring:

supyy., {a @, tau)<b=aa o <b 2}
e far o o) ol

o

*  Ezample min, max, (a, -+, can be lnemised using the epigtaph
o Linearfractional programs

caid

g
car]

stzeP={z:Ge<htec=b}

“This is a quasiconvex progtam, which can be transformed into

min, e y+ds
st Gy—he<0dy—b:=0e y+f:

Proof Note that

iy =a: is feasible for the tiansformed problem with the same objective.

Similaly, @ = y/= is fensible for the original problem, if ==0. Thus, the original and modified

Thus, only one of this sytem and Az < b can have a solution. o

Chapter 3 — Convex Functions
« Basics
o We extend a convex/concave function by setting it to +/~ov outside its domain.

©  Theorem:

s convex over C convex iff f(y) > f(@) + Vi(@)'(y — @) over C

Proof

choose 7. 7, and convex comb z Apply equation with y = z and ¢ =z, Multiply one

equation by A, other by 1-X. Add the two. Take z y By convexity

Jle+tly—al) < (= Df(z) +1f(y) for i€ (0,1). Re-arange to get f{3) on one side, divide by 1, take

Timit 85 0 consider g(t) = f(ty+ (1~ 1)) and g'(t) = V/(ty+ () (y-z)

Apply previous result with y = 1 and z Apply inequality with ty+ (1~ and

fy+ (1~ D)z This implics an inequality about ¢ that makes it conves, [l

Theorem: V*f(@) = 0 over C convex = f convex over €

°

Proof (y) = f(@)+ V@) (y—a)+ 3y —a) |[V'f sz (-l —a) for c€01] If VI is

positiv

definite, get FOC for convexity []
o Convex functions

The following fanctions are convex

Function Parameters | Convex/concave... | ...on domain
- acR convex K
a=lora-0 convex 0,0
- 2 = ©.09)
concave (0.)
|of convex R
log = concave (0.)
zlog « convex (0.)
womtb | Ucm e fncton) both R
[ [rp— convex R
Tog(32¢") | s opoumecs tne conves. B
(= )”' the seometric mean) concave, (0,00
log det X | ithe bz determinant) convex Xes],
Ve | o g

Ways to find convexity

o Directly verify definition

o Check the Hessian: for example, for f(z,y)=2" [y

o 1 fis differentiable, the maximizer of y-z— f(z) satisfies y=Vf(z). Thus, for any = for which
y=Viz), [(y) ==z Vfz)-f(z)
o The conjugate of g(x) = f(da +b) is g'(y)= /(4 Ty)-b'ATy
o The conjugate of the sum of functions s the sum of conjugates
o Let [ be a poper convex function. A vector g i a subgradient of [ at @ if
J(2)= flw)+ g-(w— =) ¥z € R 3f(z) is the set of all subgiadients at z. It is a closed and convex set
I @ is i the itexior of the domain of f 9f(z) is non-empty, and if /s differentioble ot z,
o5(@) = {Vf(@)}
s If fis a proper convex function. then -y = f(x)+ f*(y) <> y € df(x) [if fie closed, these ave
also equivalent to @ € 3f (y)
Proof: Follows directly from the definition of /. [
«  Chernoff Bounds & Large Deviations

©  Chernoff Bounds — S S P(X > 6) < VB[] VA 2 0

) <

o Define the cumulant gencrating function f(\)=logEc**]. and define f, (\)

FO)IEAZ0 and o
otherwise.

© Making the Chernoff Bound as tight ns possible, we get

b (—sup,. [\ — FOV]) = exp (~£]11])

o Similarly, P(X €C)< B ™| provided A- 2+ >0 ¥z £C. Then, defining f(A)
find that

P(X = 1) <inf,_; Bl

log E[c*¥], we
lgP(XeC)< {urf): A z<pvzech
sup,.. (A )+ fN)
SN+ FN} =1 (0)
o Eeample Let X be multivaviate Goussian: X ~ N(0.I). We then have f(\)=3A-A. Consider
C ={z: Az < b}. Now
* By LP duality: 5,(-\) =sup,.(-A-2) = inf; bou

nf,
nf,
inf, {

As such, logP(X € ) <inf, bru+3A-A st u>04Tut A =0

Eliminating A, we get log F(X € ¢) < inf,_, b-u+u'A4Tu

o
Using QP duslity, we ean waite this progiam ns sup,_,— ;“x‘ a- z»)”2

ESUNS
slel;

Tntepreting A as a slack variable, this becomes sup

o Assuch, P(X € C) < exp[—4 diet(0,0)]

Chapter 4 — Convex Optimization Problems

o Terminology

objectives are both = and < each other. If = = 0 and a, ie feasible for the original problem. then @ = a,

+ ty is optimal for the original problem; taking ¢ — v allows us to gets the two objectives arbitrarily
close to ench other 2}

o Quadratic programs (QP)

min,

TPtgoatr  stweP={Gr<hte=b}

Where P 0

«  Ezample Distance between polyhedia. min|a,

o[ st g eRe,cn

© Ezomple Consider an LP minimizing e @ where B(z)

Cov(@)=3. Then

Yale @)= &Yz . Can minimize ¢ @+ 7o' Sa 2}

Ezample (portfolio problems): p. is relative price change of asset i (change/start) and 7. is

amount of asset, bought. Mean retun is p-, variance is =" Y. Minimize vasiance subject to

given mean tetum. Budget constiaint 1.2 =1 Short sales: Can set @ = 2" —2™** and
sequite 1-2”™ < -2, Transaction costs: Can set @ =™ +u™ —u and constiaint
(1= = (1 1w o

©  Quadratically constrained quadratic programs (QCQP)
min, ta'Ratq wtn st iz Prtqatn<0zeP
Where the P,

ate positive definite. In this case, we are maximizing a quadsatic function over an
intersection of ellipses and polyhedia
o Second-order cone program (SOCP)

min, fTe st “A‘1+b“l cotd i=LlomaeP

I ¢, =0Vi, this educes to n QCOP (square both sides to sce). Note that the direction of the
incquality i important!

«  Ecample (quadratic constraint)

@A Az bz te<0s Sé(lfb z—c)

L +bate
Az

Ezample (robust LP): Consider min, ¢ @ st a’ x<b' forall a'c& =

@+ Pl <1}

(ie: ellipsoids). Can wiite constraint as @ x+sup{'ﬂp“z [ < 1} <bea ¢+“P"z <y

, an SOCP. Notm terms axe regularization terms; prevents b fiom being high in directions where
uncertainty in @ is high a]

Note If € =P = {w: Az = f} is a polyhedion with k vertices, then sup{a-@:@ € P} must
occur at a vertex, so 1 imequality just twms into k inequalities Alternatively
{r-2} (strong.

ar<befzibAz=az220 o

sup,,., fa e} =inf, duality) and s0 write




*  Ezample (uncertain LP) Say o - N(@.5,). Can ask for Pla' -z <b)>n. Note that
SD(a’ ) Jx'):m )::%Hi Can then express probability constraint as SOCP. o

o Semidefinite programs (SDP)
min,czat 2 F -tz F +CG=0zeP
Multiple LMIs are easily dealt with by forming a laxge block diagonal LMI from the individual LMs. If
the matrices Fare diagonal, this is an LP.

*  Ezample (bounds on eigenvalues). Consider min H is max singular value). Note

“A” <5 ATA=s’  Using Schur complements

sA

ATA-1<0s
: A7 sl

(Clealy. sl >0 and the Schur complement is § = of —<4"). Thus. simplify minimize s subject
to the constuaint above. The oviginal LMI was quadratic — Schur complements allowed us to

make it linear. [Similarly, we can bound the lowcst eigenvalue: A (A)> s & A of] O

Ezample. (portfolio optimization): Say we know L <%, <U,. Given a portfolio . can
maximize @'Yz st. that constraint and £ 0 to get worst-case variance. We can add
additional convex constraints

«  Known portfolio variances wSu, = 0!

*  Estimation error If we estimate £ =5 but within an ellipsoidal confidence interval,

we have (S -%) < a, whete () is some positive definite quadratic form

Factor models Say p=F:+d, whete = ae random factors and d represents
additional 1andomness. We then have 5= F5,, F™ + D, and we can constroint cach

individually

Correlation coefficients: p, In a cnse where we know the volatilities exactly.

constraints on p, are linear o

+ Ezample (expressing QCQP and SOCP as SDP): Using Schur complements, we can
make these non-linear constraints linear

P

. 1
ERLCT R LR P L

(g z+h)I Fziq

[Fota|<gztne atal geih

Geometric Programming

o Afunction flz)=Y 1 et a

L with ¢, - 0 and o € R is a posynomial (closed under +, x ).

K

1 gives a monomial (closed under %, +

o Consider

G ={(r(@).he). )} Then
g = {A 1) (wot): (o) e Gl To

e {t:(woh)eguzov=0}, and

assuming the infemum existe, the inequality
A1) (w0.8) > gAv) Y(w,v,t) € G defines a supporting hyperplanc. Looking at the expression for p”
and g(Av), it is clear that p* > g(Av) when X > 0., because it involves more constraints

o Let A=G+(R7,{0}.R,) be an “epigiaph’ of g which extends it “up” in the objective &
inequalities. This then allows us to wite p =mf{t:(0.0,)€ A}, and fo A0,

§Ov) =t {2 1): (u,0): (w,v.) € A} Once again, this defines a supporting hyperplane to A .

and the dual problem involves finding the supporting hyperplane with lcast t. Since (0,0.p) € Bd(A),

we have p’ = (0.0.p")-(A.v.1)> g(A.v). which is weak duality. If there is a non-vertical supporting
hyperplane at (0.0,p'). then strong duality holds.
© To prove strong duality. let B = {(O,D,x) s<p}. This set does not intersect with A. Create
separating hyperplane (A, 1) so that
o App)(wot)<auvt)eB=pt<pp <a
o (Apw) (wot)zazup Vvt A= X2 0420 Otherwise, the LHS would be
unbounded below as we went up the epigraph.

Divide finst equation by 4 and substitute in the second to find the Lagrangian is = 3’

If 41 =0; second equation above becomes (X,

) (u,v)> 0 V(u,0,t)€ A Applying this to the strictly

feasible point with v = 0 and u . 0, we find that

0.and so &= 0 [supporting hyperplane cannot
be 0 vector], sa 7w > 0. But the problem i convex, so v = Az —b. But since we have an interior
paint with #-v =0, there are points around that interior point with #-v < 0. Thus, unless #7A =0
[contradiction if A full rank] we have a contradiction. Geometrically, this is equivalent to saying the
hyperplane must pass to the left of owr interior polnt. o
Interpretations of Duality
© Multicriterion optimization: Consider min(f(2),f,(z)). One way to obtain every pareto-optimal
point is to minimize A+ F_ Since we can re-scale thie without changing the minimizers, f(x)+ - F is
an example of such a program, which is precisely the Lagrangian
o Shadow prices: The dual problem is the lowest cost given we can buy some “constraint violation” and
be rewarded when we don’t violate them. Cleatly, this is lower than our lowest cost without these
amenities. When stiong duality holds, there is a price that makes us indifferent. This is the “value” of
the constraints
Optimality conditions
o Complementary Slackness Consider that, if & and (\.v") are primal and dual optimal pointe
with zero duality gap

Sz

[oN]

nf, LN 0) < L’ A ) < f(a)

Non-strict inequalities Consider f(z) <0, Az = b the progam is the same as above, but we
need the optimum to be attained so that p >0 if the system is infeasible. In that case,
A>0.9(A0) > 0 i clearly feasible.

o Ezample Consider Az<b. Then gA\)=-A-bif 'A=0 and —ovow. The stiong system of

altemative inequalities is A= 0,4'A=0.X-b <0 u]

o Ezample: Toke m ellipsoids &

L= {oif@=aTda+W @re <04 8], We ask if the
interscction has a non-empty interior. This is equivalent to solving the system f(z)< 0. Here.

g0 =inf, & (SNA )z +2(Y A6 ) @+ (Y Ae). Differentinting, setting to 0 and using obvious

notation, g()

—b] A'b, +e,. As such, the alternative system is X > 0.-b]A;'b, +¢, >0

o explain geometically, consider that the ellipsoid with f(a) = X - f(z) contains the intersection of all
the ellipsoids above, because if f(x) < 0, then clearly a positive linear combination of them is also = 0.
This ellipoid is empty if and only if the alternative is satisfied [prove by finding inf f()] o

o Ezample Farkas' Lemma: the following two systems are stiong altematives

dz=bz>0 ATy>0yb<0
3

Duality & Decentralization

© Consider min)_" f@')st. Y g'(«')<0a €0 [note: the vector g tepresents a number of

inequality constraints]. The Lagrangian isCl@p)=Y.  f(@)+p Ef_,g (z'). The dual ie
olm) =30, 0.(0) s = 0 whete g () = inf, f(@)+peg'(@)

o For example x, could be the quantity of resource j allocated to acitivity i, and we might want to
‘magimizc utility. Each component af g corresponds to one resource constraint. The resulting geometric
‘multipliers can be considered ag prices for a given resources.

© The Tatonnement, procedure guesses initial prices, solves the problem. and then adjusts them to ensure
each recource is used exactly

Duality & Combinatorial Optimization

o The knapsack problem is mox v-z st. w2 < C.z € {0,1}"

o gu)=max

ooy (0 H0) @+ O = i 3w, max([y, /w]-p.0)

Assume WLOG &> .-

> There is then a breakpoint I'() until which v, /w, > . We can
waite g(u) = uC+ 32"y —
The dual pioblem is to make this as small as possible for

a0 =[S |- T e

B>0. Consider that

This is piecewise-linear in 4~ the minimum occurs when

* Posynomial x Monomial = Posynomial
»  Posynomial + Monomial = Posynomial
o A geometric program is of the form
min f,(2) st. () <Lh(2)=1e >0
J axe posynomials, A are monomisls. Can deal with f(z)< g(x) and (z) = g(z) by dividing Can
‘maximize by minimizing inverse (also posynomial).
o Ecample

maxa,z,z, st 5.5, + 7,4, + 7,8, <c/20>0 [min volume box| can be written as

minz;

S st (@n, /o) + (20, [ o)+ (227, /€) <L >0 2}

© To make convex, substitute y, =logz, =z, Feed in and then take lozs of objective and

constraints. Result is convex.

zistence of Solutions
o Theorem (Weicrstrass): Consider the problem min f(z) e.t. @ € C C . Then, if C is non-empty. fis
Tower semicontinuous over C and either (1) C is compact (2) € is closed, and fis coercive (3) There
exists a scalar 7 such that the level set C(v) = {@ € C: f(@) <7} is nonempty and compact, then the

set, of optimal minimizing solutions of fis non-empty and compact.
Proof Let f* be the optimal objective, and 7, | £ Then the set of optimal solutions is ()", C(2,). If

(3) s true, this is an intersection of nested non-empty compact sets — it is therefore non-empty and

compact For 7> f*, C(7) must be non-empty, and by semi-continuity of . it is closed. Since

C is compact, this closed subset is also compact. €)= £ (=071 C) since C is closed, the
intersection is closed and so is the inverse by semi-continuity of f Since f is coercive, C(7) is also
bounded. Thus, C(7) is compact. [l

©  Ezample Consider miniz Pe—b-zx€R. T \ is the smallest eigenvalue of P, then we can say

that 327 P — b 2 S\ Jef —[Bfe] - 1his is coercive it A > 0. Thus, a solution exists it P+ 0.0

Chapter 5 — Duality

The Lagrangian Function

13 We let L@ Av) = @)+ A f(@)+v-h(z) be the Lagangian, and
g(Aw) = inf, Lz \w). This clearly undercstimates the optimal value, because everywhere in the
feasible region, £z, Av) < f,(z)

o Wiiting the oviginal program as min f(x)+ 37 1 [f(@)|+ Y7 [[h(x)]. where L and f me

indicator functions for the negative orthant and {0}, we see the Lagiangian eplaces the indicators

(“hard walls”) by “soft walls™

As such, every inequality in this lme must be an equality. Now, recall that

L@ N W)= f(@)+ X f(@) v gla). This implies that at optimality A" f(z') = 0. Since each

term is non-positive, we must have \'f’(z')=0. Only active constraints at the optimum can have
non-zero multipliers.
o KKT Conditions. Based on all the above, we find that for any problem for which stiong duality
holds, any primal-dual optimal pair must satisfy
VL@ N v)=0  f@)<o  ha)=0 N f@)=0

If the problem is convex, these are also sufficient conditions, because since A" = 0, £ is convex, and so

Xzo

the first condition implies £ is minimized. Finally, complementary elackness shows we have 0 duality
.

Ezample: minta Prtq @+ 7 st Az

b. KKT conditions me Az’ =b and Pz’ +q+A™v

o

PoA
40

X1

or b o

v

Ezample: min(~Y logla, +7,)) st. @ >0.1-z=1. This attempt to maximize communication

capacity given total available power of 1 for each channel. KKT:

oA r=0 Vi

2 >01w=1 A0 Ao, =0
Clearly, \, only acts as a slack variable in the first equation. So
vz i
o>01a-1 fr-=)

The first equation gives z =% —a,. but this can only work if a, <%= s, <2 If this were not the

case, 7, would go negative, Thus

vel/a,
o max 0.4~
v=1/a
Using the sum constiaint, )7 max{0.4-a, ) “T'his is ensy to solve. a]

Using the dual to solve the primal

o Ezample min)]" f(z)st aw=b. Law)=) " f()+vla-z—b). The dual function is

o) 7Vb+mf‘lz"_‘ J()+va-a)=—vb+ 3" ['(~va,). The dual therefore involves a single scalar

variable (simple to solve). We then use the fact that the optimal point minimizes C(z,v"), which is
convex [a}
Sensitivity analysis

o Consider min fy(s) st f(@) < whlz)=v. We let p'(wv) be its optimal value. If the problem is

convex, this is jointly convex (its epigraph is cl(4). above).

o Global inequality: Under SD p'(u0)> p'(0,0)~ X' -u—v"-v. To prove,

the gradient switches from negative to positive; so 1% = nm{l S c} We then want
1 to take its smallest possible value, which isd 4 =, /.

o This gives an upper bound lz’: q]ﬂy [L'f po w‘]

© For a lower-bound, consider the solution with # =1if i < I and 0 otherwise. This is clearly fensible,

and conesponds to the greatest “bang for buck” policy

A More Rigorous Approach to Optimality Conditions

Unconstrained optimization: intevior solutions of min f(z) s.t. @ € C C "

o Necessary conditions: If @ is in the interior of the feasible region and is an optimal minimum, then
Vi(@')=0 and V'f(a') =0

o Sufficient conditions If @ is in the interior of the feasible vegion and Vf(z') =0 and V’f(z')- 0,
then = is a strict local minimum.

© When using these conditions, (1) verify existence (2) find points with Vf(z)=0 (3) compare those to
points on the boundary

o Consider, instead f(z,a). Differentiate the FOCs with respect to a to get

Ve (@) = -V fl' (@).a){V2, fle (@) )f
Vi'(a) =V, f(#(a).a)+ V& @)V [z (a).a)
Constrained optimization: boundary solutions of min f(z) st. @ € € C E*

o The sct of descent dircetions is Dia’) = {d € B": Vf(x')-d < u} The tangent conc T (') is the set of
ditections we can move from @' while staying in the feasible region. A necessary condition for @ to be
optimal is D" )N T(e')=2

© 1 C is defined only by the equality constraints h(z) = 0 . then for any regular point (ie: point at which
the gradients V(@) are linearly independent):

T(a')= V') = {d E€R":Vhiz' ) d= 0}

N (Vhia')T)
Tntuitively, any move in direction d will change hby Vh(z')d... Thus
' local minimum & regular = Vf(a') € Wa') = N (Vh(z')" )Y = R(Vh)
[For d &V, we need Vf(z'):d 0. But since d€V=—d eV, Vfla') d =0] Thus, for any regular
N st Vi@ )+ A Vh(z) =0

local optimum @, 3

Ezample: min 2Tz st. 12

Jpew = FOCs are
Wz A1+ \p =0 17 =1 wa =1

o Esample min @@ st Az=b. £=a 2+X (dz—b). Differentiating, set to 0, minimum is at

2o+ ATA=

Ls0 g = £(-147AN) u]

Ezample: min 2 We st. 2’ =1

Involves partitioning the , into either a “+1° group or a *

goup: AW, s the cost of having z and 3 in the same/different pastitions

Lav)=a Notv (@ —1)= Minimizing over @ we fnd that

W+ ding()|z— 10
§v)=—1-v if [IV +ding(®)] =0 and —ov ow. Can we to find bound — for example, using

v=

A, (W)t feasible because IV~ A, 1= 0 o
The Lagrangian & Convez Conjugates
d. The dual function is
gAY) = inf |f@)+ A- (4o~ b)+ v (Co - d)]
Ab-v d+mf‘[j(m)+()\'44+v'0)::]
=Ab—yd—sup, [~AA=CT) 2~ f(a)]
= Ab-pd— [ AA-CTY)

Eeample: f(z) = [af and only equality constraints. The conjugate of a nowm is the indicator of the

‘ vwd le. <1

o Consider min f(z) st. Az < b,Ca

it ball in its dual novm, 20 g(v) o

otherwize

log#, st Az <b.t-z=1. The conjugate of z log = is ¢ ', and so

o

Ezample: Min entropy: min 'y
o) =-A b—u—zexp[—uu) ——

The Lagrange Dual Problem

© The dual problem is maxg(A.v) s&. A >0, with domain {(A.v): g(Av) >~}

o Weak duality implies that d' < p’_ If the primal is unbounded below, the dual is infeasible. If the dual
is unbounded above, the primal is infeasible.

©  The dual is always convex and can be used to find a good lower bound.

o Strong duality holds under Slater’s Conditions; the problem is convex, and there exists a paint such
that every inequality constiaint is stiictly satisfied. If the constiaints are linear. only feasibility is
needed, not,strict feasibility

o Ezample

QCQP: minta Re+q, @+, st $a Petq atn <0, whee B, =0.F =0 The

Lagrangian is

LX) =4 (B3 AR e+ (g, + 3o ) e+ (n 2 on)

A20 and so P(A)-0. Differentiating and setting to 0, we find the dual problem i

max g(A) =~ 3g(A) PN g\ +rA) st A= 0. p

" if we have strict feasibility. [

o Ezample: Min entiopy (sbove) has dual max, ,, (-A-b—v— Ze'\‘“‘) Optimizing over . we
get max,_, (-A-b— 35 +1), 0 GP. o

Geometric Interpretation/Proof of Strong Duality

P(0.0)= g\ W) < fi{@)+ X fla)+ v hiz) < @)+ A ut v v

© Local Result: If p diffetentiable & SD, V,p’(0,0)
ple,0)-p
t

X and V,p(0.0)=
ap'(0,0}
o,

z-A [By global inequality]

=lim,_,

Taking f negative gives the opposite inequality.
Bzamples
o Consider min log(Yexp(a’-z+b)). The dual fen’t particululy interesting. But the dual of
min log (Y exp(y,) s.t. Aw+b =y is entropy maximization. The same is true of [dz—4]. O
© This ean be done with consteaints; f(a -z +5) can be tiansformed to f(y). O
Theorems of the Alternative
o Weak alternatives:
*  Non-strict Inequalities: Consider
() < 0.h(z) = 0 hns sol” < min0 st
The dual function has the property g(aX,av) = ag(A.v) and i
gAv) =il [A- f(z)+ v hie)]

Because of the homogeneity. if there is any g(A.») >0 with A >0 d' = ou. If that’s infeasible,

+=0 (and not )

d" =0. Thus, since d° < p’, we find that
9(Av) > 0. > 0 feasible = f(z) < 0,h(z) = 0 infensible
In fact, at most one of the two is feasible — weak alternatives.
o Strict inequalities: 1f the inequality f(x) <0 is strict, the altemative is
0AP) 200> 0 feasible = f(z) < 0. h(z)

We can show this directly from the definition of the dual function, if we nssume there exists

0 infensible

f(@) <0, then AN > 0,0 st. gA ) <0
o Strong alternatives — when f ate convex and h, are affine, we might be able to prove strong
alternatives; that cractly one of them mugt hold
« Strict inequalitics: First, consider

(@) < 0, Az = b feasible < p’

mins st I.(z)Ss.Aa::b)<0
The dual function is g(A,») = v (e~ b)+min, [(1 = - A)s|. This is only finite if 1-A=1. So
the dual is d°

{maxgAv) st 1A

1LA>0). Provided strict feasibility holds, strong

duality holds and p’

So if the original system is infeasible (p' > 0), then there exists a
GAV) = 0A> 0. Similarly, if there exists such a (A,v). then p* = 0
S) <0, Az = b E= o gA2) 20N >0

The first gives @ 307 (A 1+ A\u). Feeding into the others gives a system of equations for A.

whence A =1+ (T =2 = Fv+w= o’ = (afi+ ) +7 o

°

Consider the addition of inequality constraints g() < 0 to the definition of C. It can be shown that all
constraints but the active ones at the optimum can be ignored. Thug. provided a point is regular (ie:
{vn@)}u {Vg,(m' }: j activ e} is linearly independent), the KKT conditions provide conditions for
optimality
© When using such conditions, it is important to check for non-egular points as well. Constiaint
qualifications can be weakened to requiring inequalities to be convex and equalities to be linear.
Subgradients — another way of expressing optimality conditions is as follows
@€ mgmin {f(@) 2 € C} & @ € mgmin {f(@) +1,(x)}
0 8|f(@)+1,(x)| = f(x) + 81 (z)
=g df(z) at. —gedl (z)
©3gedfzist g (y-z)=0VyeC
For the last step, note g € dl (@) = 1,(y) = 1, (@) + g (y—2) = 0= g (y—2) Vyel

Chapter 6 — Approximation

The most basic approximation problem s min||z — b]. Has solution 0 if b € R(4)
o Approximating b as closely ns possible using columns of A
o Letting y = Az + v (v is noise), and guessing @ based on y, assuming noise small

o min,,

[Ju— o] : progecting b onto R(4)
© wate design variables, b is a target, Az is the result
Ezamples

o min]t b} Teast square. Solution Az = A"b
.
o minfdz—b|" : Chebyshes approz problem. Same ns mint st —t1 < Az —b < t1

o minfdz b ; Robust cstimator. Sume o3 minf ¢ st —t< Az—b<t. Slowest growing that is sl
convex

o mind(n)++ofr) st r=Az—b is penally function approvimation. Measure of dislike of large

sesidunls ]

Least norm problems ae min[a] st. Az

b. Can be reformulated as minJz, + Zu] . whete a, s a solution
and the columns of Z form a basis for A'(4)
Regularization problems are bi-objective problems; mm(” Az —b| [ ). Use minf 4z — b+ [e] to trace our
the tradeoff curve,

o Ezample (Tikhonov regularization)



minfdz—tf) + el = " (A7 +1)e 274w+ 6T = ‘ .

Solution is

A (4 AN (b s -
1"5’ l"/’yz:l"ﬁy ‘alf”:“ Asal) ATy u]
o Ezample (minimizing derivatives and curvature): We can replace our second objective ([]|) by
[Da]. we then eet @ = (474 +9 D" D) ATb. Two useful examples of D ave
* Dhas 1s across ite diagonal and a -1 to the left of each 1. Dz is then the vector of quantities .

o= 2 the “discrete devivative” of z.

D has 25 acrose its diagonal. and Is to ite left and right. D s then the vector of quaniities

(20 —3_))=2,,~2z, +3,_,. approximately the curvaturc (second derivative) of
o
o Eeample (LASS0): minl4a— b +1Ja] can be wiitten as 0P
min|de b + 11 ysr —y<a<y o

«  Stochastic Robust approvimation: mm,”.u—q with an uncertain A that has a probability distribution

4, |4z —b] <t For a 2-norm, this is

Do min, B[4z —b] instead. If P(-

7,. this becomes minp- £ s,

an SOCP. For o l-norm or co-norm, this can be waitten as an LP.
N -
minB|Az ~ 4], is actually tractable. We can write 4= 3+U. and we can then wiite the objective ns

mm[ujz—b”: + ”P”’w“:) with P = EUTU). This is Tikhanov regulatized least-squares.

+  Worst-case Robust approzimation: We let A€ A and we solve min,sup,_|de—b]. We consider
several sots A

o Finite set or polyhedron: A ={A - A} mint st 4zt <t Vi For a polyhedion, try this
out for the vertices.

o Norm bound error. A={1+U|[U]<a}. where the nomn i o matiixnomn. Consider the
approximation problem with the Euclidean norm and the max-singuln-value norm. Then
sup, [Az—b+Us| occurs when Uz is aligned with Az—b and is as lage as can be. Letting
U =a(le- b’ /|1z-t],

solvable as an SOOP: mint, +af, st. [To 8], <[],

|, achieves that. Thus, our program is mm‘“;mfbﬂ? +an\L This is

o Uncertainty ellipsoids: Assume each tow of -4 is in §={A_, +Pulfu, <1}. Then
sup,_, |4z ] can be found by individually maximizing
upld, @ —b|=sup, {\Km, z—b +(Pu)-a| | ‘1} We do this by aligning w with P'a and
get supla,, =5 = o] +||p7a], We then have

Neither, it twns out, induce an imner product, so this it not a Hilbert Space. However
*  Vis complete under the first novm. Even though there is a sequence of functions f, that
tend to n step function (which isn't in the space). the sequence isn't Cauchy, because
1, ~step]| -3, since we are considering the point of mazimum difference.
o Vis not complete under the starred nom, because |[f, —sterf|, 0, 50 the sequence is
Cauchy and leaves the space. Indeed, the avea between f, and the step function shrinks
to00. 2}

o Definition (Orthogonality): We say @ and y are orthogonal iff (z,y)=0. We further define
M= {y (w)=0vae M} By the joint continuity of the inner product, this is always closed.

o Theorem (Projection): Let Hbe a Hilbert Space and A a closed and non-empty convex subset of H.

Then, for any @€ H, min,,, Jo~k| has an optimal solution k, called the projection of @ onto K.

K € K is equal to ky iff @ — k'€ K* (in other wouds,

—K.k—K)<0Vke K). Proof. pp. 51

o Theorem: 1t Mis  closed subspace of H. then H = M& M* and M = M** . As such, we call k, in
the projection theorem the orthogonal projection of @ onto M. and we can write @ =k, +(z— k).
whete k, € M (z—k,) € M*. Proof. Luenberger. pp. 53.

o Definition (Linear functional): A function
wlaz + By) = ap(@) + Boly)

«  Continuous if |o{y)~(@|<c ¥y Jo—y <6 1t o e continuous at @ it is continuous

V—C s n lincar functional if

everywhere. Proof: [o(y) — p(e) = |y~ +=,) - pi,)
+ Bounded " A e oty < M) vy Define norm

(lnst step by Tinearity)

Notes:

* 1f continuous, continuous at 0, [p(y)| <1 ¥[y] < 6. As such, [o(=

since bit inside brackets has norm &

o 10 bounded. [o(z] < M| vz and so (=) < = a: [ < % So continuous at 0, and therefore

everywhere.
«  Ecample of a non-bounded linear functionak Let 1 be the space of all sequences with

finitely many non-zero elements, with nom |lef| = max, fo]. Then (@)= max, |k,

unbounded because we can push the non-zero elements of @ to infinity without changing the
nom but making the functional giow to infinity u]
© Theorem (Riesz-Frechet): 1f {x) ie a continuous linear functional, then there exists a z € H such

that ¢(z) = (@.2)

o Theorem € =(_

Proof Show this as above, and define the truncated vector y, as a containing sgny” for i =
N

« Theorem: For pe (L), L[01]=L[0.1], where p +g7 =1. For every f € I, there exists

a e L, such that f(z) = [ a(ty(t) dt and |1,

[Z

o Theorem: C[0,1] = NBV[0,1]: we will prove this later using the HB Theorem

« The Hahn Banach Theorem & Application to C[0,
o Theorem (Hahn-Banach): Let p be a continuous seminorm (same as 4 norm, except for the fact it
can be equal to 0 even when @=0), M CT be a closed subspace and [:M —R be a linear
functional such that f(x) < p(x) ¥z € M . Then, there exists a linear functional F:V —R such that

Flz) = ple) Ve €V and Fla)= f(z) Ve e M
Note: Consider setting p(ar) = ] |

Clealy, the condition of the theorem then applies. because
J@ = |f].Je]. The theorem then fmplies that |F. = |lr] . The only reason we generalize p to a
seminorm is to prove the geometric HB theorem (see later)

Note 2 The iden it is possible to extend f over an entire space is ot partioularly revolutionary. The
crux of the theorem is that this extension has bounded notm. In a way. the HB Theotem can be stated

as “the optimization problem min,,__ [|F|. st (2, F) = f(z) Vo€ MC X has a global optimium, and

its value is 1],
Note & Let X be a nowmed vector space. Then Va € X.3F st. F(a) =||F|o]. Detine f(oz) = af

on the subspace generated by - this has norm unity. By the HB Theorem, we can extend this to F on
X with norm unity. This satisfies the requirements for the point 2

Ewample/Theorem (dual space of C|0, 1), Riesz Representation Theorem): (In all that
[t over cto1))

°

follows, use the usual norm, max,

Take any function v of bounded variation on [0 Then f:0[01]—R defined by

@)= ['a(t) dofe) is @ bounded linear functional in €{0.1]

Tale any bounded linear functional f € C[0.1]". Then there is a function v of bounded vasiation

on 0, 1] such that £(z) = [a(t) dutt)

For the function defined in (2), | = TV ()

o] =NBV
Proof

1. Clearly, any fdefined in this fashion is linear. Fuithermore, it is bounded

S = [ aft) dutt) < mas,

2] V() = ] TV()

min, sup,, [z b = min, |, et |£7], <t We can get vid of the abcolute value

sign and put the problem in epigraph form to get an SOCP. Why not a QCQP?

Chapter 7 — Statistical Estimation

In a paametric estimation problem, we believe that a xandom variable of interest has a density that is part of

a family p,(y) indexed by @€ Q. Given an observation y, the masimum-ikclihood estimation problem is

maxlog p, () et. &

Ezample: Consider a model y, = a’

@+, whete y, ate the observed quantities,  is to be estimated and the
v, ave TID noises with a density p. Then p,(y) =] p(y, —a' @)

o Gaussian noise. (z) = ~Flog(2m0”) ~ 2= |4z~ yf} ML is least-squares

o

Laplacian noise p(z) =

#e /20, and Z(.’t):fmlquof“n’ mfy‘“’/a This & (, —nomn

approximation.

o Uniform [ o] noise: ((x)=—mlog2a if |y, —a' z{ <a Vi and —oo otherwise. The ML estimate
is then any @ with ‘1/ —a z‘ﬁa Vi
Ezample  (logistic ~ regression): We let y be Bemouli random  variables  with

b, =expla-u +0)/[1 +explaru +b). Then ¢, =Y, logp,+3, log(l—p,). We can feed p, into this

expression.

Chapter 8 — Geometric problems

Ina classification problcm, we ate given two sets of points {',-@"} and {y',y"} and wish to find 2
function f (within a family) s.t. f(z') > 0 Vi and f(y')<0¥i

Linear discrimination: We look for a function f(z)=a:@—b such that f(z')>1 and f(y)< -1 (where
we have simply normalized the equations above) [ie: we seek a hyperplane that sepmates the two sets of

points]
Tnterestingly, the strong alternative of this system of equations is
AZO0AZ0AN=0Y Aa' =3 Ay LA=1A
By dividing by 1-X, this becomes A,A=0,1-A=11-A =1 Aa' =) Ay . This states that the convex

hulls of @ and y intersect.

Robust linear discrimination: There are lots of possible solutions to the problem above; we'd like to find

the one that separates the points the most. Consider the planes {a-2+b=1} and {a-z+b=—1}. To find
the  distonce  between  them,  take &  pomt  with a-wtb=1 and  eolve
a (@ ta)+b =1 o] = -2 = Distance = 2 /|, So, we want to solve

| et @) > v fly) <t v

Proof. Let M ={y: ¢(y) = 0}. Since the functional is continuous, M is closed. If M = H, set z = 0.

Else, choose ~ € M*

#w(z‘:<z 77>: .2
=)= )

Note alo that by Coucty-Setasz. o] < [H{|] = |- M .

) =) ) =0 = 2Ly e M 50— (a2

© This means that Hilbert epaces are self-dual (see later), and that we can write y(z)

© Theorem (Special case of the Hahn-Banach Theorem) Let M C H be a closed subspace and
%, be a continuous linear functional on M. Then there exists a continuous linear functional ¢ on H
1=lod

Proof Easy in the case of a Hilbert space. Since M is closed. it is also a Hilbert space, and so Im & M.

such that () = (@) Yo € M and

such that ¢ (@) =(e.m). Then define (x)=(z,m) for weH. By the CS mequality,
Fud =k =l .
Banach Spaces & Their Duals
© A Banach space is a normed, complete vector space with no inner product
 C{0.1] ie the space of continuous functions on [0.1], with [f] = max,, [f(¢]. [As we showed
above, the choice of this norm ensures completeness|. An example of a linear functional on this
space s ¢(f) [:m(r)duu)gumu ‘:dv{t)g“zﬂr\’(v) Provided the total variation of o

B D LOROS |

I or Ja, = s,

TV() < oo, where TV(0) = upy, o,

iy =on

SRR AL
[o Lo ot <o) sun = (1)

o Definition: We say V" ={p: ¢ ie continuous lineas functional on V} s the dual space of V. with

. Loy

l=p<re O

[reef” d:]‘ .

cupfte] o] <1}. (] |.) e awoys o Banch space.

nom o]
Proof Want to show that v{z;}gv' ith “z SeVmm> M, converges to a point
@ =lim,__ & €V Fist fix x € " and note that \w;(z)—w;(zy\ ‘(z; —z;)(z)\ s“z L=l

@ () exists. Define

As such. {a(2)} iz a Cauchy sequence in E. Since R is complete. o'(z) = lim, ]
& pointwise using this limit. Now
© Linearity By lineatity of expectations, 2" is linear

*  Continuity/boundedness: Fix m, such that <= Vnm = m,. Then by def of & (x),

')~ @) < <l and [o (@] <o’ (@) (@) ], ()] E(E+Hx | Jll = boundea

Ezamples

2. Note that ({0,1] (space of continuous functions on [0,1]) is a subset of B0,1], the space of
‘bounded functions on [0.1]. Thus, by the HB Theorem
Jecpl] =3re B st |H|= ||
Our proof then goes as follows
o Step 1 — Approzimate z € C[01] by discretisng it. Define a set of step functions

u(t)=1,,., € BO.1|. (Note these are not in C{0,1]; this s why it's useful to move to the

larger space). We can write
a(r) = 27 (r) = 300wl w, (1) v, (1) € BO1)
Whete 7 is some patition of 0.1 Hereafter, when we wiite “tends to”, we mean ‘as

the partition geta arbitrazily fine”

Step 2~ find the image under F. Let u(s) = Flu )& B be the image of these “basic
functions”. Since F'is linear and the first term in the sum is a constant, we can write
F) =37 aft)(ult) - ut,) — ,,., a(t) dot) € R

Step 3~ bridge the gap between B and C. By uniform continuity of @, the approximation

2" becomes axbitraxily good (using the max novm). Since F is also continuous using the
‘max norm, this implies that F(z") — F(z) = f(z). As such
S = [ate) dott)
©  Step 4 — show v has bounded TV. By linenity of F. we have
Sttt} = B o - < LS (=1 =

Where ¢ =1 takes the abaolute value into account, and the jump from line 2 to 3

follows since u are step functions. Taking a supremum over all partitions, we find
v <] <o
Note, however, that the F produced by the HB Theorem is not necessarily unique.
As such, nor is the function v. This theorem only states there caists such a v.

3 From (1), it is clear that ], < TV(o). From (2, Step 4) it is clear that |f], > TV(v). Thus,
”f“ =TV(s)

4. Because if not non-uniqueness noted above, C[0,1] = BV[0.1]. Tndeed. the linear functional
(@)= w2). for example, we can represented using a v that is 0 on [0, %). 1 on (%, 1] and takes

any value at % As such, we define the space NBV0.1| (normalized bounded variation),
consisting of all functions of bounded variations that vanish at 0 and are right-continuous. We
then have C[0.1] = NBV[0,1], because every element in one set can be mapped to an element in
the other [

0Odds & Ends

The dual function is g(Av) = 4fa], + - D)+t ) +[p- 1= X 1)+ (7Y —X"X)a. We need 1w =17,
in which case (A w)=4a], + @Y ~A"X)a+#(A £+ 1). We then note that by Couchy-Schwaz,
(07 = A" X0a| < 7Y - A7X] o], and 0 the dual i

max A d4w dst L =1 AY A" X| <2 00> 0. Nommalizing A and v so that 1A =1-v =1, we

get mint 5.4, ”.ﬂy—x*x” <tApu>01-A=1v=1. This is the minimum distance between the convex

hull of the points

.
Practically, we would minimize the program above using [e];. The dual is relatively simple to construct as a

QP. and the primal solution can be recovered: a = A"X — Y

«  Approzimate linear separation: If the points cannot be exactly separated, we might try to solve

minfoutlvst e —b>1—u Viay —b<—(1-y)Yiu>0v>0. Thisis a heuristic to minimize the

number of miselasifications.

The support vector classificr minimizes a tradc-off between 1-u+1-v and N, this can

efficiently be solved by taking the dual
« Non-linear classification: Tn the simplest cage, we can use a lealy parameterized fumily of functions
f(z)
0 F(z')>1Vi and 0-F(y')<—1Vi

0-F(z). Ou problem then reduces to solving the following system of lincar inequalities

Infinite-dimensional optimization

o Hilbert spaces

o Definition: A pre-Hilbert Space consist of a vector space 17 over € with an imner product
(z0) +(9:2) (© (\o.g) = A=) for

(mz) i a norm, and inner product is continuous

y.7) (b) (z+9.2)

(my): V=V . Satisties (1) (.3)

all A (d) (2.2)> 0. with equality iff & = 0. [o]

in both its arguments under that norm (Proof on Luenberger, pp49). (1) V = space of sequences that

ate square-summable. Define (z,y) = Y 7 zy, . [Finite by Cauchy Schwamiz]. (2) V = £[a,b] = space

of mensurable functions @ :[a,b]— & such that \z(«){’ is Lesbegue integiable. (w.y) = Fz(t)y(t) di
(3) V = polynomials on [a, 1] with (z.y) = f‘w)y(f) at
o Definition A Sequence {a }CV i Cauchy it Hz

o= Jfw-v)

Definition: A Hilbert Space is . complete pre-Hilbert space; one in which every Cauchy sequences

“40 a3 nom — oo, under the norm

°

converges in the space.

« Ecample of an incomplete space Take

1= )] I

€[0,1], the space of continuous functions on

- Lt e

[0,1]. Consider two norms

*  We have alrendy shown (Riesz-Frechet Theorem) that Hilbert spaces are self-dual,

*  Theorem: For pe (L), €, = ¢, where £+2=1. In other words

1. Forany ye(,, fiw)=3]" ya, isa bounded linear functional on ¢,

2. Every f € (, can be represented uniquely as f(z)=Y_" yz, with ye ¢,
3. both eases above, |1 =y,
Proof. We prove each step sepatately
1. Suppose y& (. Clemly, the proposed functional is linear Futhermore, by Holder’s
Tnequality [f(e| < Y7, ‘vz‘:“m“’ “y\L As such, the functional is also bounded. with
W<l
2 We prove this in four steps. Let ¢ € £, and f< £
« Step 1~ approzimate @ using “basis” functions. Define “basis functions” e €
. consisting of sequences which are identically 0 except for the # component. We
then have

X

*  Step 2~ find the image under f Tn this cace. let y' = f(')€ R We then have.

e —w

by linearity of f
JEREDIEED IS
By continuity of f, we have f(z,) — f(z). Thus
S@) =3,
* Step 3 - shouw that the yf form a vector in ( . Define the vector y, € ¢, as a

“truncated ¢ series.

We then have

el = (3

f =S| st =3

We kaow that || <[], |, = iﬁ‘
[

<Pl v,

. Thus

[ <h

VN

o We will sometimes abuse notation and write @ (z)= ). for z€ V.2  €V'. In a Hilbert space,

this is true, because V = 1° (Riesz-Frechet). In a Banach space, it is convenient notation (see
Hyperplanes section)

© This means that by viewing @ as fixed, <zx> also defines a functional in X" (easy to show linear and
bounded). Now, we have (1) <za:>§ a:””ml (2) By Corollaty 2 of H-B (below),
vae X3 e X st (aa’) =[]

As such, if we consider <zz> 2 a functional on X" its norm is [, . We define the notural mapping

@ X X" s that (@) maps @ to the functional it gemerates m X"; in other words,

<a:a:> = (wu) z> but with @(z) € @, The mapping is linear. and, as we showed previously, norm-

preserving; “\,7(1)”)_ a:”‘ But it might not be onto — some elements in X might not be

sepresentable by elements in X, If X = X X is called reflexive. All Hilbert spaces are reflexive. as are
€, and L for pe (1)
o We have <:n: 1> < Hx””m“ In a Hilbert space, we have equality if and only if @ = az. In a Banach

space, we say @ € X' is aligned with ¢ € X if (”)

" |l=]. They are said to be orthogonal i
I

(@) =0. Similatly, if §€ X, we soy s‘:{x‘e.\ (=.s CX LUK, we say

vinx=ts ={ee x:(c ey =0 v 5

© Theorem: If M C X, then “(M*)= M
Proof: Cleatly, M C*(M*). To show the converse, we'll show that @ ¢ M = & (M*). Define a
linear functional f on the space spanned by M and @ which vanishes on M so that f(m +az)=a. It
can be shown that [|[f| < v, and so by the HB Theorem, we can extend it to some F which also
vanishes on M. As such, F'& M*. However, F(a) = (F.a)=1=0 andso o ¢ {(M"). W
* Minimum Norm Problems
o Let us consider a vector # € X . There ate clearly two ways to take the norm of that vector — as an
element of X or as an element of X™ (a functional on X"},
L (wa)

Tt is clear these two should be equal, because <:c :v) <[] 1 (or, more intuitively, because the second

I e

norm finds the most @ can yield under a functional of norm 1 - clearly, the answer is its norm). Let us

naw restrict aurselves to a subspace M of X. We can, again, define two norms
. =awy (o)

The fust; simply consists of the minimum distance between @ and M (as opposed to between @ and 0).

(S S T

The second is the most @ can vield under a functional of norm 1 that annihilates any element of M.



Intuitively. the “remaining bit” that’s “not annihilated” is @~ m: this is maximized when it is aligned

with & —at m, So it makes sense that the two should be equal

o

Theorem: Consider & normed linear space X and a subspace Jf therein. Let @ € X . Then

g e m)

a=infy fo—m|= [T (a
vow cen

Or. in our terminology above, o], =]

.- The maximum on the right is achieved for some @] € M*:

if the infermum on the left is achieved for some m, € M , then @ —m, is aligned with =,

Tntuitively, this is because at the optimal m, the residual z — my is aligned to some vector in A[*. As

Pictorially, looking fox the point on 3 that minimizes the norm s equivalent to looking for a point on

such, for that vector, (—m,

| 71,.““ For every other @ . it'll be smaller than that.

M* that is aligned with @ —m,

This also implies that a vector m, is the minimum-norm projection if and only if there is a non-zero
vector @' € M* aligned with @~ m,
o Theoren: Let Mbe a subspace in a real normed space X. Let @ € X Then
demin | = wp gy (e)
where the minimum on the left is achieved for some m; € M* . If the supremun is achieved for some

2, € M, then & —m, is aligned with 7

Because the minimum on the left is always achieved. it is aluays more desirable to express optimization

problems in a dual space.

o

Tn many optimization problems, we seek to minimize a norm over an affine subset of a dual space

yather than subspace. More specifically, subject to a set of linear constraints of the form <y @
Tn that case, if E is some vector that satisfies these constraints,

] ey (7)o (S

) s gaee

Where i the space generated by the y. The last equality follows from the fact that T~ satiefies the

i
"

equalities. Note that the optimal Y ay, is aligned with the optimal @'

o If Let H=x,+M, whete Mis a linear subspace

If @, @ M then X =, + span(z,, M) by the maximality property of H, since this set is

bigger than M. Thus, span (2, M). We can therefore write any =€ X as

It z, €M, then H=M. Simply pick z,#M, apply the above and set
H={o: f()=0}
o Only if Swpose f=0 and let M={z:fiz)=0}. Clealy. it is a linear subspace

@ =az, +m, with me M. Define f(az, +m)=a. Then H= (z fla)

Furthenmore, there exists 2, such that f(z,)=1. As such, @ f(z)e, € M ¥z, and 5o
X = {v+ f(z)m, v e M}. So we only xequire onc extra vector () to expand M into the whole

subspace. So M is a maximal subspace. Thus H:{z fx)

hyperplane.
Important note: A hyperplane iz only closed If fis linenr and continuous.

o Theorem (Geometric Hahn-Banach): Let K be a convex set having a nonempty interior in a real
novmed linear vector space X. Suppose Vis an affine set in ¥ containing no nterior points of K. Then

there is a closed hyperplane in X containing V' but containing to interior point of K. In other words,

there is an clement @' € X' and a constant ¢ such that (v,e’) =c for all ve 1" and (ka') <c for all
ke K

© We will abuse notation and wiite @'(z) = (z.2')  for & V.o’ €17

 In Hilbert Spaces, this is actually tiue thanks to Riesz-Frechet,

It allows to represent all hyperplanes as {m (w.a)= 0}

Mathematical background

Vector spaces & Topology

o Inner products
o Couchy-Schuars incquality. Kz,y)r <(ma) (wy), with equality if and only if &=y, or
either vectors are 0.
Proof 1t y = 0, the result s simple. Else
0= (e —Ay.z—\y) = (m,2) ~2A(z.9) + N ()

)/ {u1) to get the result »

o Paraliciogram Law: [+ of +|a—of =2 + 24 (prove by extending norms ns inner
products).

o Tnduced norm yf{m.@) satisfes triangle (expand o+ g . and use €-5)

® I A>0, then X0 5-0

 Consider

4 s
5 ol

o] with det 4 = 0. Using the top equation to eliminate v and feeding it into

the bottom block, we get

v 5’,4"“) Substituting this back to find z, we get

A7 4 ABSTETAT —A7BS
Tt P

Algebraic Characterization of Vertices & Extreme Points

o Theorem: Let P={z: Az b Az = b’} be a non-empty polybedion, and let z & P. The following
three statements are equivalent: (1) @ is a vertex (2) @ is an extreme point (3) All equality constiaints

ate active at @ some of the inequality constraints are active, and out of all the constraints that ave

active at , 7 of them are linemly independent,

o

Theorem: Let P :{z.i B Az=ba> n} be & non-empty polyhedron in standmd form, and let
2€ P Then the following three statements ate equivalent (1) T is an extreme point (2) The columns
of A corresponding to the strictly positive companents of  are linearly independent. (3)a is a vertex

Note that the theorem above

o

ve nothing of how many variables the cet 5 must contain. The case

‘E‘ vank A =m , however, is a natwal choice, because the constraint Aw = b already includes m

constraints, and (1) Choosing

>m is impossible, since A contains only m rows. (2) Choosing
[B]<m would imply choosing more than n = m non-negativity constrainte, which, in total, would result
in more than n constraints. The resulting system would be over-defined, and might not have a solution

We therefore define.

Definition (Basis): A linearly independent set of m columns. {A“‘”" A } of A is . basis for the

°

column space of A. [Note: if A contains no lineatly independent rows, then vank A4 = m, and our

definition boils down to the fact a basis is a mazimally lincarly independent set of m columns]

] is called the basis matriz and the associated vector of variables @, that solves

Ba, = b ie called the vector of basic variables. Other variables (and columns of A) are called non-basic:

=,
2=|"
G

@ is called a basic solution. There is no guarantee, however, that solving Bz, = b will lead to = = 0. 1f

m of them

n—m of them

it does. the solution is also called a basic feasible solution.

1

°

Definition (adjacent basis): Two distinct basic solutions ate said to be adjacent if we can find n
linearly independent constraints that are active at both of them. If two adjacent basic solutions are also
feasible, then the line segment that joins them is called an edge of the feasible set. In terms of

palyhedia in standard form, two bases are said to be adjacent if they share all but one basic columns

o Applications

©  Ezample: Consider the problem of selecting the field current u(¢) on [0.1] to drive a motor from initial

conditions 9(0) =

0)=0 to state 6(1)=1, 6(1)=0 while minimizing max,,[u(t]. Asume the
‘motor is governed by 6(t)+ 6(t) = u(t)
o First, we need to choose a space on which to optimize our problem. Choose, u(t)€ L, [0,1],

which is the dual of L, [0,1]

First, note that we can treat the governing equation as o first-order equations and use an
integuating factor to find
()= cut) = [c‘e(z)]’u - ':n‘u{z)

N ‘:r"‘nlt) dt =

(Here ¢~ is considered as a function in L, and Jo ='u(t) dt ns some functional in L, on that

function).

We can also integrate the governing equation directly to get

(1)~ 6(0) +6(1) — 6(0;

_f:u(t)dtz"ﬁ(l)

Feeding in the results of the previous equation

ﬂu):j:ﬁ —utt) at ém

As such, our problem boils down to minimizing the norm of u subject to <c"’.u =0 and

_f;vn(l)dzfétl;

(1 — e n) = 1. This is precisely the situation considered at the end of the previous section, and
<o this optimization problem is equivalent to

pliasoe)

Where the norm is taken in I, (the primal space). A such, we want to maximize o, subject to

S o —a,)e + ot <1. HOW TO DO THIS?

Once we have found the optimal value of o, we can find u by characterizing the alignment

between I and L. For € L, and u€ I to be aligned, we require

(e = J; sty 2t = .= ]

For this to be true, it is clear that u can only take two values () and that it must have the

Jete) - max, g, )

same sign as z at any given value of t.
* Finally, consider that in this case, 2 is (o, —a,)c"” +a,. Clearly, it changes sign at most once.

And so u(t) must be equal to + M with a single change in sign

* For matrices, the standard iner product is (¥.¥) = tr(X")). Equivalent to multiplying every
element in X with the corresponding element in Y. The induced norm is the Frobenius Norm.

I

o Norms

* A uom has the piopaties (1) [o] 20 () Jef =042=0 (0) [aq|

elll @

fo - o] < o]+ - A semnomn might ot sty ()
+ Common norms |}, = (3= F)” &Pz (the unit ball is an
)

« ‘The dual norm of a novm | | 3¢ |

ro s,

ellipsoid), Hm\L = max{ 2,

4. = supx{z 2o < 1} It is the support function of the unit

ball of the norm. Note that @y < ]|

o For pe (o), the dual norm of

Y[R

| = [ (ot true in nfnite dimensional spaces).
o Open/closed sets
o N@)= {yE Xifo—y < 7-} is a neighborhood of @ (“open ball")
o zemts if Irat N(2)CE. £ open e £ =intf
o zed& ifforevery N(z), N,@)NE=2. & closed & E=cl &
* The union of open sets is open. The intersection of a finite number of open sets is open. The,
intersection of closed sets is closed. The union of a. finitc number of closed sets is closed
* The set of reals is both closed and open.
o Theorem f(A)={wedom [ f(z) A} I dom fis open/closed and A is open/closed,
then 7'(A4) iz also open /closed
o ECR i (sequentinlly) compact if for every sequence {z,}C € there exists a subsequence {z}
converging to an element € €. [Another definition, equivalent in metric spaces, is that every open
over must have a finite sub-cover].
« Theorem (Heine-Borel): in finite dimensional spaces, a set.is compact if and only if it is closed
and bounded.

« Theorems A closed subset, of & compact

is compact. The intersection of a sequence of non-

empty. nested compact sets is no-empty

o

“The indicator function of a set I (x) is equal to 0if @ & C and oo otherwise.

°

A subspace of a vector space is a subset of the vector space that contains the 0 vector and that satisfies

closure under addition and scalax multiplication

« Analysis & Calculus

« Degeneracy

© Definition (Degenerate vertex). A vertex @ is said to be degenerate when more than n of the

constrains are active at @

o

Definition (Degenerate basis): A basic fensible solution &2 said to be degenerate if some
component of @, is 0. Otherwise, it is called non-degenerate. This is equivalent to the previous

definition, because it implies that more than 11 —m of the non-negativity constraints are tight at a.

Representation & Optimality

o The Representation Theorem

© Before proving our fundamental theorem, we prove that polyhedra can be represented in a very useful
form,
© Definition (recession direction). A rcecssion dircetion of the polyhedion P is a non-zero vector

deR" such that, for any Z€ P, {w:a

F+0d6c IR’) € P. For a polyhedron in standaid form, d
is a recessive direction if and only if Ad =0 (s0 that we remain feasible ag we move along that
ditection), d > 0 (so that we never become negative as we move along that direction) and d = 0

o Theorem (Representation): Any point @€ P = {z: Az b,z >0} can be wiitten as

2= Av +ad \

Az0az0

where {v ie v} i the set of vertices of the polvhedion and d is a recession direction.

o The Fundamental Theorem

Simplex

© Theorem (Fundamental Theorem of Linear Programming): I P = then the minimum
min,_, ¢ @ is either attained at a vertex of P or unbounded.
Proof We consider two cases
© Case 1 ~ P has a recession direction d such that cd <0: in that case, the problem is
(

+ Case 2— P has no such recession direction: in that case, consider any point T € P By

unbounded, because for any € P, ¢-a(6) = c- (% +0d) = - F +de-d | —ov a3 0 — v

our Representation Theorem, we can wiite = Y Av' + ad . where ), = 1.0, >0,a>0. We

then have ¢ 3 = Y Ae v +afed)< Y he v < YA min (e o) =min, (e )

directions

7 in terms of

© Consider a polyhedron Az =b, where A=[B.NJ&R™ and a non-degenerate basic solution

a].2])  whete &, = B'b>0 and &,
Claim: Consider the matrix a1 |7V P L
o Claim: Consider the matrix M = ) I

o Ezample Consider selecting a thust progam u(f) for a vertically ascending racket subject only to
gravity and thrust in order to reach a given altitude (say 1) with minimum fuel expenditure [n ‘u(z)‘dr

Assume (0) = #(0) = 0 unit mass and unit gravity. The equation of motion is () = u(t)~ |

We might originally regard this problem in Ly, but this is not a dual space. Instead, consider it
in NBV[0,1], and associate with every wa v € NBUI0.1] so that u(t) dt = |do(t)]

The time at which the rocket needs to reach an altitude of 1. We denote this by an unknown T

and then optimize over this parameter. Tntegrating the equation of motion

(t)— 4(0) Jluds

[n‘ u(s) ds — ¢ = (t

Integrating again, by parts
o et T
a(ly= [ [ s dt -

2(T) = Iz j'ﬂ' u(s) ds|

roar 2
7‘ () at -1
L, "o 2

(T = Tj;fu(x) ds —j;’m(n dt-

[T —tuts) s —a(ry+ 2
T i) as = a0y + 2

Where vis the function in NBVI0,1] nssocinted with u, as described above.

Our problem i then # minimum norm problem subject, to a single linear constinint. We want
a(T) = 1, and using our theorem, as we did above

iy o = m g fo 377
This is a one-dimensional problem. The norm ie in C{0.1], the space to which NBV is dual. As

such (7 thaf = max, ;| [(7— 0 = T|o|. and the optimum occws at a = 1/7- We then have

min,

(e [[e] = 4 +47 . Differentiating this with respect to T, we find that the minirum

fuel expenditure of ¥2 is achieved at 7 =2

To find the optimal 1, note that the optimal v must be aligned to (7 — a. As we discusced

above when characterizing alignment of C'and NBV, this means that v must be a step function

0. vising to 2 at

at

0, and as such, u must be an impulse (delta function) at ¢

Hyperplanes & the Geometric Hahn-Banach Theorem

© Definition: A hyperplanc H of a normed linear space X is a maximal proper affine set. ie: if #

and A s affine, then either A= Hor A = X.
©  Theorem: A set His a hyperplane if and only if it is of the form {o € X : f(@)= u} where fig a non-
2er0 linear functional, and ¢ is a scalar

Proof

© A function f is ecocrcive aver C if for every sequence {z}CC with ”{Hﬂm we have
lim,__ fle) = o0

o Second-order Taylot expansion: if f is twice-continuously differentiable over N (). then ¥ d € N,(0).
S+ )= f@)+ Vi) d+ 37V @i + ofaf)

o For a vectar-value function F, [VF(:::)]M =0F (z)/ 0z,

o The chain rule states that V|g(f(@)] = Vf(z)Vglf(z))

Linear algebra

© The range o1 image of A€R™, R(4) ie the set of all vectors that can be written as Az The

nullspace or kernel N'(4) is the set of vectors than satisfy Az = 0. Note that A(A)ER(A™

other words R() " This last statement means that = = Az ¢ 2.y =0 vy with "y = 0

(A7)

o A real symmetric matiix A€ 5" C R can be factored s 4 = QAQ", where A = diag(},,++~.), ). Note
that det A =[]\, trd =300 4], = max|s] and 4], = Y
o 8], is the set of symmetric, positive definite matiix; all their eigenvectors are positive, and

Aesl, =023 Az >0

o Note that A, (4)=sup/inf,_, <. Assuch, A (A)e’e <o Tde <A (Al'e

© Suppose A€R™ with rank . Then we can factor A

UV, where U€R™,V €R™ are two

orthogonal matrices and 3 = ding(o, - ST we see that these

). Writing ATA=VEUTUSVT =

singular values ne the squate 100t of the non-zero eigenvalues of A and the right singular vectors V.

are the eigenvectors of A”A. Similaly, U contains the eigenvectors of AAT. We have

OM(A):sup”_nF’l‘-ﬁ——supy_ﬂy—'ﬁﬂ I other  wods, |4 =0, (4). We denote
cond(e) =4 J47|, = a0/ . (0)

© The psendo-inverse is A' = VS~ U7 If A is square and non-singular, then A" = 47 It is useful for the

following reasons
@ = A i the mintmum-Buclidean norm solution of min |4z — bf]
+ The optimal value of min, 32" Pz +q @+ for PES" can be expressed as —g Plg 7 if
P=0 and g€ R(P), and —o otherwise.

4 |

Consider a matrix x=| - ’les with A€ S*_If det A = 0 then the matrix Then §=C —B"A"'B is

the Schur complement of A in X. det X = det Adet§

® Let 4> 0 and consider min @ Xe =min, u’ Au+20"B"u+ v Co, where @ =|u v|. This iz

a quadiatic with solution u = —4~'Bv and optimal value v"Sv. Thus

¢ X»0 & A-0andS-0

The lnst n— m columns of M* (ie: from column m + 1 omwards) ate the directions of the edges of P
emanating from the basic feasible solution &

o Lemma: Given a BFS &, every point y € P can be expressed as y =@+ Y_yn’. Where 7’ is the /*

column of M and where y, = 0 for j > M.

o Corollary 1f & is a BFS, then any point in P is contained in the polyhedral cone generated by the

Tast n — m columns of M Pcc:{y‘y:uz’ ar

50\1/>m}

Background to the Simplez Algorithm

o Consider linear progiam is minz = ¢"z. The directional derivative of = with respect to @ in the

direction 7’ is "’ If it is greater than 0, the direction is “uphill’, and vice-versa.
o We call € =corp =

calculated by (1) Solving 7 = e} B~ (2) Setting, for j > m, 7 =

cpB7 A% +¢, the reduced cost of direction j Practically, they can be

A

© Theorem: 1t T =c i’ >0 for all j = m, then the cutrent BFS is optimal

The Simplex Algorithm

L Start with a BFS @
2. Compute the simplex multipliers m by eolving B'm=ec,, and compute the reduced coste

T =c —m A forall j¢ basis

3. Check for optimality: if € >0 ¥j ¢ basis , then the current solution s optimal

4 Choose a nonbasic variable to enter the basis: ie: choose o “downhill edge” from the set of downhill
edges V' along which to move (typically. that with the smallest reduced cost): g€ 1" ={j # B¢, <0}

5. Compute w! for all g by solving Bw' = A™ ¢ Note that o’ = —'. If w* <0, stop: z | —no along 7°

6. Othevwise, compute 6 = min, {L w > 0} (to find the basic variable that should leave the basis).

7. Update the solution and the basis matrix B. Set z, « 6 and z,

The Full Tableau Simplex

BRI L Ry
; 2,
g & |-ae

o Sel up the tableaw The first step s to find a basic feasible solution; typically, thic can be done by

setting all slack variables to b and all the “real” variables to 0 (see later for cases wheve this doesn’t
work). In that case, B =B~ =1 (whete some of the entrics might be negative, depending on the type

of inequality), and the tableau can easily be filled in



Y | b
o basie | an b
2 basic @ | b
o o 0i0

“The Inst yow contains the reduced costs; in this case, since the objective function does not contain any
slack variables, ¢; = 0, and so the reduced costs ate simply equal to the costs for the nonbasic

variables.

Tn the case of a more complex basic fensible solution, it is still an ensy matter to work out the reduced
costs: (1)The matrix a contains B~'A. Simply multiply each rows by the corresponding objective
function coefficient (for example, multiply the first ow above by ¢, )... (2) .and add all the tows to

~Nae

et to get ¢jB™'A. Subtiact this from ¢ to get & = ¢ —cj B

¥ 10T > 0. then thete is no improving ditection: we're donel
o Find pivot_column Choose the pivot column with the smallest reduced cost; or, in the case of ties.
the one with the smallest j This variable will enter the basis:

J = Entering basi

Pivot colunn = argmin {7, :7, < 0}

o Find pivot row Now, consider that the pivot colunn containe a*'’ = B~ A™'. Very conveniently
this is none other than the negative of the emanating direction corresponding to j fom our BES, —’
¥ If every item in the pivot column, @™’ ic negative, then every component of 7' ie positive - we
can move along this direction without ever becoming infeasible. The problem is unbounded
Assuming the problem is bounded, find 6, the maximum amount we can move in direction 7’ before

the problem becomes infeasible, and . the variable that leaves the basis when this happens:

i=argn

o:m.n‘i n’<u.erl
I

‘i W <u.er|
A

Tn terms of owr " column, thie looks like

i = Leaving basis = Pivot 1ow

u‘,>U" 9:m|n‘i av>0]
™

v If the minimum above is attained at two values of i, the entering basis is degenerate. See the
discussion below for anti-cycling rules
o Pivot: We now pivot on the element a, All we need is the series of row operations that will turn BB
into Tand apply them to our tableau. These operations are:

« Divide the pivat row by the pivot clement, to get a 1 in there

(P) min0 st Az (D) maxb-y st Ay<o
And note that [A] (1) is feasible if and only if (P) has a solution. [B] It (D) is unbounded. (2) has a

br>0

solution. Similarly, if (2) has a solution y, multiple of y alzo lies in the feagible get of (D). and so (D) ie
unbounded. Finally, we note that since the dual is fensible (y = 0 works). then by Strong Duality, (P)
is infeasible if and only if (D) is unbounded.
o Note: it is the case in most of these theorems that one direction is easy to prove. In this case. it is easy
to show that both (1) and (2) cannot have solutions:y” (1) = y" Az =y b 2=y Az <0
Complementary slackness
o Consider the following dual pair. and its standard form
(P):mm ¢z st Az>ba>0
(D):max by st ATy<ey=0

(P):min ¢z st Az—
(D):max by st ATy+w

bz>0s>0
y=0w=0

o Theorem: If zic fensible in (P) and y is feacible in (D), then they me both optimal for their 1espective
problems if and ouly if @-w = 2-(c~ ATy} =0 ys=y-(de—b)=0
o This makes intuitive sense in light of the above — it s only where the constninte ate tight that the
Lagrange mutlipliers can be anything apart fiom 0, s0 a5 to “penalize’ departure from these
constraints.
Strict complimentary slackness

© Consider a situation in which ¢ is a linear combination of a single normal at =

— R -

o,

We have dual degencracy - one of the reduced costs/aptimal dual variable slacks is equal to 0
© Tn this ease. it is cleas that cvery solution along the dotted constraint above are optimal. This implies
that, primal non-uniquencss implies dual degencracy. The converse of this statement, however, is not
necessarily true, because even though the reduced cost of moving away along the solid constraint (@) is
0, there could have been a third constraint there preventing the move, preventing non-uniqueness.
© We say a solution satisfies strict complimentary slackncss if the dual problem is non-degenerate. Tn
other words, provided that cither z, =0 or w, =0 for each i, but not both. Every linear progiam has
at least one optimal solution which satisfies strict complimentary clacknese (in the case above, any
solution nlong the thick dotted line would do the trick). Not true of genetnl convex programming.
The Dual Simplex Algorithm
© The primal simplex algorithm effectively involved jumping from solution to solution while maintaining

primal fensibility and complementary slackness and looking for dual feasibility. The dual simplex

Adding a new equality constraint

© Consider adding a new constraint a z

.- If @ satisfies this constraint. then it is an optimal

solution to the new problem.

4 .
| €7 0F P is an optimal

o Consider the dunl of this problem max p-b-+p, b, st b7 2, ]|,

BFS to the original problem, then (p* 0) is a feasible solution to the new dual problem
Changing the vector b
© Imagine now that we change the vector bto b = b+ de,

o Changing b docs not, affect optimality canditions. o all we need to check ae feasibility eonditions

Borie)20 | aro(5 20 | (o) +o(57) 20 i
) ), o)
Fauivaleatls, o, =y <5< min )

o T 6 falls within this range, the curvent basis is still fensible and optimal. As we saw above, the change
in the objective function will be 67,
o If & falls outside the allowed range, the solution is still optimal, but it ie primal infeasible. In that case,
we simply 1e-salve the problem using the dual simplex.
Changing the cost vector c
© Suppose that we change the vector ¢ to é=c+ e, Primal feasibility is clearly not affected. The
optimality conditions, however, dictate that ¢}B™A < c”
o We now consider two options
* ¢ is the coefficient of a nonbasic variable — in that case, only the i equation above is

‘modified: we requite ¢, > e}B A | ¢ +8> T +¢ | 627

o, is the coefficient of a basic variable - in that case, every equation is modified — we
vequire: (e, + de ) B7A™" < | e, B A" 5(BAY) <c | 8(Ba") <7
© We can view this in terms of our dual methodology above. Provided the vector ¢ remains within the
cone of normals at the basic feasible solution, the solution remains optimal. Otherwise, it “jumps” to an
adjacent vertex
Parametric programming
o Consider a linear progyam of the form min (¢ +6d) @ s.t. Az = b, > 0. We denote the optimal value
of this progiam by (6). Clearly, as § changes, there will be “breakpoints” at which ¢ leaves of the
cone of the current basis, and at which we jump to the next basis.

© Claim: The function 2(6) is piecewice linear and concave. As 6 gets very large or very small, the

problem might become unbounded (in which case +(6) = —co) or it might continue to be bounded, in

which case 2(6) keeps on decieasing linearly indefinitely

« For each other 10w, subtinct approprinte multiples of the pivot 1ow to make every other
element in the pivot column zero.
a,/a; for the pivot row (ie: @ = i)

%05 = %oss

Tn terms of owr tableau T, =
o for every other row (ie: a = )

Pinding an initial basic feasible solution

© Tnsome cases, it is ot so ensy to find an oviginal basic feasible solution. In this section, we explore two
different methods.
o Constructing an auziliary program
o The fist method is to solve an awliary linear program. If our oviginal problem is
mine st Az = b,z >0 we construct an auxilinry program
miny, 4ty stAdz+ty=bz>0y>0

Tnitialization of this problem is ensy: we simply let @ = 0 and all the y be basic

1t & if a feasible solution to the oviginal problem, then (x",0) is an optimal zero-cost solution
to the auxiliary problem. We conclude that the original problem is fensible if and only if the
auxiliary problem has 0 optimal cost; in which case @ is a fensible solution of our original

problem.

IF the awdliary problem terminates with only original vaviables in the basis, everything is nice
and dandy; we simply delete the columns corresponding to artificial variables. and go from

there.

Tt might be the case, however, that the problem ends with  zero-cost solution (x”,0) and basis

B that has one o more of the y, in the basis (at 0 level)

We note, however, that since A has vank m, it is theoretically possible to find m columns of A
that are linearly independent and form a matiix B. Tt is also clear that once we have found this
new basis matrix, the same solution @ is valid for that basis. Why? Because the only
components of @ that were non-zero previously are still in the basis, since 8C B . and the

components we duive aut of the basis ave necessarily 0, since we ouly drive out y vaviables.

Tt vemains to discuss how we can determine, fiom the final tableau of the awxiliary problem,
which variables to bring into the basis. Our technique will be as follows
* Choose one of the y to leave the basie — say it s the (% basic variable. This will be our
leaving row.
* Lok for n non-zero entry of B~A in that row - say entry j We claim that A™ is

Tinealy independent of the othey columns of A in the basis

algorithm does the opposite — it keeps dual feasibility (ie: primal optimality) and complementary
slackness and looks for primal feasibility

© Consider a basis consisting of m lineatly independent columns of 4, with the following tableaw

sk e
H z,.

We consider a solution which might be primal infeasible (ie: some of the 2, may be negative) but primal
optimal (ie: all the seduced costs are positive)

o The steps involved are ns follows:

Look at the components of @ If they are all nonnegative, we're done. Else, pick a negative one;

this iz the xow i, a"* on which we will pivot; it will czit the basis
* Look along the pivot tow: if every component @' >0, the problem is unbounded, with
optimal dual cost o

Otherwise, for cach j such that o' <0, compute 7/|a’™'; pick the smallest xatio. The

cortesponding row will cnter the basis.

Pexform a pivot aperation as for the standard simplex method
Note that the dual simplex method i identical to the primal simplex method, cartied out on the dual
(since the dual is the transpose of the primal).

Practical issues

PRIAL | min | max DuaL
= =0
constrnints | b | = varinbles
“0 | fee Finite | Unbdd | Infsble
0 o Finite | v
vatiables | _ 0 — ¢ | constaints Unbdd v
free Infsble v v
Sensitivity Analysis
* Consider the linear program min ¢ @ st Az=ba >0 Andits dual min by st. A'y<e

We now consider how the solution responds to changes in various problem pavameters. If we had an original

optimal bagis B with an optimal solution &', we need the following conditions for the basie to remain optimal

2,=B'b>0  [Feasibility] ¢ —e}BA>0  [Optimality]

Adding a new variable
© Suppose we add a new variable z, together with a corresponding column A™" and objective
z0

coefficient ¢,,,. This gives the new problem min ¢ st Aw+ A"z =ba >0,

Proof Two parts

* Proving linearity is simple; let 6 and 6, be two values of 6 for which the same basis B is

optimal. We then have 5(6,)—2(6,) = e, (6,)—¢,(6))]- @, = (6,~6,)d

Proving concavity is slightly more involved. Denote the optimal solution at 8 by ='(8)

Consider any 6, and 6, and define 6, =\, + (1~ \)g,, where A €[0,1]. Now, it is clear that

)< (er0a] &6) | A0 od)w0)
But 2(0) = (e+20,d+0-Ngd) @ (6) = Ne+0d) ' (0)+(1-N)(c+0,d) #'0,)

> X2(6,) + (1= A)2(6,) . And so = is concave.

Network flow problems

The network flow problem
o Let 1(j)={(i.d): (.j) € A} be the set of edges incoming into i, and O(7) = {(i./): (i, )€ A} be the set
of edges lcaving node i. Let b, the supply at node ¢, that enteis from the outside. Then the network flow

problem is
min 33 eecoly 54 X pernhy = X

© The first constraint can concisely be expressed as Af = b where each row of A 1epresents a node and

,=b ViENOZ ], <u,

each column represents an arc. a, contains 1 if arc jleads to node i, a ~1 if are j leaves from node ¢, and
a0 otherwise.

—m, and b =b—Am

o To deal with lower bound m, on flows, simply define f, —

© The dual of the un-capacitated problem is max b-p st A'p<e
o Due to the stiuctwe of A we in fact have p—p <c, V(i j)eA. Note that adding or
semoving a constant fiom each p, keeps the solution feasible, and has to effect on the objective

(because 1:b=0). As such, we can assume p, = 0

Complementaxy slackness requites that , —p, = ¢ for all axes on which something flows (ie: on

which f, =0). These can thetefore easily be calculated by setting p, =

0 and backtiacking
though ares with flow.
 The p,tepresent shadow prices of increasing b, by a certain amount.
Network flow algorithms
o A circulation is a flow vector h such that Ah = 0. The cost of such a circulation iz ¢ , and “pushing”
6 units of the flow means setting f — f +6h
© A spanning tree solution f i one that ia obtained by (1) picking a set T C A of ares that form a tree
when their direction is ignored (2) partitioning them into two disjoint subsets; set the flow in one
subset ta 0 (in a capacitated problem, set some to the min flow and some of the max flow). and that in

the other subset to satisfy the flow equations, starting from the leafs.

To see why, consider that the columns of the basic varinbles form the identity matrix.
Thus, since our row corresponds to an artificial variable, it is clear that every row
conesponding to  “veal” variable that s in the basis will have a 0 in that row. Thus.
any column with a non-zero entry in that position, it is linearly independent.

* We now simply pivot, driving ¢ out of the basis, and bringing 7 in. (Note that the
pivot element might be negative, unlike in the simplex method).

* [Note that our assumption A is full rank preclues that possibility that an entite row of
B4 is 0; thus, the method above always works. If such a row occurs, it can be
eliminated),

o The Big-M Method

o An altemative method is to create a problem of the form above, but minimize a function of the
form ¢-@+ MYy, where Mis kept as a large undetermined parameter.
o For a sufficiently large choice of M, if the original problem is feasible and its optimal cost is

finite, all the atificial variables will eventually be driven to 0.

Duality

Motivation I

@, (B
o Theorem. (optimality Theorem): The basic non-degenciate feasible solution z:‘;] [ .,
the linear programming problem win ¢-@ s, Az = b, 0 is optimal if, and ouly if
A B N)
"’)[ 01 ]:(” "’){0 JJ:(V M

[Note: A is the matrix of normals to equality constrainte at z whereas {0 1) is the matiix of normals

<

to inequality constraint tight at 2]

Weak duality
o Theorem: If zis primal feasible and y is dual feasible, then by < -z
Proof. Consider (1) We have that Az=b, and so y'dz=yb. (2) We nlso have that
dy<c=yAd<c andsince o> 0, y Az < c oz, The result follows.
Theorems of the Alternative
o Theorem (Farkas’ Lemma). Exactly one of the following two pioblems have a solution:
(1) Az=bw=0 OR(2) y'A<0 b y>0

Proof. Consider the primal-dual pair

© We note that (z".0) is a basic feasible solution, with the same basic matiix B: g0 we only need to check

optimality. Tn  fact, we simply need to check optimality for the new variable

) = €,y — 3B A% 2 0T this is satisfied, our solution is optimal, with the same objective value

o Otherwise, add an extra column to the simplex tableau and petform a few more iterations.
Adding a new inequality constraint

© Consider adding a constraint @™ ™" - > b,

T @' satisfies it, then it is optimal for the new problem.

© 1f not, we intioduce a new nonnegative slack variable, and 1e-wiite o' B3 The

matrix A is then replaced by T We introduce a new basis that includes all the

g

variables in B plus our new slack variable. This gives B

The basic solution i («", ™ ™" &’ —

\.1y) = and it i not feasible, since the oviginal constining was
nat satiefled.
o We want to fizwe out a way to add this new constraint to our tablesu (which, recall, contains B™'A)
B
lag* =B

Fitst, consider the problem algebraically. We have that B

And also

—a 1

that the reduced cast do not; change, because the objective coefficient of the new elack variable s 0.

[ oj-[e; 0B T=|cT-cTB o

© The above i hardly useful in terms of practically writing the new tableau. More informatively, we be
describe the above in terms of xow operations

©  Add anew row to the tablean simply consisting of |n“" e 1]

Perform the row operations necessary to ensure that the columns of B™X that correspond to

basic variables form the identity matrix. In particular, this involves:

Multiplying the row by -1, to obtain a 1 in the last column

Add ay" "B 4 to the last xow — this is equivalent to adding {a”™"") of the * row
of the tablenu to the last row. But remember that
o The f* 1ow will contain a 1 in the colum corresponding to the /" basic variable.
o (ar "") s the current entry in the last row, in the column corresponding to the
" basic variable.
Thus, these operations ave equivalent to ensuring that every component of the last row
corresponding to basic variables is 0
© The only part of the tablenu we have not considered in the lnst column, containing 2, This, however, is
sather simple — the old basic variables remain basic, and the slack variable picks up the slack from the

‘mequality

Theorem: A vector is a spanning frec solution if and only if it is a basic sofution of the minimum-cast,
flow problem.

o (Another way of finding a starting bsis is eliminating all sources and sinks in the system and simply
starting with £ = 0).

© Once we have such a solution, we can compute reduced costs for each arc not in the spanning tree s

= ¢, —(p,—p,) all are non-negative, we're done. Else, choose a negative one.

© The new axc and the current tree form a evele - push ag much flow as possible around that eycle

o Note that since A only contains 0s or ls, Ay can be reaanged to contain only 1 on its diagonal
Thus, ite determinant i 1, and by Crammer’s Rule, it's inverse contains only integer entiies. Finally,

F=A5% and A=

745", and o provided ¢ and b are integer-valued, the primal and dual solutions
also are.

o The negative-cycle algorithm creates o residual nctwork, in which an arc is created for every “extra bit”
of forward and backwaxd capacity in the oviginal network. Finding a negative-cost cycle in the initial
network iz like finding one in the residual network. The algorithm terminates when there are no
negative-cost cyeles

The maz-flow problem

o Ezample m identical machines. Job ¢ 1equites p, machine-howre, cannot be processed before time 7,
and needs to be completed before d. Create a node for each job and a node for each time period (list
the 7, and d, in oxder. and split time at each point). Arcs into job nodes with capacity p, indicate how
many machinehowss ate  spent on that job. Arcs fiom timeperiods with capacity

mxlength of time period indicate how much is dane in that time period. Arcs fiom jobs to time

petiods indicate how much i done of that job in that time period. Our scheduling problem is then a

maximum-flow problem u]

© The Ford-Fulkerson algorithm proceeds as follows (1) stast with a fensible flow (2) semach for an
augmenting path (a path from s to # in which every forward node is not saturated, and every backward
node has flow greater than 0) (3) push as much flow as possible through that path.

© To find an augmenting path. we use  lnbeling algorithm. Node i is labeled if there is an augmenting
path fom the source to node i Start with I = {s}. Remove a node fiom I and see If any axe leaving
this node could be added to the angmenting path. If so add all the possible taxget nodes to I Repeat
ntil i empty or contains the sink.

o A cut §is a subset of A such that s€S and t¢S. The capacity of a cut is given by

the min cut. If the Ford-Fulkerson

CS = Y e sy OPOCIY - Clenaly, the max flow is
algorithm terminates, the labeled nodes form a.cut, and the value of the flow must be equal to the cut

(else move nodes would have been labeled). Thus. max flow = min cut



