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Introduction: The History of Autonomous Vehicles 

Autonomous vehicles (AVs) have a surprisingly long history, starting as early as 1500, when 

the artist, architect, scientist, and engineer Leonardo da Vinci designed a self-propelled cart 

driven by high-tension springs and preset steering.1 Centuries later, in the 1920s, remote-

controlled cars showcased radio technology that eliminated the need for drivers.2  

In the mid 1980s, the Carnegie-Mellon Navlab 1 became the first self-driving vehicle controlled 

by a computer.3 It could navigate and avoid obstacles, although it operated at a much slower 

speed than modern AVs. Advancements in autonomous technology continued for military 

and aviation uses until 2004, when the Department of Defense’s research arm (DARPA) 

organized a competition to bring AVs to everyday use. The challenge involved teams of 

engineers designing a vehicle to autonomously navigate 100 miles of desert roadway. While 

no team successfully finished, the event was a major milestone in AV development. This 

concentrated focus by teams around the world set the foundation for best practices, revealed 

the many ethical and regulatory challenges that would later loom large, and advanced the 

fields of forecasting and machine learning in ways that would later prove essential to the 

development of today’s AVs. 

The Society of Automotive Engineers International (SAE International), a global nonprofit 

association with a mission “to advance mobility knowledge and solutions for the benefit of 

humanity,”4 has developed an industry-standard scale to rate levels of autonomy, ranging 

between 0 and 5. Levels 0, 1, and 2 correspond to advanced driver assistance systems (ADAS) 

that are ultimately dependent on human monitoring, including features like parking assist. 

Levels 3 and above correspond to situations in which the vehicle monitors and drives itself.5 
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The benefits of widespread AV adoption would be enormous. Safer travel, lowered insurance 

premiums, reduced need for traffic enforcement, to name but a few. Indeed, 94% of all serious 

vehicle crashes are due to human error;6 eliminating these crashes would be transformational 

(although some posited it would result in a shortage of organs for transplants, most of which 

come from fatal car crashes7). There would still, however, be improvements needed before 

self-driving cars could become the norm. 

In many ways, the progress made in the AV space over the past few years has been 

astonishing. For example, the American autonomous driving technology development 

company Waymo (formerly Google’s self-driving-car project) began operating a driverless taxi 

service in Phoenix—with an entire fleet of vehicles with no safety operator physically behind 

the wheel.8 AVs are already in use at certain retirement communities to help residents stay 

mobile without having to drive a car.9) 

In other ways, however, progress and widespread adoption of AVs were slower than 

expected, and even the most advanced cars on the road in the early 2020s (including the GM 

Super Cruise and the Tesla Autopilot) were typically below SAE 3, since they still required the 

driver to constantly monitor the driving experience. A number of more advanced SAE 3–level 

technologies (such as Highway Autopilot and Traffic Jam Pilot) were expected to gain 

extensive market approval between 2021 and 2024,10 but hurdles remained before AVs could 

operate at full potential, including infrastructure issues (such as the need for more robust 5G 

networks to transfer high volumes of data), technical issues (ironing out problems in deep-

learning vision algorithms, safety, and reliability, for example), and public perception 

concerns.11 In addition, many parts of driving culture taken for granted (such as insurance 

requirements and regulation) would need a reimagining. 

Nevertheless, the stakes were simply too high to give up, and it seemed inevitable that broad 

adoption of autonomous technologies would become the rule rather than the exception. It is 

therefore interesting to understand how the complex algorithms running these machines 

operate and to consider some of the different approaches various companies took to turn the 

dream of AVs into reality. 

How an AV Sees: Sensor Technology 

At the core of AV technology is its ability to sense the environment it is in. There are three 

main sensor types that AVs typically use to navigate: camera, radar, and lidar. Each has 

distinct benefits and drawbacks, and many companies use a combination of the three to create 

the optimum driverless experience.  

CAMERA 

The simplest and most obvious part of an AVs sensing apparatus is the camera. Indeed, when 

humans drive, they chiefly rely on vision, so it seems logical that cameras would be essential 

to the operation of AVs. Many common features, such as parking assist, adaptive cruise 

control, emergency brake assist, and lane-departure warnings, depend on cameras. 
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AVs have either one (mono) or two (stereo) cameras, and although stereo cameras are more 

expensive, they can more accurately calculate speeds and distances and create a 3D map of the 

world around them. AVs leverage computationally intensive deep-learning techniques to 

analyze camera data and navigate increasingly complex situations. 12  These deep-learning 

techniques have progressed in leaps and bounds over the past 10 years, but they still fall short 

of true human vision in many important ways. Thus, whilst it is true that humans mostly rely 

on vision, it is still an area of open and active debate whether cameras can provide that 

functionality. Cameras also suffer from a vulnerability to environmental conditions: foggy or 

rainy days can considerably degrade the quality of camera signals.13 (See Exhibit 1 for an 

example of a signal obtained from a camera sensor, together with objects identified therein 

using deep-learning algorithms.) 

RADAR 

Short for radio detection and ranging, radar technology dates back to World War II. A radar 

sensor sends out a short pulse of electromagnetic waves to surrounding objects and waits for 

those waves to bounce back. Based on the time taken to receive these return signals and their 

frequency, the sensor can determine the distance and speed of surrounding objects relatively 

quickly and inexpensively. This technique works even in poor weather but typically results in 

lower-resolution images. Radar is often classified by the frequency of the signals it emits—

short-range radar operates at a lower frequency and covers areas of up to 30 meters, while 

long-range radar uses higher frequencies and ranges up to 250 meters (AVs use both types). 

Radar also has a distinct advantage over cameras. Since the algorithms that interpret their 

signals are relatively simple, well understood, and well developed, they don’t require the 

complex—and still somewhat brittle—deep-learning networks cameras require. (See Exhibit 2 

for an example of a signal obtained from a radar sensor and note the signal’s low resolution.) 

LIDAR 

Short for light detection and ranging, lidar is by far the most expensive of the sensor 

methodologies used by AVs. Much like radars, lidar sensors emit electromagnetic waves that 

reflect back and are picked up by a photodetector, but these waves are pulses of laser light 

with considerably shorter wavelengths. This gives lidar signals a very high resolution, 

allowing them to create an accurate 3D map of the environment around the car. These high-

resolution images are then paired with extremely accurate maps and are used to help the AV 

localize itself. But the cost involved in creating these maps is considerable and forms a 

formidable barrier to entry for AV companies hoping to use them. The lidar sensors 

themselves are also prohibitively expensive—sometimes costing tens of thousands of dollars 

to outfit a single vehicle—though new technologies are reducing costs and bringing these 

sensors closer to mass production.14 (See Exhibit 3 for an example of a signal derived from lidar 

data.) 

A robust (and sometimes even furious) debate rages within the AV community as to which of 

these sensors should play a part in the ideal AV. One side of the debate, most vociferously 

championed by Tesla’s Elon Musk, states that only cameras—perhaps augmented with 

inexpensive radar to add depth to flat pictures—are required. The secret to humans’ ability to 
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drive, the argument goes, is the brain, not extraordinary perception. So using expensive lidar 

sensors would simply be a futile attempt to compensate for subhuman algorithms with 

superhuman perception. In Musk’s words:  

Lidar is a fool’s errand. Anyone relying on lidar is doomed. Doomed! [They are] 

expensive sensors that are unnecessary. It’s like having a whole bunch of expensive 

appendices. Like, one appendix is bad, well now you have a whole bunch of them, 

it’s ridiculous, you’ll see.15 

Musk’s point of view would certainly be attractive from a practical perspective. Lidar sensors 

cost a fortune, and cost is one of the hurdles in the way of mass production of AVs. In addition, 

for localization to work correctly, lidar requires extremely high-resolution maps of the world. 

Not only are these maps expensive to produce, but they are also very brittle. Indeed, any 

change in the environment (caused by construction, for example) can render them obsolete. (It 

is interesting to note that in more stable environments, such as warehouses, this limitation 

would be less problematic).16 

However, many companies (including Waymo, Nuro, Uber, Aurora, Zoox, Argo, Lyft, and 

Motional) didn’t buy into the camera-only approach, arguing that there is a deep chasm 

between the ability to see using a human brain versus a deep-learning algorithm. To name just 

one difference, these algorithms typically look at camera data as a collection of single frames, 

not a moving image as humans do. It turns out even humans make many mistakes based on 

still images. Deep-learning algorithms constantly improve, of course, but there are some 

situations in which even the most sophisticated deep-learning algorithm would be unable to 

function properly.17 For example, a post that made the rounds on social media in the early 

2020s featured a video of a Tesla Model 3 on autopilot driving behind a truck carrying three 

traffic lights (presumably transporting them to a repair shop). The algorithm was, 

understandably, confused!18 

One of the distinguishing features of an AV is the lack of room for failure—cars are dangerous, 

and by allowing algorithms to drive them, people are entrusting their lives to the technology. 

Any failure, however infrequent, would draw the ire of the public. Indeed, a number of widely 

publicized incidents that involved Tesla’s autonomous driving system did lead to official 

investigations.19 In a world in which we expect almost perfect accuracy, it is difficult to justify 

eschewing any sensor, however cogent the argument for doing so. This battle may continue 

raging—though as lidar sensors continue to become cheaper, and cameras become 

increasingly proficient at sensing their environment, it could eventually resolve itself. 

How an AV Thinks: The Analytics Behind the Curtain 

Much of the discussion around the analytics supporting AVs focuses on perception—an AV’s 

ability to see the surrounding environment. This, however, is only one part of the AV’s job, 

which can be divided into four distinct components20: 
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● Perception: the way the vehicle perceives the outside world. It chiefly does so 

by using the sensors discussed above.  

● Localization: how the vehicle positions itself in the world. 

● Planning or prediction: the translation of the vehicle’s high-level goal (to get 

from Point A to Point B) into a more granular and immediate task (e.g., in the 

next few seconds, move 10 feet on a straight bearing). A popular method, 

known as model predictive control, calculates short-term goals with high 

accuracy and medium-term goals with low accuracy, and constantly updates 

these goals. 

● Control: actuation of the vehicle’s short-term plan. This typically involves 

controlling the vehicle’s steering, acceleration, etc. 

The multifaceted nature of this task leads to another key distinction in the way various AV 

players address it. More traditional companies (most famously, Waymo, but also Motional 

and Cruise) treated each of these tasks as distinct, with individual teams overseeing the 

development and perfection of each of the components, which are then operationally chained 

together. An entire team, for example, might oversee perception without excessive regard for 

how this position data might be used. The process of training such a perception model might 

involve taking thousands of images, human-labeled with the objects they contain, and 

teaching the algorithm to reproduce these labels. 

Other players (Wayve, and to some extent, Tesla) took a very different approach, treating the 

entire task of autonomy as one process, with sensors as inputs, and actuation (steering and 

acceleration) as output, then attempting to train analytic models that take these sensors as 

inputs, and directly producing instructions for the car as outputs. The training process (at least 

in its most basic form) would involve feeding the algorithm data gathered during hundreds 

of thousands of driving hours and teaching it to reproduce the correct actuation signals taken 

by a human in those situations. 

Both approaches could have powerful arguments in their favor. Proponents of the end-to-end 

approach would note that the segmented approach spends an inordinate amount of time and 

computational power on tasks that are ultimately useless in making the final decision. For 

example, if a pedestrian is crossing a street several hundred feet away, a segmented 

algorithm’s perception task would spend valuable computational power detecting someone 

who will be long gone by the time the vehicle reaches that location. An end-to-end approach 

only uses features of the world that affect the final goal. 

Another argument for the end-to-end approach says it is possible that the various components 

of an AV might interact in unexpected ways. For example, if the perception module fails to 

recognize a tree, the impact of the control module is likely to be more consequential than if the 

perception module failed to recognize a plastic bag. Disparate modules can, of course, be made 

aware of each other through skillful product management, but the process is less seamless. 
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On the flip side, the technical challenge of training these end-to-end models is considerably 

greater than each of the individual four challenges above. One reason for this is that the 

outputs these models seek to predict (steering and acceleration) are very low dimensional 

(comprising two numbers) whereas the inputs (sensor data) are extremely complex. Thus, 

there are potentially millions of different inputs that might lead to identical correct outputs.  

Another argument cited in favor of the segmented approach is that the intermediate signals 

obtained can be useful for other purposes, even if they are not directly used in planning or 

control. For example, what metrics should be monitored and controlled to assess an AV’s 

safety is an open question. One often-used metric controls the number of times the vehicle gets 

too close to a pedestrian or stationary object. A segmented algorithm with a full-fledged 

perception task would have the information needed to control this metric. By contrast, it is not 

immediately obvious how an end-to-end algorithm might be an instructor to control this 

specific metric. Proponents of the end-to-end approach would argue these specific metrics are 

somewhat arbitrary.21 

From Cars to Robot Vacuums: The World of Autonomy 

This case has thus far focused heavily on AV cars, which is perhaps unsurprising—cars are 

the most visible and widespread application of autonomous technology. That said, there are 

many other applications of autonomy, some of which are even closer to being widespread than 

self-driving cars. 

The most obvious example is self-driving trucks. In the US alone, the freight industry was 

worth just under $800 billion a year in the late 2010s,22 and the COVID-19 pandemic showed 

it to be brittle and sensitive to disruptions.23 If autonomy were to tackle even part of this job, 

the impact would be enormous. Creating a truck that can drive itself on long stretches of 

homogeneous highway is also much simpler technically than creating a passenger car to drive 

in a dense, urban environment. Also promising, if less ambitious, is the adoption of 

autonomous robots in warehouses and factories—in these more controlled environments, 

autonomy is much easier to achieve. 

Beyond these industrial applications, the advances in autonomy have trickled down to many 

lower-impact products, such as common household items. One specific example of this is robot 

vacuums—vacuum cleaners mounted on mobile robots that can automatically clean an entire 

room or house without guidance. 

In 1956, the American science fiction author Robert A. Heinlein described the concept in his 

novel The Door into Summer, but it was not until 1990 that three roboticists, Colin Angle, Helen 

Greiner, and Rodney Brooks, founded iRobot, which launched the Roomba in 2002. The device 

was the first commercially successful robot vacuum.24 Robot vacuums proliferated shortly 

thereafter, and in 2016, Angle, then iRobot’s CEO, claimed that 20% of the world’s vacuums 

were now robots,25 and the number has doubtless grown since.  
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Robot vacuums are, in essence, mini AVs, and therefore need to handle all the perception, 

localization, planning, and control tasks described for self-driving cars—albeit on a smaller 

scale. The stakes are also of course much lower, which has allowed these devices to be 

deployed even with less-than-perfect algorithms. (Cables and errant dog turds are well known 

to give robot vacuums trouble, as many blog posts have humorously reported.26) 

By the early 2020s the market for robot vacuums was well developed and highly differentiated. 

Most vacuums followed the same basic paradigm: the robot itself contained a vacuum, wheels, 

and various sensors to help the machine navigate, and the system also came with a base to be 

plugged into a wall for recharging the vacuum. The robot started at the base, vacuumed the 

space, and then returned to the base for recharging and periodic emptying of detritus. 

Higher-end models distinguished themselves in several ways. They typically included 

advanced features such as wet mopping, carpet detection, and adaptive vacuum strength, 

depending on how much there was to pick up. The base in these luxury models sometimes 

acted as a trash receptacle—the robot could empty itself at the base and resume vacuuming. 

Of most relevance to this case, these robots also were differentiated by the complexity of their 

sensors. The most expensive of these models contained lidar and camera sensors. Cheaper 

models did not contain any complex sensors, instead relying on the tactile feedback received 

when they bumped into objects and/or various parts of a room.27 Whatever sensors they used, 

all robot vacuums faced similar navigation problems. Manufacturers had to ensure that their 

machines covered the entire area designated for cleaning, without omitting any spots and 

repeating as few areas as possible. And at the end of the cycle, as the vacuum ran out of battery, 

it needed to find its way back to the base as quickly as possible. This step was important—if 

the robot failed to return before it ran out of power, it would be stuck in place, requiring a 

human to rescue the robot from its predicament. 

Assignment: A Simple Localization Problem 

In this case, we will consider a very simple version of the localization problem. In particular, 

we will look at the workings of the 2021 model of the CBSBoti (a low-end robot vacuum) near 

the end of its cleaning cycle. To keep the vacuum economical, it contains no advanced sensors; 

the CBSBot only computes current speed (measured using the rate at which its wheels are 

rotating) and bearing (using an ordinary compass). Engineers at CBSBot hope to use this data 

to determine whether the robot is getting closer to its base—or farther away. 

The problem is complicated by a several factors. First, the sensors are not perfect, and there 

will be some uncertainty around the actual values of the variables, regardless of what the 

sensors say. Second, the robot will not know its position relative to the base—thus, moving at 

half a foot per second bearing north would bring the robot closer to the base if it is below it, 

and farther from the base if it is above it. 

                                                      

i CBSBot is a fictitious product developed for the purposes of this case.  
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Despite these challenges, the engineers believe they might be able to use these two basic 

sensors as part of the robot’s localization module and have asked you to investigate whether 

a predictive analytic model could estimate—at any given point—how much closer to the base 

the robot is getting. 

This problem is, of course, different in nature to the localization problem a full-fledged self-

driving car might face, but it will help us develop some intuition for the process of creating 

these models in practice.  

THE TASK AT HAND: BUILDING A PREDICTIVE MODEL 

You were given a CSV file with 56,173 rows along with this case. Each row corresponds to one 

measurement collected in a test lab from a robot on which a lidar-based sensor was placed to 

accurately measure the robot’s position relative to the base.28 The file contains three columns: 

● dir_moving: the direction in which the robot is moving, measured in degrees, 

clockwise, with 0 degrees indicating the robot is moving north. 

● speed: the speed at which the robot is moving, measured in arbitrary units 

derived from the number of rotations of the robot’s wheels per second. 

● dist_delta: the change in the robot’s distance from the base in feet, during 

the five seconds directly following the measurements of bearing and speed 

taken above. Positive numbers mean the robot got closer to the base. Negative 

numbers mean the robot moved farther away. 

(See Exhibits 4, 5, and 6 to view plots produced using these data.) 

In a real-life setting in which no lidar sensor is available, you would like to build a predictive 

model that will anticipate the third variable based on the first two. What kind of predictive 

model might you use for this task? Can you think of reasons the model may not perform as 

well as you might expect? 
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Exhibits 

Exhibit 1 

Signal from a Camera Sensor, Together with Annotations Produced 

by a Deep-Learning Algorithm, Identifying Other Objects in the 

Image 

 

 

 

Source: Mark Kane, “Watch This Amazing Video of What Tesla Autopilot Really Sees,” InsideEVs, 
April 27, 2019, https://insideevs.com/news/346873/video-tesla-autopilot-sees-fire-truck/. 
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Exhibit 2 

Data from a Scanning Radar Sensor 

 

The top image is a video of the scene, and the bottom image displays the corresponding radar 

data (the brighter the plot, the stronger the signal returned). The x-axis represents closeness, 

and the y-axis represents bearing angle. Thus, objects that are very close and to the right of the 

image should appear at the bottom left of the signal plot, and objects that are very far and to 

the left of the image should appear at the top right of the signal plot. 

The signal plot clearly reflects (no pun intended) the fact that vehicle A is closest, followed by 

vehicle B followed by C and D. Vehicle A is furthest to the right, followed by C, D, and finally 

B. 

 

Source: David Kohanbash, “Lidar vs Radar: A Detailed Comparison,” Robots for Roboticists (blog), 

May 4, 2017, http://robotsforroboticists.com/lidar-vs-radar/. 
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Exhibit 3 

Data from a Lidar Sensor in Google’s Self-Driving Car  

 

 

 

Source: Erico Guizzo, “How Google’s Self-Driving Car Works,” IEEE Spectrum, October 18, 2011, 
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works. 
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Exhibit 4 

Speed Sensor Data Plotted Against Average Distance Change from 

the Base 

 

 

 

Source: Case writer’s dataset, based on S. A. Pettersen et al. “Soccer Video and Player Position 
Dataset." From proceedings of the International Conference on Multimedia Systems (MMSys), 
Singapore, March 2014, https://datasets.simula.no/alfheim/. 
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Exhibit 5 

Bearing Sensor Data Plotted Against Average Distance Change 

from the Base 

 

 
 

Source: Case writer’s dataset, based on S. A. Pettersen et al. “Soccer Video and Player Position 
Dataset." From proceedings of the International Conference on Multimedia Systems (MMSys), 
Singapore, March 2014, https://datasets.simula.no/alfheim/. 
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Exhibit 6 

Speed Sensor Data Plotted Against Average Distance Change from 

the Base, Segmented by Direction of Travel 

 

 
 

Source: Case writer’s dataset, based on S. A. Pettersen et al. “Soccer Video and Player Position 
Dataset." From proceedings of the International Conference on Multimedia Systems (MMSys), 
Singapore, March 2014, https://datasets.simula.no/alfheim/. 
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