
Turing Machine Development Environment

Daniel Guetta – guetta@cantab.net

1 – Abstract
Turing Machines are the basis of the computability theory and of computer science. They are chiefly used to
decide what a “normal” computer can and cannot do. However, they are very hard to program and few aids
exist. This project is a new and simple development environment for Turing Machines.

2 – Introduction
Invented by the British mathematician Alan Turing in the early 1900s, Turing Machines were originally only
built to define the word “algorithm” – a great challenge of the 20th century, laid out by the mathematician
David Hilbert in his address to the International Congress of Mathematicians in 1900i. However, since then,
Turing Machines have evolved to become one of the simplest models of the modern computer – that is to
say, whatever modern computers can do, Turing Machines can do and whatever Turing Machines can do,
modern computers can do1. They are equivalent. This theory of equivalence between Turing Machines and
modern computers is now part of the Church-Turing thesisii.

Since the entire program is based on the theory of Turing Machine, we will describe this theory at length in
the introduction and refer to it later in the report.

Turing Machines consist of a tape limited on one side but infinite on the other (semi-finite tape) and a
read/write head (see figure 1).

Figure 1 – The Turing Machine

The tape is divided into cells and each cell can contain one symbol only. However, a symbol could be more
than one character (for example bigSymbol could be a symbol). A special symbol, the blank symbol, is
used to fill every empty cell

The read head can move left and right anywhere over the tape, one cell at the time. When it is immediately
over a cell, it can read the symbol there, write a new symbol (overwriting the one already there) or simply do
nothingiii.

Telling Turing Machines what to do (programming Turing Machines) involves a set of named states, which
are specified in the building stage of the machine. During the running of the machine, the machine is always
in one state only. We program the machine by giving it a set of instructions in the following format:

If machine is in state x and on a cell with symbol y, move to state a, write symbol b
in the current cell and move left, right or not at all. iv

The set of instructions is known as the delta value (δ-value) of the machine. Please note that the new state
could be the same as the current state and the new symbol could be the same as the current symbol, if no
change is desired.

1 An example of something computers cannot do (which quite surprising) is decide whether another program will ever halt. It is
impossible to write a program that will examine another program and say whether it will halt or will continue looping for ever
(crash) – Turing Machines cannot do it, and therefore modern computers cannot do it either.

It can easily be seen, however, from the format above, that the programming of a Turing Machine can be
extremely tedious, especially when the number of states and symbols rises above a certain level.
Furthermore, finding problems in Turing Machine programs and fixing them (debugging the programs) –
which can involve tracing through the actions of the machine – can be very monotonous and time-
consuming.

It is for those reasons that some different ways to represent the δ-value than lines of instructions were
devised. One of them is the use of a truth table, where each column represents a symbol, each row represents
a state and each cell represents one instruction. Another method is to have diagrams where each box on the
diagram (node) represents a state and each connecting line an instructionv. Figure 2 shows the same simple
Turing Machine (that writes alternate 1s and 2s on the tape and never stops) represented in three different
ways, to allow you to contrast between the techniques. 0 is the blank symbol in that machine.

Figure 2 – Comparison of representations of Turing Machines

From now on, instructions in the format above will be represented as Current state, current symbol,
new state, new symbol, new direction for the sake of brevity.

Another part of the theory of Turing Machines worthy of attention is the topic of variations. So far, the only
type of Turing Machine (model) explored is that of a single tape and a single read head. However, there are
several variations to this model. One of the most interesting ones introduces more than one tape and gives
each tape and individual read head, which can move independently from others (see figure 3). That it to say,
at each step, both heads can write different symbols on the different tapes and then move different directions.
However, both read heads are always in the same state. To program this model, the instructions are slightly
modified. For example, for a three-tape machine:

If machine is in state x and on cells with symbols y_1, y_2 and y_3, move to state a,
write symbols b_1, b_2 and b_3 in the current cells and, for tape 1 move left, right or

not at all, for tape 2 move left left, right or not at all and for tape three move
left, right or not at all.

Method 1 – Instructions
If in state Q1 over symbol 0 go into state Q2, write symbol 1 and move right.
If in state Q2 over symbol 0 go into state Q1, write symbol 2 and move right.

Method 2 – Truth Table
 0 1 2
Q1

o into Q2, write 1,
move RIGHT

- -

Q2 Go into Q1, write 2,
move RIGHT

- -

Method 3 – State Diagram

Q1 Q2

If 0, write 1, go right

If 0, wrote 2, go right

Figure 3 – A two-Tape Turing Machine

Please note the braces are used only to show the machines share the same state – they have no other significance.

It may look like the multiple-tape Turing Machine model can carry out (execute) some programs that the
ordinary single tape model could not – in other words, it may look like this model is more powerful than the
normal one. However, this is not so – they are entirely equivalent. This can be easily proved by showing how
any step done by the two tape machine can be done by the single tape machine (simulation). Since this
simulation is extensively used in the program, it is covered in detail in the design rather than here.

3 – Previous work
Before outlining the aims of our program, we will now examine previous work in the field to evaluate the
need of various features in the program.

1. Cheran Soft Visual Turingvi

Visual Turing is a freeware program that allows the drawing of Turing Machines as state
diagrams and to run those state diagrams in a simulator. The program also allows the user to
pause in a given place. However, the program has three main disadvantages. First of all, there is
no way to convert those state diagrams into truth tables or instructions. Second, the tape given is
finite and allows too few cells – as soon as a slightly complicated Machine is run, the tape runs
out. Finally, the model proposed is not a “proper” Turing machine – it allows function calling and
variable declaration, which traditional machines do not support without added programming.

2. Various applets on the webvii

There are several applets available on the web to program Turing Machines, but all have the same
features; the input of instructions in the abbreviated form described above and the simulation of
those instructions. In that respect, they are useful to carry out a simulation that a student would
otherwise have to carry out by hand, but they offer little more capabilities than a human would.

There is more software available on the market (for example, Stanford’s excellent “Turing’s World” suiteviii),
but all provide functionality similar to the two programs above.

4 – Aims of the Program
The aims of the program attempt to keep the solid foundations laid down by previous work while building up
on them and improving them.

1. The ability to program Turing Machines as truth tables, state diagrams and simple instructions and to
convert between all three formats.

2. The ability to convert instructions from pseudo code1 to Turing Machine instructions
3. The ability to convert multiple tape Turing Machines to single tape Turing Machines – in other

words, to simulate multiple-tape Turing Machines on a single-tape machine.
4. The ability to simulate Turing Machines in the formats above. The Simulator must have a Graphical

User Interface and must give real-time visual feedback to the user, with a possibility to pause on a
state for debugging.

5. The ability to save Turing Machines and re-use them later.
6. The ability to view, simulate and edit several machines at the same time, for comparison.
7. The program must be constructed so that other programs can use its parts easily. For example, if

another program wants to simulate a Turing Machine, it should be able to simply take the “simulator”
control from the project and use it, without needing the other parts of the project.

5 – Development environment and Program type
The development environment used was be Microsoft Visual Basic 6, chosen for its capability to produce
professional Graphical User Interfaces – a key part to the project – and for it’s interpreter, which allows to
modify code while the program is being run, thereby greatly simplifying debugging. The only downside to
Visual Basic is the slow speed of its program (its low performance) compared to languages like C or C++.
However, the aims of this project mention nothing about performance, and the acceptable performance of VB
is sufficient for this program.

The program has a graphical user interface, as mentioned in aim 4 above.

The program also has a multiple-document-interface – which means it will have the ability to open, edit and
simulate several machines at the same time but all within the same program.

6 – Program Structure
The structure of the project is purely modular (as mentioned in aim 7 above) – this means that the project
split up into several well-contained parts (controls), and each of those controls could work by themselves,
even without the other parts. However, they all have the common point that they need to store a Turing
Machine.

The method of storage of Turing Machines in the different controls was changed halfway through the project.
At the start, each part of the project had its own version of the machine stored within itself, as shown in
figure 4. All the controls, however, held exactly the same machine but just displayed it in a different way, so
all the stored machines were exactly equal.

Figure 4 – Old program structure.

Each part of the project holds its own version of the machine.

1 Pseudo code is a language between normal English and programming language

However, this method proved extremely inefficient for two reasons:
1. An enormous amount of memory was wasted. Since there was a copy of a Turing Machine in each

control, multiple copies of the machine were kept, even though the machines were exactly the same –
this used up a large amount of memory.

2. Inconsistencies could develop between machines. If one part (say, the Truth Table) updated their
machine (as a result of a change by a user, for example), there was a chance that the machines in
other controls were not updated, thereby causing different parts of the program to hold different
machines. This could result in serious problems. For example, the Truth Table might be displayed the
Truth Table of a machine different to that being simulated in the simulator.

The structure was therefore changed to that of figure 5. The machine is now stored in one central place (an
instance of the clsMachine class1) and each control holds a pointer to that central storage position.
Whenever one of the controls wants to update a machine, or display it, it simply uses this central machine.
This gets rid of both problems above. Another advantage to this method is that a program can have a machine
separate from any control – a control is not needed to store a machine.

Figure 5 – Current program structure.
A centralised storage location of all controls

We will now cover clsMachine class, of which the central storage location is an instance, in more detail.

6.1 – The clsMachine class
An instance of the clsMachine class2 is used as a central storage location for the machine used by the
program. It makes available to the user (exposes) methods and properties which allow the user to create and
modify Turing Machines. For example, it exposes an addState method, which adds a state to the machine.
All modifications to the machines are made through those properties and methods.

Once this class is covered in detail, there is no need to review each component one by one (except for the
conversion component discussed below). This is because they are all simply displaying the machine
differently, but chiefly just using the clsMachine class.

The way data is stored within the clsMachine class is different for each component.

1 The meaning of class and instance is dealt with in the next footnote.
2 To understand the meaning of class and instance, we can take the example of a commercial bicycle firm. They first draw plans
for a new bicycle (including things about it – its properties, and things it will need to do – its methods). This plan is equivalent to
the class declaration. Then, from that one plan, the firm will make many bicycles. Each bicycle is equivalent to one instance of the
class. Each bicycle, however, could have a different colour since colour is a property and properties vary with instances. However,
properties apart, the basic structure will stay the same for all bicycles. This is the same with our Turing Machines – each instance
of the clsMachine class will have different sets of instructions, for example, but the basic definition of a Turing Machine will stay
the same in each.

6.1.1 – For states
All states are held in one array1 - Q(). The array is of the user defined data type QType2. When a state is
added, it is stored at the next available storage space in the array.

The name of the state (its ID) is stored within the user defined data type, and the state is always referred
to by its ID outside the class or in class methods and properties. However, within the class, the state is
referred by its array position only. So for example, if a state called “Q1” was stored in array position 3,
any control communicating with the class would use “Q1” and the class would answer “Q1”. However,
within the class, 3 would be used (see figure 6).

Figure 6 – State referencing in the class

This has two major advantages:

1. It is much quicker to access a state by its array position than by its state ID (since doing it by its
state ID involves some kind of search). Therefore, the class runs much faster.

2. State IDs can be changed at will – within the class, only the array position is used and a change in
the name will have no effect, since the array position would stay the same. If the state ID was also
used within the class, changing it would involves going through every single δ-value and changing
the ID there.

However, the state ID still needs to be converted to an array position at least once, when it goes from one
to the other. There are two methods available for this, each with their relevant advantages:

1. Search through the entire state array every time you need to find an array position3. Whenever you
find an ID that matches the one you are looking for, you know you found the right position. This
method is advantageous because it doesn’t use much memory, but it is problematic because
searches are very slow.

2. Build a table which allows you to go straight to the value itself (a hash table). This is advantageous
because finding the value would then be extremely fast, but it is problematic because hash tables
take a large amount of space in memory.

This dilemma is a typical time-memory trade-off – either the time or the memory. For this program, we
have chosen to use the hash table option, since it greatly increases the speed of the program. The extra
amount of memory taken justifies the sacrifice of time.

A final point that needs to be covered is the deletion of states. When a state in the array is deleted, there
are two possible options. Either every state below that state is shifted up to fill the gap (remember, arrays
are tables), or a garbage value is written to the state position to show it is deleted (see figure 7).

1 Arrays are tables of data
2 A user defined data type (UDT) allows the programmer to take many different variables of many other types (integer, string,
etc…) and to combine them into one big type. For example, the QType mentioned above contains three strings, all put together in
one type.
3 Or use an optimized searching algorithm – but this would still take a long time

Class

Array
position used

Outside
control

State ID used

Conversion from array
position to state ID
and vice versa

Figure 7 – Two methods of deleting the array element highlighted in grey

Even though the first method looks much more appealing, since it leaves a “clean” array, it has two major
flaws which make it very hard to use for this program:

1. The shifting of array elements back up the table can be very time-consuming since every element
has to be moved one by one. Even if special API functions that move the entire block as a chunk are
used, the process is still slow.

2. If we shift array elements, the array pointer for every element changes. This implies that we need to
update the array pointer in every part of the class. However, it is to avoid this that we chose array
pointers in the first place!

Therefore, the second method is used. However, it is slightly improved so that not too much space is
wasted. When a user adds a new state, the program will not immediately add it to the end of the array. It
will scan through every cell until it find one which has a garbage value, and this is where it will put the
new state, thereby recovering the lost space. The only time the program will enter the value at the end of
the array is if there are no garbage values at all. Even though this search for a garbage value will also take
time, it is much quicker than the other method, which would imply searching through the entire δ-array.

The class holds the array positions of the starting states and final states in two simple variables. When
they are set or accessed, the array position State ID conversion operates.

6.1.2 – For symbols

Symbols are stored exactly like states in every respect except for one. When a symbol character needs to
be converted to a symbol array position, no hash table is used but the entire array is searched. The reason
why this is acceptable for symbols but not for states is that there will usually only be a handful of
symbols in the machine, while there may be many states. Hence, going through the entire symbol array
would take a very short time, while doing the same for the state array would take much longer.

The class holds the array position of the blank character in a simple variable. When it is set or accessed,
the array position symbol conversion occurs.

6.1.3 – For instructions

The storage of instructions is slightly more complicated than it seems. It would seem logical to simply
store the instructions as a Truth Table in a 2 dimensional array1. However, the problem with this method
can easily be seen by looking at the example truth table above (second page of this report) – most of the

1 The simple list of items seen so far is a 1 dimensional array. A two dimensional array is a “normal” table.

Method 1 – Shifting array contents

Array pos. Contents
1 State 1
2 State 2
3 State 3
4 State 4

Array pos. Contents
1 State 1
2 State 3
3 State 4

Method 2 – Writing a garbage value

Array pos. Contents
1 State 1
2 State 2
3 State 3
4 State 4

Array pos. Contents
1 State 1
2 ########
3 State 3
4 State 4

cells are blank. This means that an enormous amount of memory would be wasted by useless white cells
(see figure 8). This is especially true when we deal with multiple-tape machines, where the number of
columns in a truth table is equal to Number of charactersNumber of tapes and only a very small number of
those columns are used.

Figure 8 – Storing a truth table in an array

Even though only three cells are used, many more are stored and take up memory

There are two other methods which we considered to store the instructions:

The first method involves using a structure called a very sparse array. It is designed for arrays like ours
where there can be thousands of cells in total, but only a few with values written in them. It works by
keeping the column headers in a linked list1 and the row headers in a linked list. From each header, there
then comes out another linked list containing all the items in that row/column. Figure 9 illustrates the
concept visuallyix.

Figure 9 – A very sparse array
The problem with a very sparse array, however, is that every time a cell needs to be accessed, the
program must search through the entire linked list for the row/column header, and then the entire header
linked list for the cell. With an array, direct access would have been possible.

The second method, which is the one used in the project, uses a 1-dimensional array. There is one cell in
the array for each state. The cells themselves then contain a list. To find a given instruction in the list
(given the current state and current scanned character), the steps would be the following:

 Directly access the correct list in the array for the state we want. For example, if we need state Q1,
go to the array position for state Q1.

 Once the list for the correct state is found all we need to do is to quickly search trough the very
short list to find the instruction for the character we want.

1 A linked list is a special kind of list where each item holds a pointer to the next item, but each item is stored individually. This
means that the only way to get to an item is to go to the item before it and follow the pointer. This also means that whenever an
item needs to be accessed, we need to start from the first item in the list and go down the list until we find the item we want – there
is no way to directly access the items. There are advantages to a linked list, but they are out of the scope of this article. Citation ix
provides excellent reference on the topic.

 A B …. n
Q1 - - - -
Q2 trans - - trans

… - - - -

Qn - - - trans

Q1

Q2

Qn

A B n

Q1 Q1

Q1

Figure 10 – The solution used in the program

No space is wasted, since every state will have at least one transition

7 – Conversion from a multiple-tape machine to a single tape machine
In the introduction, we mentioned that multiple-tape machines were as powerful as single-tape machines, and
that it could be shown by simulation. There are many simulations we could use, but we chose one found in a
book by Michael Sipser for its practicality of implementation. This is the simulation we use in the program to
convert multiple-tape machines to single tape machines. We will now explain the simulation in detail.

First, the several tapes of the multiple-tape machine, complete with read heads, need to be represented on a
single tape machine. The best way to do this is to write each tape one after the other on the single tape
machine, but to separate them by $ symbols, for example, to show the separation between tapes.

To show where the read head is on each tape, a more subtle trick has to be used, in which every symbol in the
machine is doubled, but with a ‘ character appended to it (remember symbols can be more than one character
long). Thus, a machine with symbols A, B, C would now have symbols A, A’, B, B’, C, C’. Then, to
show the read head is over a certain symbol, we add the ‘ to simulate the read head. Therefore, if we had the
tape:

A B C C A

with the read head on the second C, the tape would now be:

A B C C’ A

A final step needed to simulate the multiple-tape machine is to add > an < symbols at the beginning and end
of the entire simulation respectively. If this was not done, the machine would not know whether the symbol
after the last “visible” $ was the end of all tapes, or the beginning of a new tape. Since tapes are infinite on
the right, this blank symbol could well be the beginning of another tape with a huge number of blanks. Figure
11 should clarify the entire process by giving an appropriate representation of the machine in Figure 3.

Figure 11 – A simulated multiple-tape machine

Once we have this representation, simulating the actions of the multiple-tape machine on the single tape
machine is relatively simple to describe, but extremely hard to program:

1. Sweep from left to right over the tape, remembering each symbol under the read head by entering a
new state for each different symbol under the read head (figure 12). Once all the symbols have been
scanned, it is clear what transition is needed.

2. Sweep back to the left, changing the symbols and the position of read heads each time one is met. If
the machine ever needs to go right at the end of a tape, simply shift the entire tape content one cell to
the right to make space

Array position
(= state array position)

Contents

1 A Q1, 2, L
 B Q1, 3, R
 C Q2, 4, S

2 2 Q1, 2, L
3 C Q1, 2, L

 B Q1, 3, R

Figure 12 – “Remembering” the characters we scanned

Each box is a state

8 – Conversion from Pseudo code to a Turing Machine
One of the most interesting and complicated aims of the project was aim 2 – the pseudo code conversion.
This conversion implied having a compiler that could take any normal high level language code and compile
it to simple Turing Machine instructions. However, there was no aim specifying a conversion from simple
Turing Machine instructions to pseudo code. The reason for this is simple. Inasmuch as conversion from
higher level instruction to lower level ones is feasible and has already been done by all compilers existent
today (only for normal computers, though – it has never been done for Turing Machines), the reverse – a
process called reverse engineering – is extremely hard and is still an open challenge of computing. If this
process was simple, then the entire computing industry would be revolutionised – Windows could be
reversed engineered and reproduced by rivals of Microsoft with great ease and programs would no longer be
safe from copying by rival companies. Therefore, the conversion from Turing Machines to high level code is
not covered.

This section of the project was unfortunately not covered due to lack of time and people! However, the
theory for the conversion was laid down and is discussed below, assuming a language with the following
features:

 Loops
 Conditional blocks (if statements)
 Explicit declaration and use of global and private variables
 Function calling (and returning values)
 The four basic arithmetic operators and indices (including expressions involving brackets)

This section might, however, include some technical information that we will be unable to explain due to
lack of space.

The machine to emulate a computer would contain 4 tapes. One tape for user defined variables, one tape for
system variables, one tape for the call stack and one tape for processing. Before compilation to a Turing
Machine, the source code would have to be parsed and converted to a tree, which would allow the entire code
to be executed by the following seven functions only:

 Addition
 Subtraction
 Division
 Multiplication
 Equation
 Variable retrieving
 Variable assignment

Start

If we got here, there was a 0 on tape 1

If we got here, there was a 1 on tape 1

If we find 0’

If we find 1’

If we got here, there was a 0 on tape 1 and a 0 on tape 2

If we got here, there was a 0 on tape 1 and a 1 on tape 2

If we got here, there was a 1 on tape 1 and a 0 on tape 2

If we got here, there was a 1 on tape 1 and a 1 on tape 2

If we find 0’

If we find 1’

If we find 0’

If we find 1’

For example, the following code would be converted into the tree in figure 13.

If ((a + b) * c) = 5 Then
 c = d + f
End if

Figure 13 – A tree for the aforementioned source code

We will now examine each of the seven items and describe methods to implement them with Turing
Machines. Then, we will examine the different high-level language construct and describe how to convert
them to the trees described above.

8.1 – Addition

Addition is extremely simple. Assuming numbers are given in a unary format, all that needs to be done is
the copying of the second number to the first number, using a simple copying machinex. In the context of
the architecture of our multiple-tape machine, two new system variables could be created on the system
variables tape, one with each number (see sections on variables below). The copying machine would then
concatenate both variables.

8.2 – Multiplication

Multiplication could also be achieved using a simple copying machine. The number, again in unary format,
would be copied into a result variable repeatedly until the end of the multiplication. For example, in the
multiplication 5 × 3, the unary number 11111 would be repeated three times into the result variable.

8.3 – Subtraction

Subtraction is somewhat more complicated to implement. Let us take a – b as an example. The simplest
approach is to take both the numbers in unary format and to cross a 1 from a for every 1 from b. The
resulting number left in a will be the result of the subtraction. If negative subtraction also needs to be
supported, the Machine could check, every time it crossed a 1 from a whether a was now equal to 0. If that
was the case, it could write a – sign at the start of the tape and add 1s instead of removing them thereafter.

8.4 – Division

Division is also relatively complicated to implement. The two numbers would, again, have to be stored in
unary format in two system variables. Then, the machine would repeatedly try to remove a copy of the
second number from the first, keeping count of the number of removals. For example, for the division
10 ÷ 5 (coded 1111111111 ÷ 11111), the program would repeatedly try to remove 5 1s (11111 – the
encoding for the number 5) from the encoding for 10 until it ran out. When it runs out, the number of
removals carried out is equal to the result of the division.

Main Program

If Statement

Condition

Equation

5Multiplication

cAddition

Retrieval –
variable a

Retrieval –
variable b

Execution

Assignment –
variable a

Value

Addition

Retrieval –
variable d

Retrieval –
variable f

8.5 – Equation

Equation is a relatively simple but tedious process. Every character in one string must be compared with a
character in the next string. Once the two characters are compared:

 If they match, they are deleted, and the entire process starts again from the next characters (which
are now the first characters of the string)

 If they do not match, the equation should return false immediately
Once either string runs out, the machine would then check the status of the other string – if it ran out at the
same time, the machine would be accepted – otherwise, rejected.

8.6 – Variable storage issues
The issue of variables is more complex than other ones. First, we will look at the method used to actually
store variables on the variable tapes. Each variable is written on the tape and separated by a unique variable
symbol. For example, if three variables a, b and c with values “hello”, “goodbye” and “end” respectively
were to be stored on a tape, the tape would look like the one in figure 14.

Figure 14 – Storing variables on a tape

Notice how the variable symbols are given special markers so the machine does not confuse them to be part of the actual
variables

The storage of private variable would include an extra step to this storage model. For every scope block,
there would have to be a start and end marker, and within those two markers, the variables in that scope
would be stored. Garbage collection is not discussed here for lack of space.

8.6.1 – Variable assignment

Assigning a variable would require the following steps:
 On the relevant tape (system or user defined) find the variable marker – if it does not exist yet,

create it at the end. When scanning the tape, skip any blocks which are out of our scope.
 Copy the value to be assigned straight after the marker character
 If there isn’t enough space between the marker character and the start of the next variable, shift the

tape contents using a simple shifting machinex.

8.6.2 – Variable retrieval

Retrieving a variable would require the following steps:
 On the relevant tape (system or user defined) find the variable marker – if it does not exist yet,

return an error (implicit variable declaration is not supported by our pseudo code language). When
scanning the tape, skip any blocks which are out of our scope.

 Copy the value between the marker found to the next marker (the variable) from the variable tape to
the desired location (usually the processing tape)

8.7 – Loops

Loops are fairly easy to convert to a tree using only the features specified above.
 First, create a system variable to use as a loop counter (unless an existing variable has already been

specified in a For loop declaration). In both cases, initialise it with the initial value needed.
 Run the code within the loop repeatedly, incrementing the counter each time.
 Each time the code is about to run, compare the target value and the loop counter value using the

code specified in section 8.5 above. If they match, exit the loop.

8.8 – Conditional blocks

With conditional blocks, each expression of the condition would first need to be sub-split into the seven
basic commands described above. That done, the different expressions would be evaluated and equated.
The code within the block would then be run depending on the result of the equation.

8.9 – Function calling
Function calling would be fairly simple, assuming the binary encoding of the Turing Machine of the
function was stored in a normal system variable. The steps to calling would be:

 Write the current tape configuration of the processing tape to the call stack tape.
 Run a universal Turing Machine on the binary encoding of the Turing Machine of the function – for

any variables needed by the function, create a new scope block. Make the first variable in the new
scope block the return value for the function.

 When the function is done running, read the tape configuration from the call stack tape and restore
it. Get the return value from the first variable in the function scope block and then delete the scope
block created.

8.10 – Arithmetic operations involving brackets and indices

Arithmetic operations involving brackets are simple – all that needs to be done is to split the bracketed
operation into the seven basic operations specified above and store the results of each of the brackets in a
system variable. All operations on that bracket can then be done on the system variable it returned.

Supporting indices is also simple – all that needs to be done is a series of multiplication on the relevant
number or variable.

9 – Evaluation
We will now take the aims one by one and see how far, if at all, our programs has fulfilled them.

1. The ability to write Turing Machines as truth tables, state diagrams and simple instructions and to
convert between all three formats.

The programme fulfilled part of this aim. All three formats are implemented in the program and
can be converted to simple instructions, but the conversion to state diagrams has not been
implemented due to lack of time.

2. The ability to convert multiple tape Turing Machines to single tape Turing Machines – in other
words, to simulate multiple-tape Turing Machines on a single-tape machine.

This aim was fully implemented. The conversion procedure described above is used and the
results are graphically relayed to the user.

3. The ability to simulate Turing Machines in the formats above. The Simulator must have a Graphical
User Interface and must give real-time visual feedback to the user, with a possibility to pause on a
state for debugging.

This aim was fully implemented. The tape is presented as a series of squares and constant
graphical feedback is given to the user concerning the current state and tape contents.

4. The ability to save Turing Machines and re-use them later.
This aim was also fully implemented through the production of sequential *.vtf files that can be
written and re-read by the program.

5. The ability to view, simulate and edit several machines at the same time, for comparison.
This aim was fully implemented by the multiple-document-interface used.

6. The program must be constructed so that other programs can use its parts easily. For example, if
another program wants to simulate a Turing Machine, it should be able to simply take the “simulator”
control from the project and use it, without needing the other parts of the project.

Every part in the program was written as a control which can be compiled to an OCX control.
OCX controls can then be used by any other programmers in their projects. A large OCX file can
be made for all the controls, or the different controls can be made into separate lightweight OCX
files.

7. The ability to convert instructions from pseudo code to Turing Machine instructions
Even though this aim was not implemented, the theory necessary to implement it was described in
section 8 – implementing it is now just a question of time.

9.1 – Future work
 Implement all aims left pending above
 Add support for different variations of Turing Machines – doubly infinite models, multi-track models,

etc…
 Support a certain degree of reverse-engineering of Turing Machines.
 Include some non-halting detection techniques – for example, if the tape enters the same

configuration twice, it will never halt.
 Also allow finite state automatons to be created and simulated by the program.

10 – Acknowledgements
First and foremost, my thanks are infinite to my mentor, Bobi Gilburd, who was always there to help me,
give me advice and re-assure me, especially when the project was getting hard and going slowly, and who
really managed to make the project fun as well as educational. I would never have been able to achieve a
quarter of what I did without him. My thanks also go to him as well as my father, Jean Guetta, and Stanislav
Tsanev for their proof reading of this report and their invaluable comments.

I would also like to thank the British Technion Society for the very generous help they gave me for my living
expenses at the Technion.

And last, but certainly not least, I would like to thank all the SciTech counsellors and participants, who made
this month a great, fun and unforgettable experience!

Citations

The citations below also constitute excellent “further reading” in the subject.
i http://babbage.clarku.edu/~djoyce/hilbert/
ii Automata and Computability, Dexter C. Kozen – Lecture 1
 http://ei.cs.vt.edu/~history/Turing.html
iii Introduction to the Theory of Computation, Michael Sipser – Chapter 3
iv http://www.ams.org/new-in-math/cover/turing.html
v Introduction to the Theory of Computation, Michael Sipser
vi http://www.cheransoft.com/vturing/index.html
vii For example, http://www.igs.net/~tril/tm/tm.html
viii http://www-csli.stanford.edu/hp/Turing1.html
ix Visual Basic Algorithms, Rod Stephens
x Detailed descriptions of the machines described in the last section of the paper can be found in chapter of 2 of “Introduction to
Computability” by Fred Hennie.

