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We discuss the Lagrangian formalism in classical mechanics and the path integral formalism in
quantum mechanics, thus providing a unified framework through which both quantum and classical
phenomena can be understood. We then explore the path integral formulation in more detail, and
show how it can be used to deal with a selection of problems: the Aharonov-Bohm effect, the free
particle, the simple harmonic oscillator and perturbation theory.

I. INTRODUCTION

In today’s undergraduate courses, mechanics and
quantum mechanics are taught very differently. Clas-
sical mechanics is usually approached from the perspec-
tive of Newton’s Laws [1]. Quantum Mechanics is ap-
proached using the Schrodinger Equation [2]. These two
approaches are radically different, both in underlying ap-
proach and methodology, and the kinds of problems stud-
ied in each case are wildly different. Furthermore, though
the quantum and classical theories can be shown to be
consistent [2], there is no obvious way to recover one from
the other.

The aim of the first part of this paper is to explore for-
mulations of mechanics and quantum mechanics which
make the similarities between the theories much more
obvious. In so doing, we will introduce Lagrangians in
classical mechanics and path integrals in quantum me-
chanics. We will also show how Newton’s Laws and
Schrodinger’s Equation arise naturally out of this for-
malism. In the second part of this paper, we will explore
the path integral approach in more detail and show how
it can be used to deal with a wide range of problems.

II. THE PROPAGATOR

We begin by introducing the propagator — a function
of four variables

K(z,t — 2',t)

The propagator is such that K K* gives the probability
that a system at position z’ at time ¢’ will end up at
position z at time ¢ (the use of the arrow in denoting the
propagator is non-standard, but we find it useful to make
it clear the propagator denotes the movement from the
primed state to the unprimed state).

The ‘aim’ of mechanics — classical and quantum — can,
effectively, be reduced to finding the propagator for a
given system. Indeed, given initial conditions, the prop-
agator tells us everything we need to know about the
future state of the system. This approach is attractive
for our purposes because it states both the classical and
quantum problem in the same way[14].

Clearly, classical propagators will be completely deter-
ministic, and therefore much simpler, than their quantum

counterparts. We will show, however, how classical and
quantum propagators can be computed using surprisingly
similar principles.

III. THE LAGRANGIAN APPROACH TO
CLASSICAL MECHANICS

A. The Lagrangian Method

The Lagrangian approach to classical mechanics pre-
scribes the following method for finding the path of a
system from a point A to a point B [3][15]

e Parameterize the system using a set of coordinates.
For example, to parameterize a particle moving in
one dimension, a single coordinate is needed — the
displacement of the particle from an origin (denoted

In fact, a full parameterization of such a system also
requires the momentum of the particle (denoted p),
but we shall not need it in our discussion.

e Construct a Lagrangian for the mechanical system,
denoted £. This function generally depends on
time and on our coordinates and their derivatives.
We will see later how to construct this function. In
our simple case, we write L(z, ;).

e Construct the action for the mechanical system,
denoted S, as follows

S[m]:/ABﬁdt

The action is a function of the path of a system:;
given any path x(t) that the particle follows, the
action outputs a single number characterising that
path.

The Lagrangian approach then states that the path the
system will follow is the one that extremises the action
S. In other words — if the path the particle eventually
follows is X (t) with an associated action S[X], then every
small deviation from this path z(t) will result in a larger
(or smaller) action S[z].



An important theorem states that this extremal path
x(t) satisfies the Euler-Lagrange equation[4]

oL d [ oL W
ox(t)  dt \ 9i(t)
B. Finding the Lagrangian

All that remains to explain is how to choose the La-
grangian £. The simple answer is — there’s no sure way.
In the words of Feynman [5]

The question of what the action should
be for a particular case must be determined
by some kind of trial and error. It is just
the same problem as determining the laws of
motion in the first place. You just have to fid-
dle around with the equations that you know
and see if you can get them into the form of
a principle of least action.

There are often guiding principles we can use to deter-
mine what the Lagrangian should look like (Galilean or
Lorentz invariance, for example [6]), but it is essentially
experimentally determined.

For a mechanical system only involving conservative
forces, the non-relativistic classical Lagrangian is given
by

L=T(t) - V(1) (2)

Where T is the kinetic energy of the system and V is the
potential energy of the system.

In retrospect, this is sensible, at least for a one-particle
system. The total energy of the particle must stay con-
stant, and so the only ‘freedom’ the particle has is how to
distribute this energy amongst its potential and kinetic
degrees of freedom. The difference between the kinetic
and potential energy is a measure of how the energy is
distributed.

C. The Classical Propagator

All that remains is to explain how to find the propaga-
tor K. In fact, it seems almost trivial — K is simply equal
to 1if (z,t) and (2/,¢') lie on a path z(t) that satisfies
the Euler-Lagrange equation 1, and 0 otherwise.

IV. THE PATH INTEGRAL FORMULATION OF
QUANTUM MECHANICS

We now consider the problem of adapting this ap-
proach to quantum problems. Most accounts start from
the operator formulation of quantum mechanics and use
it to construct the path integral formalism (see sec-
tion IVD for an outline of this method). We take the

K

FIG. 1: Each of the small arrows indicate a contribution to the
propagator. The contributions have equal magnitude (arrow
length) but different phase (arrow direction). The propagator,
indicated by the thick arrow is given by the sum of these
contributions. The first few contributions (solid arrows) have
very similar phases. They therefore contribute a large amount
of the propagator. The later contributions (dotted arrows)
have very different phases, and tend to cancel each other out;
the propagator would not have been very different without
those last contributions.

slightly lengthier but more insightful approach of start-
ing from the Lagrangian approach of classical mechanics
and building in quantum phenomena.

The main issue that arises in doing this is that quan-
tum particles do not follow one definite path. We know,
in fact, that quantum particles ‘spread out’. It therefore
makes little sense to ask ‘what path does the particle take
from point A to point B’, because it actually takes ev-
ery path between these two points. A natural corollary
of this observation is that a particle starting at point A
could end up anywhere else.

We must, therefore, talk of the probability that a parti-
cle will end up in a given place. The problem is therefore
naturally stated in terms of the propagator.

It stands to reason that every path to that given place
will contribute a certain amount to the probability of
ending up there. Feynman postulated that each path
contributes an equal amount to the propagator, but with
a different phase.

In fact, he postulated that the full expression for the
propagator is [8]

K(z,t— .I/,t/) - /eiS[r(t)]/h D (3)

Where we have introduced new notation — Zx means
‘perform this integral over every possible path from z to
.

A. Rationalising the Path Integral Formulation

In our discussion of classical mechanics, we postulated
that a system will take the path of extremal action be-
cause it has no reason to stray from it. In this quantum
theory, we now postulate that the system might stray



into this region, but only a very small amount. The path
integral formulation can be rationalised as an ingenious
implementation of this condition.

Consider representing each contribution to the prop-
agator as a vector in phase space. Each vector has
identical length, but a different angle (phase), given by
¢ = eSlEWI/h - The propagator is proportional to the
(normalised) vector sum of these contributions.

Now, consider paths (call them x; and z2) close to the
classical path (which we will call Z). Because S[Z] is an
extremum of S, S[x1]/h and S[xz]/h will not differ appre-
ciably from each other or from S[Z]/h. As a result, the
phase ¢ of each of these will be similar, the vectors will
be parallel and the vectors will therefore add in phase,
contributing significantly to the propagator.

Now, consider new paths (call them x3 and z4) which
are much further away from the classical path. We are
now far from an extremum in S, and so S[xs]/h is likely
to be significantly different from S[x4]/h. The phase of
these contributions will therefore be very different, and
the vectors are therefore likely to ‘cancel,” contributing
almost nothing to the propagator.

These effects are illustrated in figure 1.

We have therefore seen that the path integral formula-
tion effectively allows us to take into account every path
the particle might take while heavily biasing the classical
paths.

B. The Classical Limit

In fact, a careful scrutiny of the discussion above shows
that the ‘heavily biased paths’ are the ones that are
within % of the classical path, because the factor in the
exponent is divided by h.

This observation makes it clear that the path integral
formulation naturally reduces to the classical formulation
when the dimensions of the problem become much larger
than h. As h gets very small, the ‘heavily biased paths’
become closer and closer to the classical path. Eventu-
ally, as . — 0, only the classical path contributes to the
propagator, precisely as expected from our discussion in
the previous section.

C. Performing the Path Integral

Our expression for the propagator in expression 3 is
conceptually very simple. The difficulty arises in evalu-
ating the integral Pz in practice. In this section, we cast
the integral in a more familiar form, which will make it
easier to evaluate later on in this paper.

Our approach will be to consider two points, x and 2/,
and to split the paths between these two points into N
small segments, each spanning a time interval e o< 1/N.
At the start of each segment i, the particle is at position
x;. integrating over all possible x; over all space is then
equivalent to integrating over every possible path. As

N — oo, the paths become completely smooth. Thus,
we can write

Where C' is the constant amount each path contributes
to the sum, to be determined (without C', the sum over
the infinite number of paths would diverge).

D. Path Integrals from the Operator Picture

As we mentioned, most texts begin the development of
the path integral formalism from the operator description
of quantum mechanics. We reproduce the first few steps
of the method here, for completeness.

Consider the Schrodinger time evolution equation for
a wavefunction

[, t) = Ut ) [, )

Now cast this equation in coordinate space, and insert a
complete set of position states

@ww::/@wmwMWWWMMf
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This integral is over all possible original states =’ that
could lead to the final state x. It seems reasonable, there-
fore, to say that the first quantity in the integral is equal
to the probability of going from state z’ to state x. A rig-
orous analysis using Green’s Functions [4] confirms our
intuition, and in fact

vlet) = [ Kt —o ey ar (o)
It follows from equations 5 and 6 that
K(z,t —a',t') = (2| U(t,t) |2/) (7)

For a system in which the Hamiltonian is independent of
time, this becomes

K(Z‘,t - .Ifl,t/) — <£| e—(i/h)H(t—t’) |Z‘/>

Alternatively
e .
K(x,t —a',t") =Y (w|Ey) e MEE (B, |2 (8)
n=0

This expression for the propagator can then be used,
instead of equation 3, to carry out the analyses below.
This often involves inserting an infinite set of momentum
eigenstates into expression 8. We will leave the interested
reader to consult [8] and [9] for more details.



V. NEWTON’S LAWS AND SCHRODINGER’S
EQUATION

Before we plunge into application of the path integral
formalism, it is worthwhile to spend a second looking
back at the formalism we have developed to understand
how it relates to Newton’s Second Law and Schrodinger’s
equation.

A. Newton’s Second Law

Using the classical Lagrangian for a free particle in
equation 2 and feeding it into the Euler-Lagrange Equa-
tion 1, we obtain

v d

T q )

We note, however, that ma is the expression for Newto-

nian momentum, and that ¥ = —F(z), where F is the

force acting on the particle. This therefore reduces to
dp

F_F
dt

This is Newton’s Second Law.

B. Schrodinger’s Equation

Consider equation 6 for the wavefunction, using a very
small time increment e

vlnte = / K(w,t+ e — o,y 1) da’ - (9)
The propagator in this case is given by equation 3
K(x7t + €« xl7t) = /6% f L(x,x,t) dt Dx

We can evaluate this path integral using equation 4.
However, the method we used there involves breaking
the path into small time slices. In this case, we only
have one small time slice € which can be made arbitrar-
ily small. There is therefore no need to split the path
any further; only the straight-line path between x and z’
matters, and the integrals over intermediate z-values are
redundant. The propagator therefore becomes

K(z,t+e+« a',t) = C(e) exp (;L /C(:E,j:,t) dt)

Now, consider the straight-line path between z and x’.
To first order in e:

of/:,dtzeﬁ.

e 1 takes the average of the values at the endpoints
of the interval (ie: (z + 2)/2)

e © takes the value of the gradient of the straight
line between the two endpoints of the interval (ie:

(x —2')/e€)

We therefore get

. P ot
Kt +em o) = e (et (32,222

2 €
(10)
Now, consider the example of a single particle moving
under the action of a conservative force. From 2, the
Lagrangian in this case is

1
L= §mj:2 —V(z,t)
We feed this expression into 9, using the simplified prop-
agator in equation 10, and we denote A = x — 2’

vtro= [ c@en|; mﬂ

exp [;EV <IA,

We now need to expand this equation to first order
in e. First, however, we note that it is clear that if A
gets larger than /eh/m, the phase of the first exponent
in this expression varies rapidly. Therefore, most of the
integral is contributed by values of A% < eh/m — outside
this range, the rapidly changing phases tend to cancel
each other out. As such, when we expand the equation
above to first order in €, we need only expand to second

t)] Y(r+ A t) dA

order in A:
1/1 imA? i€
oy om [
oY 2 0%
[w(m t)+Aa + A 8332} dA

Taking leading order terms on both sides of the equation
yields

m
2mihe

C(e) = (1)

This is an important result, which we will use later.
Taking next to leading order terms on both sides yields

B O R 9%y
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Which is precisely Schrodinger’s Equation.
VI. APPLICATIONS

We will end by exploring a number of applications of
the path integral formulation.



A. The Free Particle

For a free particle, the Lagrangian is £ = mi?/2 (see
equation 2). For a small time step € starting at x; and
ending at x;, # can be approximated as the gradient of
the straight line between these points, and the action for
this small step from z; to x; is given by

1 Tj — T4 2
S= [ Ldt=e-m
2 €

The propagator (using equations 3 and 4) is then

N .
K = lim C_N/Q/Hexp [;T;(xl — xil)Z] dzy
€
i=1

e—0

Every integral in this expression is a Gaussian integral,
which is easily performed. An expression for the factor
C was derived in equation 11. The result of these calcu-
lations, after taking the limit, is [8]

K(z,t —2',t") =

m im(z — z')?
; exp
2mih(t —t') 2h(t —t")
(12)
This result can be shown to be consistent with the
plane-wave energy eigenstates of the free particle

Y(x,t) = AeP/h (13)

Using equation 8, and remembering that position eigen-
states are Delta-functions (|z’) = §(x — 2’), we obtain

K — /A26ipz/hef(i/ﬁ)(t7t')Ep (eipz'/n)* dE
For a free particle, we have E, = p®/2m = dE, = dp/m
A? i
K = H/exp {;(x—m’)

Completing the square in the exponent turns this into a
Gaussian integral, which is easily carried out

A% | 2mmh mi(x — a')?
K= m\ it —t) P { 20t — t') }

This result is consistent with that in equation 12, up to
a normalisation constant.

Y 2
2mh(t t)p]dp

B. The Simple Harmonic Oscillator

A particle undergoing simple harmonic motion moves
under the influence of a potential V (z) = —%ka?, where k
is a constant characterising the harmonic motion. Using
equations 2 and 3, we obtain the following expression for
the propagator

K(z,t « 2',t') /exp (;/;me - %kxz dt) Dz
(14)

It can be shown [8][10] that computing this integral gives
the following expression for the propagator K(z,t «
a’,0)

mw mw "o ) L
mexp {%sian (1) + 2% coswT — 22"z

(15)

The standard way to carry out this computation is some-

what cumbersome. In a paper of 2004 Moriconi [13] pro-

posed a simpler approach, which involves completing the

square in equation 14 and using the substitution T" — T

By expressing the sinusoidal functions in the propaga-
tor in terms of exponentials, we can re-write it as

/%e—(in)ﬂ (1 _ e—QiWT)*l/z %

Where --- is a long and complex expression — the key
point, however, is that this expression can be expanded
in powers of e~*7 . Because of the pre-factor of e =w7T/2,
the result will be a power series where each term is of the
form

7in/267ian

e n=20,12 ...

However, equation 8 states that the propagator has the
form
K(z,t—a' ') = > (2] B,) e W/MEE (B, |2

n=0

Comparing these two equations immediately leads to

1
E,=h —
w<n+2>

As previously derived.

A more careful expansion of the - -+ term also leads to
an expression for the harmonic oscillator wavefunctions
consistent with those previously derived [8].

The path integral formulation can also be used to treat
the forced quantum harmonic oscillator [8]. The algebraic
details are somewhat messy, but the results obtained are
of crucial importance in the study of quantum electrody-
namics.

C. The Aharonov-Bohm effect

The Aharonov-Bohm effect takes place when a charged
particle travels past a closed impenetrable region in which
a magnetic flux, ®p, exists (see figure 2).

Outside this impenetrable region, no magnetic flux ex-
ist, but the magnetic vector potential, A, is nonzero.
This can be shown using the definition of the magnetic
vector potential and Stoke’s Theorem [9]

B VxA
/B~dA = /(VxA)~dA
s s

/B~dA = ?{A-dﬂ
s c



B=0|\|A =0

FIG. 2: The Aharonov-Bohm effect: A charged parti-
cle moving from point X to point Y can take any path that
does not pass through the central impenetrable region (a few
examples are illustrated on the diagram).

Where S is any surface bounded by the curve C. Choos-
ing C to be a circle of radius r concentric with the impen-
etrable region makes it clear that for every r, A(r) # 0 at
least somewhere outside the impenetrable region. Sym-
metry considerations imply that A can only depend on r,
and this therefore implies that A # 0 everywhere outside
the impenetrable region.

1. The Relevant Lagrangian

Let £y and Sy denote the Lagrangian and action for a
free particle. The classical Lagrangian for a particle in a
vector potential A is then given by

£:£o—|—§9b-A (16)
And so the action is given by
S=5+- /A — dt

We can re-write the second integral as a line integral
along the path taken

5:50+5/A-ds (17)
C

2. Addressing the Problem

We are now ready to examine the Aharonov-Bohm ef-
fect. Consider a point X to the left of the cylinder, and
a point Y to the right of the cylinder. From equation 3,
the propagator is given by

Kz/exp(%So—Fw/A-ds) Dx
¢

We have defined the problem so that the region of flux
is impenetrable. As such, 2 need only be evaluated for
paths that pass above and below the region

K= exp (ZSO + r© A- ds) Dx
below h € Jbelow

+/ exp(ZSo—i-w/ A'ds> Dx
above h C Jabove

Now, the probability of finding the particle at B depends
on |K|? - in other words, it depends on the amplitude of
K, which depends on the difference in phase between the
two terms above

K o« 6[/ A-ds— A-ds]
he [ Jan bel

e e

This result is consistent with results obtained by solving
Schrodinger’s Equation directly [11], and was experimen-
tally verified by Osakabe et.al. in 1986 using a toroidal
magnetic field confined by a superconductor [12].

VII. PERTURBATION THEORY

The path integral formulation also provides a new and
insightful way of thinking of perturbation theory.

Consider a particle under the effect of a potential
V(z,t). The propagator is given by

Ky = /exp {;/2332 dt’} exp {—;/V(x,t) dt} Dz

If the time integral of the potential is small with respect
to h, we can expand the second exponential in this ex-
pression as follows

1—;/V(aztdt+[ /thdt}

Feeding this back into our expression for Ky and expand-
ing, we can write

Ky =Ko+ KV + K® 4 ...

Where K is the potential in the absence of a propagator.
This result should be familiar from perturbation theory.

We can gain a unique insight, however, into the mean-
ing of the perturbing terms. Consider K

K02 e[t [ 200 [ vt

We can reverse the order of the second time integral and
the path integral, to obtain

KO = _% / F(t) dt (19)

dt} Dx



P(t) = / exp {; / o dt’} V(2(t),t) Vx

The expression for F(t) is simply a free particle path
integral, with one small modification — it is weighed by
whatever value the potential has at a the time ¢. F(¢),
therefore, represents the particle interacting (scattering)
with the potential a single time, at a time ¢, but otherwise
travelling freely.

When we find KV using equation 19, we integrate
over all possible times at which this interaction could
have happened. As such, K1) is effectively a term that
represents every single way the particle could have inter-
acted once with the potential.

A similar analysis of K(?) reveals that it has the same
meaning, except that this time, we allow the particle to
interact twice with the potential.

The perturbation expansion, therefore, can be under-
stood as a sum over all the number of times interactions
with the potential can occur. We first find the propagator
assuming V' = 0 (ie: no interaction). We then add on the
term corresponding to the particle scattering once. Then
twice, etc...For a weak potential, higher numbers of in-
teractions are more unlikely, and so the first few terms
in the expansion are usually sufficient.

This is the mathematical foundation of Feynman dia-
grams, often used to represent interactions of fields and
particles in quantum field theory. Diagrams can be drawn

either to ‘first order’, in which a simple, single interac-
tion occurs between fields, or to higher order. Summing
all such diagrams is equivalent to summing the terms in
a perturbation expansion.

VIII. CONCLUSION

We have explored two new frameworks for quantum
and classical mechanics; the Lagrangian formalism and
the path integral formalism. In so doing, we were able
to base classical and quantum mechanics on a similar
theoretical basis. We further showed that both theories
reduce to theories we have already encountered, namely
those of Newton and Schrodinger.

We briefly looked at some applications of the path in-
tegral technique in dealing with the free particle, the har-
monic oscillator, the Aharonov-Bohm effect and pertur-
bation theory.

The path integral technique has also been crucial in
the development of quantum electrodynamics, which was
the first theory to successfully rationalise the divergent
integrals that arose in explaining the Lamb shift in hy-
drogen. It is also the cornerstone of quantum field theory,
by virtue of the fact it naturally involves the Lorentz in-
variant Lagrangian.

[1] See, for example, H.D. Young and R.A. Freedman, Uni-
versity Physics, 12th Ed. (Addison Wesley, 2007)

[2] See, for example, A.P. French and E.F. Taylor, An Intro-
duction to Quantum Physics, 1st Ed. (CRC, 1979)

[3] See, for example, M. Longair, Theoretical Concepts in
Physics, 3rd Ed. (Cambridge University Press, 2003)

[4] See, for example, K.F. Rileyy, M.P. Hobson and
S.J. Bence, Mathematical Methods for Physics and En-
gineering, 3rd Ed. (Cambridge University Press, 2006)

[5] R.P. Feynman, Lectures in Physics, Vol.2, Chapter 19,
(Addison-Wesley)

[6] L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics: Mechanics, 3rd Ed. (Butterworth-Heinemann,
1982)

[7] See, for example, M.E. Peskin and D.V. Schroeder An
Introduction to Quantum Field Theory (Westview Press,
1995).

[8] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and
Path Integrals (McGraw-Hill, 1965)

[9] See, for example, J.J. Sakurai Modern Quantum Mechan-
ics (Benjamin Cummings, 1985)

[10] M.C. Payne and W.J. Stirling Theoretical Physics 2 Lec-
ture Notes for Part II of the Experimental and Theo-
retical Physics Tripos, University of Cambridge (unpub-
lished)

[11] See, for example, S. Gasiorowicz Quantum Physics,
Third Edition (Wiley, 2003)

[12] Osakabe et.al. Experimental confirmation of Aharonov-
Bohm effect using a toroidal magnetic field confined by
a superconductor Phys. Rev. A 34, 815 - 822 (1986)

[13] L. Moriconi An elementary derivation of the harmonic
oscillator propagator Am. J. Phys. 72, 1258 (2004),
DOI:10.1119/1.1715108

[14] The reader should be warned that the use of the propaga-
tor in classical mechanics is not standard in the literature.
We feel, however, that it is pedagogically advantageous
in the context of this paper.

[15] Although our focus in this paper is on mechanical sys-
tems, the approach is far more powerful and can be gen-
eralised to deal with fields and other more exotic entities
[7].



