Scattering Cross-Sections

~ Spin Averaged Amplitudes ~

Electron-Muon Scattering

The L are symmetric tensors determined using QED — one describing the **behaviour** of each **particle** (vertex)

Electron-Proton Scattering

the proton, and q is the momentum transferred

by the virtual photon

For elastic scattering, $L_{
m electron}$ remains as before. K_{proton} encodes the (unknown) way the proton behaves. This depends on the **form factors**.

~ Form Factors ~

- K is not completely unknown:
 - It must be **symmetric** (since $L^{\mu\nu}$ is symmetric)
 - It can only depend on q, p_i and p_o , and $q = p_o p_i$.
- Mathematically, there are only so many ways of obtaining a symmetric tensor from only two four-vectors. $oldsymbol{K}_{\mu
 u}$ can only contain two independent numbers — say K_1 and K_2 .
- We then obtain the famous Rosenbluth Formula:

- ullet By experimentally measuring cross sections at fixed $oldsymbol{q}$ for a range of angles and energies, we can determine K_1 and $\boldsymbol{K_2}$. By carrying out these measurements at a range of \boldsymbol{q} , we find the functions $K_1(q)$ and $K_2(q)$.
- These are sufficient to determine the form factors

$$\boxed{K_{_{1}} = -q^{2}G_{_{M}}^{^{2}}} \qquad \boxed{K_{_{2}} = \left(2m_{_{p}}\right)^{2}\frac{\left(2m_{_{p}}\right)^{2}G_{_{E}}^{^{2}} - q^{2}G_{_{M}}^{^{2}}}{\left(2m_{_{p}}\right)^{2} - q^{2}}}$$

~ Results ~

Current data indicates that both electric and magnetic form factors have the same dipole distributions G_D :

$$\frac{G_E}{G_D} = \frac{G_M}{\mu G_D} = 1$$

Such form factors indicate that charge is concentrated in the centre of the proton, and decreases exponentially.

8.276 Final Poster — Daniel Guetta — guetta@cantab.net

4

Theory

- In theory, if we know everything about the proton, we should be able to obtain an analytic expression for the form factors.
- Advances in lattice QCD techniques are getting us closer and closer to this goal, and results are expected in the foreseeable future...
- In the meantime, however, theorists can't help much.

Polarised Scattering

- ullet The factors $oldsymbol{G}_E$ and $oldsymbol{G}_M$ can also be determined by performing scattering experiments using polarised particles.
- For example when **polarised electrons** are scattered off unpolarised protons, polarisation transfer occurs to the proton with ${f two~components}$ — ${f parallel}~({m P}_{\parallel})$ and perpendicular (P_{\perp}) to the proton momentum in the scattering plane. In fact:

$$egin{aligned} rac{G_E}{G_M} = -rac{P_{\perp}}{P_{\parallel}}rac{\left(E+E'
ight)}{2m_p} aniggl(rac{ heta}{2}iggr) \end{aligned}$$

- ullet Similarly, carrying out e^-p scattering with spins aligned and anti-aligned and measuring the difference in cross sections (the scattering asymmetry) allows us to determine the **form factors**.
- A crucial aspect of these experiments is that they only occur when a single photon is transferred in the interaction.

~ Results ~

Measurements using these method produce roughly similar results for G_M but completely different results for G_{E} . Something has gone awry. The measurements even predicts a node Red/blue: polarisation measurements in G_E near 8 $(\text{GeV/c})^2$.

These form factors predict a much richer inner structure.

- ullet The electric and magnetic form factors, $oldsymbol{G}_E$ and $oldsymbol{G}_M$ describe the distribution of "stuff" in the proton.
- There are a **number of ways** to measure these, which, to date, have led to inconsistent results.
- The current theory is that cross-section measurements are contaminated by two-photon processes.
- OLYMPUS will attempt to ascertain to what extent this is true.

Practical Details

• Measurements of this kind have already been made, but at low energy (~ $500~\mathrm{MeV}$) and with poor precision. The aim of OLYMPUS is to make measurements in the 2 GeV range with 1% precision.

~ Getting the Particles ~

The experiment will use the **DORIS** storage ring at DESY in Hamburg, Germany. Because (1) it can

be used to store both e^- and e^+ at high energies and (2) the beams can be switched from e^+ to e^- in under an hour. The experiment would involve installing an unpolarised hydrogen gas target at the storage ring.

~ Detecting the results ~

The experiment will use the BLAST (Bates Large Acceptance Spectrometer Toroid) detector from the MIT-Bates accel-

erator. It is optimally designed for 1-2 GeV elastic ep scattering because of its toroidal shape (the beam can be located in the centre of the detector) and its drift chambers. Only problem — it's over 3500 miles away!

Explanation

- A crucial assumption in deriving the Rosenbluth Formula was that the Born approximation applied (ie: only one photon was involved in the interaction).
- Polarisation transfer only occurs in one-photon processes, and does not rely on this approximation.
- The idea is that the **cross-section measurements** are polluted by second-order interactions. These render the resulting form-factors meaningless, because the entire (already doubtful) interpretation of these measurements as fourier transforms of the charge distribution relies heavily on the assumptions that only single-photon processes are involved.

Proving it!

- Assuming second-order processes occur, three terms will appear in the *ep* scattering cross-section: one arising purely from single-photon processes, one from purely multi-photon processes and one from the interference of these two processes.
- Each vertex adds one power of the fine-structure constant to the cross section. Thus, each term contributes a **different power of** α to the **cross-section**:

- Using a **positron** is effectively equivalent to **time re**versal in the electron vertices, and QED tells us that this reverses the sign of the coupling constant α .
- This makes the third term flip sign.
- We can therefore measure the **importance** of **second**order interactions by measuring the difference in cross-section between e^-/p and e^+/p scattering.

Many thanks to **Prof R. Milner** for the help and support he so kindly and willingly provided in helping me prepare this poster, and to **Prof J. Conrad** and E. Sfakianakis for their help throughout 8.276.