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1. Outline 

This project is on the odds algorithm and its applications. I came across the odds algorithm 

almost by mistake, as I was researching the secretary problem, and was so struck by its elegance 

and ability to deal with many variations of the secretary problem that I decided to base my 

project on it. 
 

I will begin by introducing the odds algorithm, and applying it to the classical secretary 

problem. I will then cover a number of applications of the odds algorithm: group interviews, 

continuous-time problems, problems with rejection and problems in which the secretary values 

are IID. I will end by discussing some other literature that I did not cover in this project. 
 

Before we begin, we give a quick description of the secretary problem for those unfamiliar with 

it. The classical secretary problem has appeared under a wide variety of names (the dating 

problem, the dowry problem, the googol game, etc…) and was first published in Martin 

Gardner’s Mathematical Games column in the February 1960 issue of Scientific American. It 

has since then been solved an extended a large number of times, and has evolved into what can 

almost be considered a field of its own (see Ferguson (1989) for an informative review of the 

history of the secretary problem). The setting is as follows: an interviewer needs to hire a single 

secretary, and sets out to interview a fixed number of candidates. While interviewing a 

candidate, the interviewer ascertains how the candidate ranks compared to every previous 

candidate. After each candidate is seen, the interviewer can either accept the candidate, and end 

the interview process, or reject the candidate, without any chance of ever returning to that 

candidate. 
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The secretary problem seeks the best strategy to adopt in this case. Clearly, choosing an early 

candidate is a bad idea – indeed, having seen very few candidates, it is difficult to know what is 

available. Similarly, waiting till the last candidate might also not be the best choice – the last 

candidate could be lousy! Formally, the secretary problem seeks a strategy that maximizes the 

probability of picking the best candidate out of all those available. 

2. The Odds Algorithm 

In this section, we introduce the odds algorithm, developed by Bruss (2000), as an alternative 

and more general framework to analyze stopping problems (of which the Secretary Problem is a 

special kind). We will discuss the ways in which this odds algorithm applies to the secretary 

problem in the next section. 
 

The odds algorithm was designed to deal with problems of the following kind. Consider a fixed 

number (say n) of indicators 
1

,,
n

  . The value of each indicator (success or failure) is revealed 

successively. Our aim is to stop at the last successful indicator. In other words, if we reach the 

last indicator without having stopped at a success, we lose. Similarly, if we stop at a success but 

another success arises later, we also lose. 
 

It is helpful, before diving into theoretical details, to consider a simple example that illustrates 

the essence of the way the odds algorithm deals with this problem. 
 

Example: Consider a game that consists of throwing a fair, six-

sided die n times, and whose aim is to stop at the last 6 obtained. 

(This is clearly a problem of the form above – indicator k is 

simply { }th  throw is a 6k k
=  , and we would like to stop at the last 

successful indicator). 
 

Imagine that we had an oracle capable, at any point in the game, 

of answering the question “in my remaining throws, will I throw 

exactly one 6?”. The problem would then be simple – we would 

ask the oracle this question after each throw, and the moment the 
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oracle tells us we only have one 6 left, we simply stop at that 6 

whenever it appears. 
 

Unfortunately, no such oracle is available. However, what we can 

do is ask “in my remaining throws, what is the probability that I 

only have one 6 left?” The answer to that question is (using 

simple properties of the Binomial distribution) 

( ) ( ) ( )1 5 1 5
1 6 6 6 6

Obtaining  6 in last  throwsone C= ⋅ = ⋅
    

Differentiating this expression and setting it to 0, we find it is 

maximized at 6=  (or 5= ). 
 

Intuitively, the most sensible strategy therefore seems to wait till 

we only have six throws left (at which point we maximize the 

probability of only one 6 left to throw), and then choose the first 

6 that occurs after that. Clearly, 

( )
( )

( )65
6

Strategy leads to the last 6

Obtaining  6 in last 6 throws

0.3349

one=

= =


  

  
 

In a nutshell, the Odds Algorithm takes exactly this approach – waiting till the point at which 

the probability of obtaining a single successful indicator is maximized – but in a more general 

setting. We now state and prove the odds theorem and the odds algorithm. 
 

Theorem (The Odds Theorem): Let 
1
, ,

n
   be a sequence of 

independent indicators, with ( ) 1
jj j

p q== -  . Further let 

/
j j j

r p q= . Suppose further that we observe the indicators 

sequentially and that our aim is to stop at the last indicator 

equal to 1 (at the last “success”). 
 

Then there exists an optimal rule which maximizes the 

probability of stopping at the last success, and it prescribes to 
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stop on the first index k s³  such that Ik = 1 (if any), where s is 

given by 

{ }{ }{ }1,max 1, sup :, 1
n

k jj k
s rnk

=
= Î ³å  

The probability that this strategy will stop at the last success is 

( )( )( )
n n

j jj sj s
V n q r

==
= å  

 

Proof: Our proof follows Bruss (2000), with modifications. 

Assume pj < 1 for all j. Let 
kk k

S += +  . 

 Step 1: Let ( )
i

g q  and ( )
k

G q  be the probability generating 

functions of Ii and Sk respectively. From independence of 

the Ij, we have 

( )( ) ( ) 1
n

t j j k j jj k
g q p G q rq q q q

=
= + = +  

Differentiating log Gk with respect to q , and remembering 

that ( ) 01 0
kj

j Gp "  >< , we find that 

( )
log ( )

( ) 1

n jk
k k k

k j

rG
G

G r

q
q

q q=

¢¢é ù = =ê úë û +å  

Using the properties of probability generating functions, 

we therefore find that 

( )
( )
( )( )

1 (0)

(0

( )

)

k k

n

j kj

nn

k

j jj k j k

k

r

G

r

q

n

S

G

V
= =

=

=

¢= =

=

= å
å





 

 Step 2: Consider a strategy that ignores all successes up 

to a deterministic time k, after which it chooses the next 

success. Clearly, such a strategy chooses the last success if 

and only if Sk = 1. As such 

o The probability of success of such a strategy is 

precisely Vk(n), thus proving the second part of 

our Theorem. 
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o The optimal k will maximize * ( 1)
k

Sp ==  . To 

find the optimal k, note that, from our expression 

for Vk(n), we can deduce the following 

( )( )
( )( )

( ) ( )
( )
( )

1

1 1

1 1

1 1

1
1

1

1

1

1

( ) increasing in 

( ) ( )

1

k

k

k

k k

nn

k j k jj k j k

nn

j jj k j k

n n

k j jj k j k

n

jj k
n

k

k k k

q

k k jjq k
n

jj k

V n k

V n V n

q

q r q

r r q q

r q

r r r

r

rq

r

q

+

= + = +

= + = +

= + = +

= +

= +

=

-

+







<

+

<

+ <

 < -

 < -

 >

å 
å 
å å

å
å

å

 

The sum on the LHS of the last line is 

monotonically decreasing as k increases. As such, 

the function ( 1)
k

S =  increases up to a certain 

value of k and then decreases – it is unimodal. 

There is therefore a single maximum attained at 

the largest k for which 
1

1
n

jj k
r

= +
<å , or 

alternatively, the largest k for which 1
n

jj k
r

=
³å , 

precisely as stated in the Theorem. 
 

[Note: we have implicitly assumed that 

2
1

n
rr ++ ³ . If this were not the case, there 

would be no exploratory phase (this explains the 

“double maximum” in the statement of the 

Theorem). Dealing with this case is trivial – see 

the paper for details]. 

 Step 3: Our last step is to show that there are no better 

strategies than those defined in step 2. Consider the most 

general kind of strategy which ignores all successes up to 

a random time W such that { } ( )1
, ,

k
W k s= Î   , and 
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then picks the first success. Every strategy can be reduced 

to one of this form, because W can depend on any past 

information, and it is trivial that any strategy will restrict 

itself to picking a success. First note that by independence 

( ) ( )1
1 | , , ,

W k k
S W k S k= = = =    

We have shown, however, that ( )k
kS =  is unimodal. As 

such, it will be maximized at one point only, and the 

optimal random variable W will have point mass at the 

same k as that described above. Thus, the above strategy 

is indeed optimal. This proves our theorem.  
 

Based on this theorem, the odds algorithm is therefore rather simple 
 

Algorithm (The Odds Algorithm): Let 
1

,,
n

   be a sequence 

of independent indicators, with ( ) 1
jj j

p q== - . Further let 

/
j j j

r p q= . 

 

The rule which maximizes the probability of stopping at the last 

success, prescribes to stop on the first index k s³  such that Ik = 

1 (if any), where s is given by 

{ }{ }{ }1,max 1, sup :, 1
n

k jj k
s rnk

=
= Î ³å  

The probability that this strategy will stop at the last success is 

 
( )( )( )

n n

j jj sj s
V n q r

==
= å

 


 

3. Application to the classical secretary problem 

Recall that our classical treatment of the Secretary Problem with n secretaries led us, 

asymptotically, to reject the first n/e secretaries and to then accept the best secretary so far, if 

any. Asymptotically, we found that the algorithm picked the best secretary with probability 1/e 
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(see, for example, Freeman, 1983). In this section, we briefly show that the Odds Algorithm 

leads to the same result. 
 

Let 
1

,,
n

   be indicators such that 1
k
=  if secretary k is the best secretary seen so far, and 

0
k
=  otherwise. Clearly, ( ) 1 /

k k
p k= = , and so 1

1k k
r

-
=  (using the terminology above). It 

is fairly obvious that restated using this framework, the secretary problem simply aims to stop 

at the last successful indicator from this sequence – in other words, the last secretary that was 

“better than all the ones before it”. Using the Odds Approach, we would stop on the first index 

k > s such that secretary k is the best seen so far, where 

{ }{ }{ }1
1

1, ,max 1, sup : 1
n

k jj k
ns k

-=
= Î ³å  

Approximating the sum as an integral, we require 

1
1
 d 1 /  as 

n

js
s n e nj

-
»    ¥ò  

Similarly, the Odds Algorithm predicts that the probability of choosing the best secretary is 

( )( )
( )

1

1

1

( )

 as 

n nj

jj j sj s

ns
jn j s

e

V n r

r

n

-

==

-
=

=

=

  ¥

å
å  

Both results are consistent with those obtained in the classical case. 

4. The Secretary Problem with Group Interviews 

We now consider our first non-classical application of the secretary problem, also covered by 

Bruss (2000) – a situation in which instead of interviewing secretaries one by one, we interview 

them in n groups of size 
1

,,
n

   . After each group interview, we can choose to accept one 

secretary from that group, or reject the entire group, without any opportunity of recall. 
 

To use the odds algorithm, we need to re-cast our problem in terms of the indicator framework 

defined above. In this case, consider indicators 
1
, ,

n
  , where 1

k
=  if group k contains the 

best secretary seen so far, and 0 otherwise. In this case, 

1

( ) k k
k k

kki

k b
p

=

== =
å
 


   
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(To see why, consider that the probability any given candidate in group k is the best of all bk 

candidates is 1/bk, but since there are 
k
  candidates in that group, we get 

k
  “chances” are 

trying to find that best candidate). We then have 

1
1

k k k
k

k k k k

p
r

p b b -

= = =
- -

 


 

As such, the odds algorithm then simply prescribes the policy of stopping at the first item k > s, 

where 

1

sup : 1
n k

i k
k

s k
b=

-

ì üï ïï ï= í ýï ïï
³

ïî þ
å


 

This is precisely the result obtained by Hsiau & Yang (2000) after much painstaking analysis, in 

a paper exclusively devoted to studying this problem. The odds theorem allows us to obtain this 

solution almost trivially. 

5. A continuous-time secretary problem 

Our next application is also covered by Bruss (2000), and concerns the somewhat more 

complicated problem of a secretary problem in continuous time. More specifically, we consider a 

situation in which the interviewer sets an interview period from t = 0 to t = T. Within that 

period, candidates arrive according to an inhomogeneous Poisson process, with density ( )tl . 
 

We analyze this problem by splitting the period [0, T] into segments 
1

( , ]
k k k

t t-D = . Assume 

that we have a function, h(t), defined as follows 

( )Secretary best so far | Secretary arrives at t( i) me th t =   

Given this function, the probability of getting a secretary that is the “best so far” during the 

interval 
k

D  is 

( ) ( )
( )

One secretary arrives in that interval That secretary is the best so far

More than one secretary arrives in that interval constants
k

p

+ ´

=  
  

Using standard properties of inhomogeneous Poisson processes, we can write this as 

( ) ( )
k k k k

p t h tl» D  
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[Note that this is equivalent to thinning the Poisson process using the function ( )
k

h t  – this 

seems sensible; we are only interested in arrivals that are the best so far]. Now, consider that 

the odds of a “best secretary so far” arriving in 
k

D  is 

0

( ) ( )
~ ( ) ( )

1 ( )1 ( ) k

k k
k k k k

k k k

k
k

k

t h t
t h t

p
r

t h tp

l
l

l D »=
-

D D
- D

 

So we see that as our sub-intervals of time get infinitely fine, we obtain a well-defined density of 

the “odds of getting a best secretary so far”, given by ( ) ( ) ( )t t h tj l= . 
 

We are now ready to apply the odds theorem, which would simply prescribe accept the first 

secretary to arrive at a time t > s, where s is given by 

[0, ] : ( ) ( ) s d 1up
T

t
Ts t u h u ul

ì üï ïï ï= í ýïï
Î

î
³

ïïþ
ò  

The last detail we need to consider is how to find the function h(t) used above. The mechanics 

are not complicated, we simply proceed as follows: 

( )
( )
( )

1

0

( ) Arrival  a success | Arrives at time 

Arrival  largest so far | Arrives at time 

Arrival  largest so far |  items in [0, )

1

1

1+Po ( ) d
t

h t k t

k t

k m t

m

u ul
-

=

=
é ù= ê úë û

æ ö÷ç ÷= ç ÷ç ÷ç +è ø
æ öé ùæ öç ÷ç çê ú= ÷ç ç ÷çê úç è øçë ûè ø

ò



 



 ÷÷÷÷÷÷

 

There is no simple closed-form expression for this last integral, but it can be calculated 

numerically for a grid of values of t. 

6. The secretary problem with rejection 

We now consider an application of the secretary problem in which, once a candidate is offered 

the job, they might refuse to accept it with probability 1 – p (independent of everything else). 

This problem, while seemingly quite simple, is actually quite subtle and presents a number of 

interesting issues. The first of these is that our objective in this case is no longer as simple as it 

was in the classical secretary problem. In particular, the classical objective can be extended in 

one of three ways: 
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1. “Best of all” objective – this would imply that we still seek to pick the best candidate 

of all, regardless of whether that best candidate would accept the offer or reject it. 

Though this is the most obvious extension of the classical objective, it is somewhat 

intuitively unpalatable, because in implies that in some regions of the sample space 

(namely, those in which the best candidate rejects a job offer), it is never possible to 

reach our objective. 

2. “Best of all available” objective – this is the next most obvious generalization of the 

classical objective, in which our aim is to pick the best candidate out of those that would 

accept the job. This ensures that it is always possible to reach our objective, regardless of 

what part of the sample space we find ourselves in, and is intuitively appealing. (Note 

that with this objective, the problem is somewhat analogous to a secretary problem with 

a random number of candidates, binomially distributed with certain known parameters). 

3. “No regrets” objective – in this framework, the interviewer’s objective is to have “no 

regrets”. That is to say, the aim of the interviewer is never to find himself in a situation 

in which his offer of employment is rejected by a candidate which leads him to have to 

offer the job to a subsequent, less qualified candidate. Or, put another way, the 

interviewer ideally wants to offer the job to the last candidate that is the best so far and 

will accept the job. I had a short discussion with Prof Bruss about this particular 

objective, and he agreed that in many cases, it is the most psychologically intuitive 

choice. 

 

We consider each of these cases in turn 

“Best of all” objective 

This objective is the simplest generalization of the classical objective. It is perhaps surprising, 

therefore, that it is much more difficult to model using the indicator approach. Indeed, we might 

be tempted to use the following sequence of indicators 

1 secretary  is the best so far  accepts the job

0 otherwisek

k andìïï= íïïî
  
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with pk = p/k. Unfortunately, this method is ultimately unsuccessful. Indeed, consider that part 

of the sample space in which the best secretary rejects employment. There, it should be 

impossible to achieve our objective. However, it is clear that even in that part of the sample 

space, some of the indicators 
k

  will be successful, and that it is therefore possible to be 

successful in our aim of choosing the last successful indicator. Thus, it is clear that the indicator 

approach does not adequately model the secretary problem with this objective. 
 

To accurately model this problem using the indicator approach, we would require a sequence of 

indicators in which 
k

  was equal to 1 if secretary k is the best so far, and accepts the job, and 

the best secretary overall accepts the job. Unfortunately, these events are not independent, 

which pk difficult to calculate. More problematically, however, the resulting sequence of 

indicators is not independent, which means the odds theorem does not apply in this case. 
 

Smith (1975) and Freeman (1983) provide a different argument, and they argue that the best 

strategy for this particular secretary problem is to pick the best secretary k > s, where s is 

asymptotically given by 1/(1 )ps np -= . 
 

We verified this result by simulation. We considered every policy with the structure above (ie: 

ignore all secretaries until s, and then pick the best so far) for every value of s, and plotted the 

resulting probability of obtaining the best secretary overall, based on 150,000 simulations. The 

results, plotted in Figure 1, were obtained for 500 sectaries and p = 0.7. Note, as we might 

expect, that that maximum possible probability of achieving our aim is less than the 1/e of the 

classical secretary problem, due to that part of the sample space in which it is impossible to 

attain our objective. 
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Figure 1: Simulation for the “best of all” objective 

 

“No Regrets” objective 

We now consider the third objective mentioned above, in which our aim is to pick the last 

secretary that is the best so far and accepts employment. In this case, the indicator approach 

clearly applies directly with the indicator mentioned above; namely 

1 secretary  is the best so far  accepts the job

0 otherwisek

k andìïï= íïïî
  

We then have (Accepts) (Best so far) /
k

kp p= ⋅ =  , and 

k

p
r

k p
=

-
 

Applying the machinery developed above, we find that the optimal policy asymptotically has 

1/ps ne-» . We verified this policy using 500 secretaries, p = 0.7 and 150,000 simulations, and 

reported our results in Figure 2. (See the comments preceding Figure 1 for a guide on how to 

read this figure). The odds algorithm also allows us to predict the probability of success of any 

stopping time strategy. We also plotted this curve on our graph, and found that it matched our 

simulations rather well. 
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Figure 2: Simulation for the “no regrets” objective. The dotted line 

indicates the best optimal time prescribed by the odds algorithm 

 

“Best of all available” objective 

We now move on to our third, and arguably most intuitive, objective for the secretary problem 

with rejection, in which our aim is to pick the best candidate out of those which accept our offer. 

Again, the situation is relatively easily modeled by using indicators of the following form 

1 Candidate  best of those accepted so far  accepts employment

0 otherwisek

k andìïï= íïïî
  

A quick glance at this equation, however, quickly reveals some additional complications. In 

particular, it is unclear how the interview discovers whether a candidate will accept or reject 

employment. There are two possibilities: 

 Full-information setting: The interview finds out whether the candidate would accept 

or reject employment during the course of the interview, before an offer is potentially 

made. 

 Partial-information setting: The interviewer only finds out whether a candidate 

would or would not accept employment if he makes an offer to the candidate, and the 

candidate refuses/accepts it. 
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The second setting above is much more complicated, and not so readily modeled using the 

indicator approach. See Tamaki (1991) for a treatment of the problem in that setting. 
 

We do, however, consider the first setting in more detail. The difficulty arises, even in this 

simple case, with the need to calculate ( )
k k

p =   . My original, naïve approach was to simply 

condition on the number of candidates who had accepted so far (clearly binomially distributed, 

with probability p), and to proceed as follows: 

{ }( )
{ }( )

Secretary  best of those accepted so far  accepts employment

Secretary  best of those accepted so far
|  accepted so far

1

1

1

1 Bin[ 1, ]

k and

k

k

p m

p
m

p
p

p

k

é ù= ê úê úë û
æ ö÷ç ÷= ç ÷ç ÷ç +è ø
æ ö÷ç ÷= ç ÷ç ÷ç + -è

=

ø



 









 

I then applied the classical odds theorem, as described above. (Note that the inverse moments of 

the binomial distribution had to be obtained numerically – no closed-form analytic expression is 

available for them. In practice, there exist some power series expansions for these moments – 

see, for example, Rempala (2004). The results of this method are illustrated in Figure 3. Once 

again, the odds algorithm correctly predicts the probability of success for various constant-

stopping-time rules. 
 

 

Figure 3: Naïve simulation for the “best of all available” objective 
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After some additional thought, however, I realized that the algorithm above was in fact too 

naïve, and that the conditions of the odds theorem were in fact not satisfied in this particular 

situation. Indeed, even though the indicators in this case are still independent from each other, 

additional information becomes known to the interviewer as the interview progresses, which has 

a bearing on the value of these indicators. Indeed – at the start of the interview process, the 

interviewer can only guess as to how many candidates will accept or reject offers of employment. 

As the interviews progress, this number becomes less and less uncertain. 
 

I found out (unfortunately too late!) that this generalization of the odds theorem (in which 

additional information is revealed as the indicators are seen) was actually dealt with by 

Ferguson (2008). In this project, I chose instead to take a more pedestrian approach. Instead of 

calculating one stopping time s before all interviews (as we did in the classical secretary 

problem), I decided to constantly re-calculate the time s after every candidate was interviewed, 

based on information that had been elicited thus far. More precisely, my heuristic algorithm 

proceeded as follows: 
 

Algorithm (Heuristic for the Odds Algorithm with 

information elicitation): Let 
1

,,
n

   be a sequence of 

independent indicators. 
 

Begin observing indicators. Whenever a successful indicator is 

observed, re-calculate the stopping time s using the method in 

the classical odds algorithm, conditional on all the data observed 

so far. If, at any time, the calculated stopping time becomes 

smaller than or equal to the index of the successful indicator that 

was just observed, stop at that indicator. 
 

The difficulty, in this case, then arose from the need to derive ( )
k k

p =    conditional on past 

information. We proceeded as follows. Suppose we have thus far observed v candidates, and that 

x of these have been accepted (including v if applicable). Then 
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{ }( )
{ }( )

Best of those accepted so far  accepts employment

Best of those accepted so far
|  accepted so far

1

1

1

Bin[ 1, ] 1

k and
p

p m

p
m

p
x k v p

=

é ù= ê úë û
æ ö÷ç ÷= ç ÷ç ÷ç +è ø
æ ö÷ç ÷= ç ÷ç ÷ç + - - +è ø



 









 

Applying this modified algorithm did provide some marked improvements over the naïve 

algorithm. Figure 4 graphs these improvements, which are clearly more dramatic for smaller 

number of secretaries. 

 

 

Figure 4: Improvements obtained by using a dynamic algorithm instead 

of the naïve static algorithm for the “best of all available” objective 

in the secretary problem 

7. Extension to the IID Case 

Our last example will be an extension of the classical secretary problem in which the values of 

secretaries are independently and identically distributed. Our objective is still to pick the best 

secretary of all, but we now have some more information as to the structure of secretary values. 
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There is some literature on this problem. Gilbert and Mosteller (1966) solve a version of this 

problem in which the distribution of secretary values is fully known, and Tamaki (2009, 2010) 

solves the same problem using an extension to the odds approach discussed in this paper. 
 

In this report, however, we will once again use the more pedestrian modified odds algorithm 

described in the previous section, in which we recalculate the stopping threshold s each time 

new information is obtained. In particular, each time a secretary that is the best so far is 

observed, we recalculate the threshold, and accept that secretary if the threshold is less than or 

equal to the index of that secretary. We will only consider the simplest, full-information case, in 

which the distribution of secretary values is fully known. We can assume, without loss of 

generality, that the distribution is uniform in the interval [0,1] – all other distributions can be 

mapped to this distribution using the inverse-CDF method. 
 

Before we begin developing the details of this approach, we prove the following useful lemma 

Lemma: Let 
1

,,
n

X X  be n independent random variables, all 

with a uniform distribution in the interval [0,1], and let 

1 ,,
max

i in
M X==  . Then M has a Beta( ,1)n  distribution. 

Proof: Consider that for the maximum to be somewhere in the 

interval [u, u + du], we require the maximum Xi to be in the 

range [u, u + du], and every other Xi to be less than u. 

Furthermore, the are 
1

nC  ways of choosing the maximum random 

variable. As such 

( )
( ) ( )1

1

1

1

[ , d ]

1 RVs One RV [ , d ]

( ) ( )d

d

( 1)
 d

( ) (1)

n

n

n

n

M u u u

C n u u u u

nF u f u u

nu u

n
u u

n

-

-

-

Î +

= - £ Î +

=

=
G +

=
G G


 

 

This is indeed the PDF of a Beta(n, 1) distribution.  
 

Let us now develop this approach more fully. As before, the series of indicators we will be using 

are as follows 
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1 Secretary  is the best so far

0 Otherwisek

kìïï= íïïî
  

We will now derive an expression for ( )
k k

p =    based on past observations. Imagine we have 

observed all candidates up to candidate v, and that we have found the maximum so far to be m, 

and denote the “value” of the kth candidate as Vk. Then 

( )

1, , 1

1 1

1 1

( max [ ] | max[ , , ] )

(max[ , , ]  and max[ , , ] )

(max[ , , ] ) (max[ , , ] )

1
Beta[ ,1]

k i k i v

v k v k k

v k k v k

k
V V V V m

V V m V V V

V V V V V m

k v m
k v

p =

+ +

+ +

= =
= ³ =
= = ³

=

= - ³
-

 
 
 



 



 

Using our dynamic odds algorithm on a 500-secretary problem and using 150,000 trials, the best 

secretary is chosen with probability 0.5409. This compares favorably with the optimal 

probability of 0.5802, derived by Gilbert & Mosteller (1966) and Tamaki (2009, 2010). 

8. Other References of Interest 

We have barely scratched the surface of the various applications of the odds theorem and the 

odds algorithm. In particular, our treatment of the secretary problem with rejection, and of the 

secretary problem in the IDD case, were only heuristic. The papers listed in the references below 

contain many other applications of the concepts discussed in this paper. In particular, Tamaki’s 

2010 paper extends the odds theorem to a situation in which one wants to stop at the zth 

indicator, instead of the last one, which has applications to the k-secretary problem. There is 

also a significant gap in the literature around the issue of the IID secretary problem in which 

the distribution involved is not known (or perhaps known up to some parametric family). One 

would hope that Ferguon’s more general odds theorem could be used to good effect to develop 

an approach to dealing with this problem. 
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