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‘Model selection’ is a statistical learning problem in which we use a set of input vectors X and a
set of matching output numbers Y to ‘learn’ something about the relationship between the inputs
and outputs. The simplest, and most commonly used, model to represent this relationship is the
linear model, in which Y is estimated using a linear combination of the entries in X.

A key characteristic of any model we might choose is its dimension. A high-dimensional model
will use many of the variables in X to estimate Y. A low-dimensional model will use few of them.
Surprisingly, we will see that low-dimensional models often perform better than high-dimensional
ones.

This raises the question of how the choose the ‘right’ variables to include in our model, especially
if the original vector X with which we are provided contains many observations (ie: is high dimen-
sional). This essay is a review of the methods that have been developed to answer this question,
with a particular focus on high-dimensional input data.

We first cover classical model selection theories, and explain why these are often not appropriate
for high-dimensional models. We then consider methods that have been designed to deal with
high-dimensional models. Finally, we explore some recent improvements over traditional methods.
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Part 1
Preliminaries

I. MODEL SELECTION

Consider a real valued input vector X € RP? (also called
the vector of predictors) and a real valued output num-
ber Y € R (also called the response). We restrict our
attention to statistical models in which Y is related to
X as follows

Y =f(X)+e

where E(¢) = 0. This assumption amounts to saying
that all departures from the deterministic relationship
Y = f(X) can be captured in an additive error e.

In the quintessential statistical learning problem, we
are given a ‘training set’ 7, consisting of N pairs
(X1,Y1), - ,(XnN,Yn), often grouped together into a
matrix and a vector 7 = (X,Y’). Our aim is to use this
training set to find the function f(X) that best estimates
f(X). We label our estimate ¥

Y =f(X)

One key property of any model we might choose is its
complexity. More complex models use many of the com-
ponents in X to estimate Y — they are therefore high
dimensional, and require many parameters. Less com-
plex models ony use a few of the components of X to
estimate Y — they are low dimensional, and require fewer
parameters. Surprisingly, we will find that if X contains
many components, the second option usually gives rise
to a better model.

Of course, finding the ‘best’ estimate implies we need
a measure of how ‘good” an estimate is. This measure is
called the loss function, denoted L(Y,Y"). Given an input
vector X and the true output Y, this function tells us
how ‘good’ our prediction ¥ = f(X) is.

The most common and convenient loss function is the
squared error loss:

Definition 1 (Squared Error Loss).

1(17) = (v -7)’

In terms of this loss function, our aim is to find the
f(X) that minimizes the expected generalisation error

Definition 2 (Expected Generalisation Error).

Err = Ey) {L(y,9)}

(In this paper, we use several different kinds of expec-
tations, E, each with respect to slightly different proba-
bility spaces. Their meanings should be self-evident, but
we state them explicitely in Appendix A).

This poses a difficulty. We only have N observations
(those in 7) to ‘test’ our model, but we need to mini-
mize the expected generalisation error over all possible
observations.

Traditionally, the solution to this problem has been to
consider only data in the training set. In other words,
instead of minimizing the expected generalisation error,
we minimise the training error

Definition 3 (Training Error).
Exvyer {L (v, 9)}

:% 3 L(Y,Y)

err —
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FIG. 1: The behaviour of the training error and expected gen-
eralisation error with varying model complexity. The training
error does not take the variance of the model into account,
and therefore consistently underestimates the expected gener-
alisation error, especially for very complex models. Adapted
from [Hastie Tibshirani and Friedman 2009].

A. The Problem

For low-dimensional problems (in which X is a small
vector), the training error is a fair estimate of the ex-
pected generalisation error. However, as we consider
increasingly large models, the situation quickly deteri-
orates. Figure 1 illustrates two problems that develop.

e The training error consistently underestimates the
expected generalisation error.

e More worringly, the behaviours of the two quan-
tities differ for more complex models; the training
error decreases indefinitely as complexity increases,
whereas the expected generalisation error reaches a
minimum.

This means that whereas the ‘best’ model lies at
some intermediate level of complexity, a naive min-
imisation of the training error would lead us to
choose the most complex model possible instead.

We quantise both these effects by defining the expected
optimism, which asses the extent to which the training
error underestimates the expected generalisation error!

Definition 4 (Expected Optimism).
w = E7 {Err — et}

The expectation is taken over all possible training sets
7.

1 This definition is slightly at odds with that in the litera-
ture (see, for example, [Hastie Tibshirani and Friedman 2009]
and [Efron 1986]), which calls for the definition of the in-sample
error instead of the expected generalisation error. The distinc-
tion is mostly technical, and we relegate it to Appendix B, with
the proof of theorem 2.

Before moving on, we consider the two issues above in
more detail.

The first problem is intuitively understandable. Be-
cause the training set 7 is used to fit the model f(X),
the model is ‘tailored’ to data in the training set. The
model therefore performs much better with points in 7°
(low err) than with points outside it (high Err). More
technically, the training error uses the same data to fit
the model and to asses the goodness of the fit. The ex-
pected generalisation error uses new data to asses the
fit.

To understand the second problem, we need to explore
the nature of the expected generalisation error in more
detail.

Theorem 1. The expected generalisation error under
squared error loss can be writen as

E(z,y) {L(y7 f(w))} = Var(e) + Var (f(w))
+[E(f@) - f@)]
Proof. See Appendix C O

Consider the three terms in equation 1

e Var(e) is called the irreducible error in Y — it comes
from the underlying, true model f. Even if our sta-
tistical model f exactly represented the real under-
lying model, it would still contain this error.

e Var (f(X)) is the variance of our model f. This

is a random source of error in our model.

. [E (f(X)) - f(X)}2 is the bias of our model f.

This is a systematic source of error in our model.

How do the bias and variance change as we vary the
complexity of our model?

e Fitting a model with many components leads to a
model with low bias. This is because the model will
be more complex and will therefore better fit the
data.

However, this also means that we have more pa-
rameters to estimate with the same amount of data,
and this means that the variance of each parameter
will be very large.

e Fitting a simple model with few components leads
to a model with low variance, because many data
points will be available per parameter to estimate.
However, the model will be less complex, and this
will lead to greater bias.

This behaviour of the expected generalisation error is
called the bias-variance tradeoff. The training error re-
flects none of this subtlety. It only considers the bias and
not the variance. The more complex a model we choose,



the better it will fit the points in the training set, and
the lower the training error. This explains the differing
behaviours of err and Err in Figure 1.

We will formalise this qualitative discussion in the con-
text of the linear model in the next section, but we can
gain some insight using a theorem which we can prove in
full generality.

Theorem 2. For a wide class of loss functions including
squared error loss (definition 1)

2 & .
w:N;COV (Yi,Yi)

where N is the number of items in the training set T, Y;
is the ith output in the training set and Y; = f(X;), our
model’s prediction of what Y; should be.

Proof. See Appendix B. O

The theorem effectively says that the optimism of the
training error is greater when our model does a good job
of predicting y on average. This is perfectly consistent
with our observation that the less biased the model, the
greater the variance and the more inaccurate the training
error.

The discussion above reveals the startling fact that
even though minimising the training error will lead to
the model with the least bias, it might sometimes be ad-
vantageous to intentionally fit a biased model, so as to
achieve a drop in variance. Furthermore, it seems that
any judicious way to bias our model will also reduce its
complexity, since variance seems to be related to model
complexity.

There is one final point to take into account, and that
is that in some very high dimensional models, we have
prior reason to believe that some of the variables should
not be included in the model. For example, many biolog-
ical microarray experiments, include thousands of genes
as potential predictors, but only a few of these are ex-
pected to influence results. In these situations, we have
an additional motivation to reduce the complexity of the
model.

The question remains, however — how should we reduce
the complexity of our model? Which variables should be
drop, and how many? The methods in this paper provide
an answer to these questions.

B. The way forward

The way forward is clear — we must somehow find an
expression that accurately estimates Err for any model.
This will then allow us to choose the model that min-
imises that expression.

The rest of this essay explores such methods. We will
see that there are broadly two approaches we can take

e Methods like cross validation and bootstrapping at-
tempt to estimate Err directly, from the training
set 7. We will briefly consder these methods in
section III.

e Methods like Mallow’s C),, the Akaike Information
Criterion, the Bayesian Information Criterion, Pe-
nalised Least Squares, etc... estimate Err by esti-
mating the expected optimism w and then adding
it to erT (which can easily be calculated using data
in 7). We will consider these methods at length in
the rest of this paper.

Our discussion has thus far been very general. The
time has come to focus our discussion on a particular
type of model f . Of the many models used in statistical
learning, the most fundamental and most often used is
the linear model. This model will be our focus in this

paper.

II. THE LINEAR MODEL

In the linear model, we restrict our search to functions
of the form

f(X)=Xxp (2)

In its most general form, the linear model takes the form
f(X) = Bp + X3 (where §y may be 0). The data can,
however, be normalised to eliminate the need for a con-
stant term (y, and this considerably simplifies notation.
We will also find it useful to normalise the vectors X
to have a mean of 0 and a variance of 1. In the rest
of this paper, we will assume these normalisations have
been carried out, and we summarise them in the following
definition

Definition 5 (Normalisation conditions). We will al-
ways assume that the inputs X and outputs Y are nor-
malised as follows

N N N
> Yi=0 > Xi;=0,Yj > XZ=19j
=1 =1 =1

In the context of the linear model

e A simple model is one that does not use every com-
ponent of X to estimate Y. Thus, in a simple
model a number of components of 3 will be equal
to 0.

e In a complex model, more components of 3 will be
nonzero, reflecting the fact more variables are used.

Our aim is to find the 8 that minimizes the expected
generalisation error (definition 2).



We first take the naive approach of minimising the
training error (definition 3). We call this method or-
dinary least squares (OLS)

em(d) = -3 (vi- f(x))

LN
2
i=1
= LY - xp? 3)
N
We differentiate and set to 0. Solving, we find that
A7 = (x7x) ' xTY (4)

Given an input vector «, our corresponding estimate
for y is then

GO = f(ac) =7 3O = z! (XTX)71 Xy  (5)

We define a so-called ‘hat matrix’

Definition 6 (Hat Matrix).
HOLS =X (XTX_)_l XT

This allows us to relate the outputs in the training set Y
and the outputs of our model f(X) as follows

YOLS _ HOLSY

A. Distribution of 3

If the errors € are Gaussian, then
Y ~ N, (XB,021)

where Ny is the d-dimensional multivariate normal.

~OLS _
We also know that 3~ = (X7X) "XTY — in other

. OLS
words, 3

Therefore?

3% <N, ((XTx)‘1 X7 X3,

is simply a linear transformation of Y.

~ N, (5, (xTx)" af) (6)

Notice that

(X7X) " XTIX (X7X) " 0?)

2 It is a well known property of the multivariate normal that if
Y ~ N(u,X) and X = AY, then X ~ N(Au, AZAT)

e Assuming the normalisation conditions in defin-
tion 5 are met, the covariance matrix of the input
data, X is given by

_XTX

S=N

~ OLS
The covariance matrix of 3 is therefore the in-
verse of S (up to a factor of N).

This is very sensible. What does a high S in a cer-
tain direction mean? It means that the data points
in 7 are very spread out along that particular direc-
tion. The nature of the model along that direction
is therefore very well defined, and the variance of
our estimate of the gradient of that line will there-
fore be very low. (See figure 2 for an illustration
of this phenomenom. The caption of the picture
refers to material in the next section).

e E(3) = 3, and therefore E(Y) = Y. In other words,
the linear model is unbiased.

In fact, by the Gauss Markov Theorem, the ordi-
nary least squares estimate has the smallest vari-
ance amongst all least-squares estimates that are
unbiased. However, as we saw in the last section,
the variance can be reduced much further by intro-
ducing some bias.

B. The geometric interpretation of ordinary least
squares

Consider once again the least squares estimate of Y

~ OLS

Y X,BOLS

Clearly the right-hand-side of this equation is a linear
combination of the columns of X. In other words, our es-
timate Y lies in the vector space spanned by the columns
of X. Ordinary least squares, then, simply consists of
finding the closest vector to Y that lies in that vector
space — in other words, the projection of Y onto that
space.

We can gain greater mathematical insight into this
statement using singular-value decomposition of the ma-
trix X — this can be thought of as a generalisation of
eigenvalue decomposition for non-square matrices.

Our matrix X is an N X p matrix, which can be thought
of as converting a vector from ‘B-space’ (dimension p)
to ‘Y—Space’ (dimension N) — effectively, it takes a 3
and transforms it into the correct Y. The singular value
decomposition of X is?

X =UDVT

3 The definition of singular value decomposition that we use here
is that in [Hastie Tibshirani and Friedman 2009, pp. 64-66]. It
is slightly at odds with other definitions in the literature



where

e V is a px p matrix, whose columns are orthonormal
and span the row space of X.

It can be thought of as converting whatever vector
X is acting on from ‘B3-space’ into the ‘eigenspace’
of X.

Note that VIV = VvVT =T

e D is a p x p diagonal matrix containing entries
dy,- - ,dp, called the singular values of the matrix
X. These are analogous to the ‘eigenvalues’ of X.

e Uis an N x p matrix, whose columns are orthonor-
mal and span the column space of X.

It can be thought of as converting our vector back
from the ‘eigenspace’ of X into ‘Y -space’.

Note that UTU = I, but because the matrix is not
square, UUT #£ 1.

Now, recall that

YAvOLS _ HOLSY

According to our discussion above, the action of H should
be to project Y onto the space spanned by the columns
of X. To see how this is the case, consider the singular-
value form of H

HOS — X(XTX)"'X7
—uDVv” (VDUTUDV”) ' vDU"Y
—UuDpVv” (VDDV”) ' vDUTY
=UU’Y (7)

In this form, we immediately see that HO™S is indeed
a projection matrix. The matrix U7 first projects Y
onto the ‘eigenspace’ of X (notice that UTY contains the
coordinates of Y expressed in the basis U), and then re-
transforms the resulting vector back into ‘Y -space’ (using
U). The result is an approximation of Y using only the
columns of U.

Before we conclude this section, we spend a short time
discussing the meaning of the singular values (the entries
in the matrix D) — this will come in useful when we dis-
cussion Ridge regression in section VIIE. We first write
the covariance matrix of X in singular-value form

~XTX
N
~ vDU”UDV”
B N
vD2V”

N

S

This is none other than the eigen-decomposition of X7X.
Thus, the singular values d; are the (square root of)

FIG. 2: Principal components of a matrix X containing two
columns — one for X; and one for Xs. The Y axis is out
of the page, and the dots are projections of the data points
on the Xi-X2 plane. The heavy lines indicate the principal
components of the matrix — the first principal component has
the largest singular value, and the second is orthogonal to the
first. Ordinary least squares projects the vector Y onto these
components.

the eigenvalues of S, and the vectors v; that form the
columns of the matrix V are the eigenvectors of S.

Let d; be the largest singular value. This means that
v is the linear combination of columns of X that has
a larger sample variance than any other. vs is then the
next largest, subject to being orthogonal to v; (remem-
ber that V is an orthonormal matrix), and so on. These
directions are called the principal components of the ma-
trix X. Ordinary least squares projects Y onto these
components. The concept is illustrated in figure 2.

C. Expected Optimism in Action

We are now able to re-examine the results of section I
in the more concrete context of the linear model.

We first prove two theorems

Theorem 3. For a prediction method satisfying Y =
HY , the expected optimism is given by

Tr(H)o?

2
N

w =
Proof. See Appendix B O

This theorem is in perfect agreement with our discus-
sion in section I. Indeed, the trace of H is directly re-
lated to the complexity of the model. Recall that H is
effectively a projection of Y onto a smaller space (sec-
tion IIB). Expressing Y in diagonal form results in a
matrix whose trace is equal to the number of dimensions
onto which H projects.

This leads us to define the effective number of param-
eters



Definition 7 (Effective number of parameters).

dog = Tr (H)

Theorem 4. If a linear model is fit using ordinary least
- ~ OLS
squares (with f(X)=XB )

_2272
W—NUE

where p is the number of covariates in X and 0% =
Var(Y;), the irreducible error in the underlying model.

Proof. See Appendix B O

D. Orthonormal design

In what follows, it will often be enlightening to consider
cases in which X7X = I — this is called the orthonormal
design case, and it results in a particularly simple expres-
sion for equation 3.

Theorem 5. In the orthonormal design case, in which
XTX =1, equation 3 can be written as

e e

N *BHQ ()

. OLS
where (3 is the ordinary least squares estimate of (3

. OLS
and'Y s the ordinary least squares estimate of Y .

Proof. See Appendix D. O

This Theorem seems almost trivial — and indeed, in
the case of ordinary least squares, it is. The reason it is
so useful is because the first term in equation 8 does not
depend on B, the argument of the function Q. It only

depends on ,3 , which in turns only depends on our
input data. This means that in minimising Q(3) with
respect to 3, we only need to consider the second term,
which can be written as Z;’:l(BJQLS —3;)*. In this form,
it is clear that it is sufficient to minimise the term for
each component of 3 separately.

In other words, minimising Q(3) with respect to 3 is
equivalent to minimising

q(By) = (B?LS - 5j)2

for each f;.
In this particular case, it is obvious that the solution
~ OLS
is 3= . In some more complex models we will be

consdering, this will not be the case.

III. ESTIMATING Err DIRECTLY

We now return to the estimation of the expected gener-
alisation error, and begin by briefly considering methods
that directly estimate Err from the data in the training
set T

A. Cross-validation & Generalised Cross-validation

We saw above that the reason err underestimates Err
is because the same data is used to fit the model and to
assess its ‘goodness’.

Cross-validation [Stone 1974], [Allen 1971, where it
appears under the name of PRESS] solves that problem
by splitting the data into K separate segments, fitting
the model using K — 1 of these segments and assessing
the goodness of the fit using the last segment. More for-
mally, we define the cross-validation score as an estimate
to the expected generalisation error

Definition 8 (Cross-Validation Score). We divide our
training set 7 into K equal segments or folds. We write
f"‘(i) to represent the model fitted to 7 minus the seg-
ment containing data point ¢. The cross-validation score
is then

o (1) = 5 352 (7 00)

It remains to decide how to choose K, the number of
folds to break our data into. Once again, we come against
the bias-variance tradeoff. A large value of K will result
in a low bias (because each set will contain many data
points) but a large variance (because the sets will be
very similar). At this extreme, K = N fits the model
N times, each time ommitting a single data point — this
is called ‘leave-one out’ cross validation. By contrast,
a small value of K will result in a high bias but a low
variance.

On balance, a value of K = 5 — 10 is often recom-
mended [Kohavi 1995] ([Breiman and Spector 1992] also
show that in some cases, 5-fold cross-validation performs
better than ‘leave-one out’ cross validation).

To fit our model using cross validation, we would select
the model with the lowest cross validation score (we will
have more to say about the mechanics of the process in
section V). The computational burden of cross-validation
is considerable, especially when K is large and the model
needs to be fitted many times. In certain special prob-
lems, however, this computation can be done quickly. For
example, when fitting a linear model Y = HY, it can
be shown [Hastie and Tibshirani 1990, pp 47] that the



cross-validation score takes the form

N1 (- foa)
V() -y ()

In some cases, it is easier to calculate the trace of H than
it’s ith diagonal element, and this leads to an estimate
of the cross-validation score called the generalised cross-
validation score

cov () - v 2 (a) o

B. Bootstrapping

Bootstrapping was developed by [Efron 1979]. The ba-
sic idea is to randomly draw datasets with replacement
from the training set, with each sample being the same
size as the original training set (possibly containing rep-
etitions). This is done B times, producing B bootstrap
datasets.

How can we use these bootstrap datasets to estimate
prediction error?* One approach would be to fit our
model to each bootstrap dataset and keep track of how
well it predicts the original training set. Let f** be the
model obtained by fiting the data in the bth bootstrap
dataset. Then our estimation of Err would be

11 BN -
=SS (Vi)

b=1i=1

The problem is that there is overlap between the boot-
strap datasets and the training samples on which they
are tested — and this is precisely the reason err was a
poor estimate of Err in the first place.

By mimicking cross-validation, a better bootstrap esti-
mate can be obtained by only testing our models on data
not contained in the relevant dataset.

Definition 9 (Bootstrap estimate of Err). Collect B
samples, with replacement, from the training set 7. Let
f *b be the model fitted to the bth bootstrap dataset. Let
C~* be the set of indices of the bootstrap samples b that
do not contain observation ¢, and |C;| be the size of that
set.

4 Tt is interesting to node that [Efron 1983] considers the boot-
strap as an estimation of the expected optimism (w) rather
than the expected generalisation error Err.  The distinc-
tion is purely semantic, and we prefer to take the view of
[Hastie Tibshirani and Friedman 2009] — namely that the boot-
strap estimates Err directly.

Then the bootstrap estimate of Err is defined by

bl s 1
Err =) L(Y;, f*(X;
T N v |sz ( zaf ( z))

beC—*

This solves the overfitting problem created by cross-
validation. However, a problem still remains, and to ap-
preciate it more fully, we first prove the following theo-
rem.

Theorem 6. The probability of a given observation ap-
pearing in any gwen bootstrap sample is roughly 0.632.
As such, the number of distinct observations in each boot-
strap sample is roughly 0.632N, where N is the number
of items in our training set.

Proof. The probability of choosing any item in the train-
ing set is 1/N Thus, the probability of not choosing an
item is (1 — N) Slnce each bootstrap sample consists of
N items, we would need to not choose an item NN times

for it not to apppear in the sample. Thus:

N
1
P (observation i ¢ sample b) = (1 - N)

And therefore

N
1
IP (observation ¢ € sample b) =1 — <1 — N>

For large N

PP (observation i € sample b) ~ 1 — e~ = 0.632

It follows that the average number of distinct observa-
tions in each sample is about 0.632N. O

Theorem 6 implies that our bootstrap estimate of Err
behaves roughly like twofold cross validation (K = 2),
because each boostrap sample contains roughly half of
the data points. We saw, however, that K = 5 — 10
is optimal. The bootstrap samples are therefore smaller
than might be ideal, the resulting models will therefore
be less complex and the predicted error will be biased
upwards.

To remedy to this, [Efron 1983] proposed the .632 es-
timator of Err

Far

~ b
= 0.368 - e1T + 0.632 - Err (10)
Effectively, this model takes a combination of points that
are too close to the training set (used to work out err)
and points that are too far from the training set (used to

work out E}rb) to get a balanced average. The derivation
of the coefficients is somewhat heuristic, and we leave the
interested reader to consult the paper for more details.

It is worth noting that some improvements are avail-
able over the .632 bootstrap estimator. In particular, the
.632+ bootstrap estimator [Efron and Tibshirani 1997]
adapts the coefficients in equation 10 to the data in the
training set.



IV. ESTIMATING Err USING THE EXPECTED
OPTIMISM

We now consider methods that estimate Err by first
estimating the expected optimism w.

A. Mallow’s C, and the AIC

We saw, in theorem 4, that for ordinary least squares,
the expected optimism is given by

2p 2
N 6
The C, statistic [Mallows 1973] simply adds this w to

the training error to obtain an estimate for the expected
generalisation error.

w =

Definition 10 (Mallows’ C,,).
1
C, = HY X,BH +2247

where N is the number of observations in the training set
and p is the number of variables in our model.

The variance o2 is estimated by using a low-bias

method (ordinary least squares, for example) to fit the
data. We then calculate C), for every candidate model,
and choose the one with the lowest value (see section V
for details).

The Akaike Information Criterion (AIC) [Akaike 1974]
works in a very similar way, but uses a somewhat different
loss function, which makes it more applicable to a more
general class of models. In the case of the linear model
with Gaussian errors €, AIC and C,, are equivalent, and
we refer interested readers to Akaike’s paper.

Before concluding this section, we take a small de-
tour to prove a very satisfying result — that minimising
the AIC and minimising the generalised cross-validation
score (section IITA) are two asymptotically equivalent
methods. To do this, consider the generalised cross vali-
dation score in equation 9

2
)
cov (1) -y 3 (e
Using the approximation 1/(1 — z)? ~ 1 + 2z, we have

N

cev (f) = %Z (e - Flan)’ (1 + 2TYJ(VH))

In the linear model, we have seen that Tr(H) = p, and

PR
{ > }(11)

GOV (f) =+ Iy~ X8I +

The term in curly brackets is simply an estimate of the
variance o2, and so expression 11 is none other than
the AIC! This confirms that these are ultimately dif-
ferent ways to do the same thing — namely, estimating
the expected generalisation error using only the data
in the training set. This result also extends to cross-
validation itself (rather than generalised cross-validation)
— see [Stone 1977]. See also [Efron 1986] for a discussion

of this correspondence.

B. The BIC

The Bayesian Information  Criterion
[Schwarz 1978] is very similar to C), and the AIC

(BIC)

Definition 11 (The Bayesian Information Criterion).
For the linear model and Gaussian errors e

BIC =
g

€

1 2 P o
<Y — X8I + (g N) .o

where N is the number of observations in the training set
and p is the number of variables in our model.

Notice that the only difference between definition 10
and definition 11 is the factor of log N instead of the
factor of 2. For N > e? ~ 7.4, log N > 2, and the BIC
penalises complex model more severely than the AIC.

As with the AIC, we calculate the BIC for every candi-
date model, and choose the model with lowest BIC (see
section V for details).

Despite its similarity with the AIC, the BIC is de-
rived from entirely different, Bayesian, princples. We
give a short heuristic derivation here. For more de-
tails, see [Schwarz 1978] ([Kass and Raftery 1995] also
provide a more accessible account of the derivation, and
[Cavanaugh 2009] provides a similar but less pedantic
derivation).

We suppose we have a set of candidate models M,,,
m=1,2,---, M, each with corresponding model param-
eters #,, and with p,, parameters. We wish to choose
the best model among them, based on the data in our
training set 7. The Bayesian approach to this problem
is to find the model M,,, that maximises

P(M,|T).
Using Bayes’ Equation, this can be written
P(Mn|T) =P (Mn) - P(T|M,)
= IP’(Mn)/P(T|0n,Mn)IP’(9n|Mn)d0n

(12)

(Here, P(M,,) is a prior distribution over all the possible
models M, ).
Now, consider the integral:



e The first term in the integral is simply the likeli-
hood — the probability of obtaining the data in our
training set given a certain model and associated
parameter.

e The second term is the probability of getting a par-
ticular parameter given a certain model. In a way,
it’s a kind of “prior probability” for parameters in
a given model.

Now, if we were to assume that the only tennable pa-
rameter for any given model is the maximum likelihood
parameter (MLE)? 6,,, then we would have P (6,,|M,,) =
1, 6.5 and the integral above would simply be equal
to the likelihood at the maximum likelihood estimator
P(7T,0,|M,,).

However, this is, of course, not the case. The maxi-
mum likelihood estimator has non-zero variance, and so
we can’t be absolutely sure that 8 = 6. Other nearby
parameters are also tennable. This tends to make the
integral smaller (because some weight is given to smaller
likelihoods).

This heuristic argument can be formalised using a so-
called Laplace Expansion (see the references above for
details), and the integral can be written as

logP (T|M,,) =logP (T|é7l,Mn) - % log N + O(1).

Returning to equation 12, we have

log P (M |T) = log (P (My))
+ logP (T\ém/\/ln) — % log N.

Now, assuming a uniform prior over all models, the first
term can be dropped, and we are left with the task of
maximising

log P (T\én,/\/ln) — % log N.

This problem is equivalent to the minimisation of the
Schwarz criterion

—logP (T|én,Mn) + %”ng.

In the case of the linear model with Gaussian errors e,
this reduces to the BIC (definition 11).

It is often difficult to decide whether to use the BIC or
AIC. The BIC has the advantage of being asymptotically
consistent —as N — oo, BIC will select the correct model.
However, with finite sample sizes, the BIC often chooses
models that are too small due to its heavy penalties on
complex models.

5 The maximum likelihood parameter O, is parameter 6 that max-
imises the likelihood P (7, 0| My,)
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FIG. 3: The behaviour of models like the C), the AIC and the
BIC. The ordinary least-squares estimates is calculated, and
any small components are shrunk to 0. This is called hard
thresholding in the literature.

C. General analysis

The AIC and BIC have involved taking the training
error and correcting it to obtain an estimate of the ex-
pected generalisation error. These are only two of a very
large number of estimators of their kind (see, for example,
[Hocking 1976]). Most of these estimators have in com-
mon the aim to minimise a quantity that is monotonically
increasing with err. The AIC and BIC, for example, both
call for the minimisation of

Q(B) = + A8, (13)
1
— Y =X a8, ()

(Where p = ||B||lo denotes the Ly norm of the vector 3
— in other words, the number of non-zero components in
that vector). In the case of C}, and AIC, we had A\ =
202 /N, and in the case of BIC, we had A = o2 log N/N

It is helpful to analyse this aim in the case of an or-
thonormal design matrix (section IID). Using the result
of theorem 5 and the ensuing discussion, we find that
when X7X = I, the problem of minimising equation 14
is equivalent to the problem of minimising

a(8;) = % (BJQLS - 51‘)2 + Alg; 20

For each 3; separately. The solution to this minimisation
problem for each (; is clearly
A7 = BP0 pons v

In other words, this method find the ordinary least-
squares estimate of B and considers each component of
the estimate. Any component of magnitude larger than
V/N ) is not shrunk. Other components are shrunk to 0.
This behaviour is illustrated in figure 3.

It is informative to consider this in terms of the bias-
variance tradeoff. By shrinking some components of 3,



we introduce some bias — because the unbiased ordinary-
least squares estimate clearly indicates that these compo-
nents are not 0. However, in fixing these components to
0, we also reduce their variance to 0 — and we therefore
increase our prediction accuracy in that way.

If 3; is very large, shrinking it to 0 will reduce in a very
large increase in bias — the resulting decrease in variance
will probably not be sufficient to offset this. If, on the
other hand, §; is small, the decrease in variance is likely
to offset the increase in variance. The methods above set
the “cut-off” point at 3; = v/NA. In the case of C), and
the AIC, this is 8; = 202 and in the case of BIC, this is
B; = o?log N.

D. Penalised Least Squares

The form of equation 13 suggests a more general class
of methods which minimise the quantity

d
QB) =T+ > pal185])

j=1

d
_ % 1Y = X8I+ Y pa(8;)  (15)

j=1

Where p, is a function of |3;|, called the penalty func-
tion. p) denotes the dependence of the function on a
reqularisation parameter A — a way for the strength of
the penalty to ‘tweaked’.

At this juncture, penalised least squares does not seem
like a particularly desirable procedure — unlike the other
procedures we have discussed, there does not seem to
be any good theoretical motivation for its use. Despite
this shortcoming, penalised least squares has been one of
the most successful methods for high dimensional model
selection.

V. PRACTICALITIES & THE PROBLEM OF
HIGH DIMENSIONS

To understand the need for the method of penalised
least squares, we must consider the way methods like Ci,,
BIC, etc. are applied. Each of these measures are an
estimate of Err, which we are trying to minimise, and
are all in the form

€T + A\p

This means that once we have chosen which variables will
be included in our model (ie: will be non-zero in 3), d is
fixed and we simply need to minimize err by finding the
ordinary least-squares solution of equation 4.

This suggests the following method

e Build every possible combination of variables in 3

11

e For each of these combinations, find the ordinary
least-squares estimate, work out err, and the ap-
propriate estimate of Err.

e Pick the combination with the lowest estimate of
Err.

The issue with this method, of course, is that when the
model is high-dimensional, the first step entails an enor-
mous computational burden (if the original input vectors
X contain d components, there are 2¢ — 1 possible com-
bination of variables!). This makes these methods highly
impractical.

That said, it should be noted that a significant amount
of work has gone into reducing this burden, in two ways

e Reducing the time it takes to calculate the ordinary
least-squares estimate for each model, by updating
the hat matrix H rather than re-calculating it for
each model, and by regularly removing superfluous
data from these matrices. See [Furnival 1971] and
papers referenced therein for details.

e Finding clever ways to exclude some combina-
tions as infeasible without examining them. Most
such methods rely on the fact that it is impossi-
ble to reduce erT by removing variables from our
model (indeed, figure 1 clearly shows that @rT is
monotonously decreasing as d increases).

The concept is best illustrated by example. Imag-
ine we are trying to minimise a quantity

Q=er+d

Imagine further than during the course of our cal-
culations, we have already found a 1-variable com-
bination A with Q4 = 2. We now come accross
a 3-variable combination B with Qg = 5. The
method allows us to ignore all 7 ‘subsets’ of B —
because even if €T does not increase as we consider
these subsets, the best we’ll ever be able to get is
Q = @Qp — 2 = 3, which does not ‘beat’ Q4 = 2.
We have therefore reduced our search space by 7.
Such methods are an example of branch and bound
methods.

This example is, of course, very simplistic. See
[LaMotte and Hocking 1970] for a more rigorous

discussion.
These two methods are combined in the ‘leaps
and bounds’ procedure of Furnival and Wilson

[Furnival and Wilson 1974]. This procedure is able to
cope with 30-40 variables, but this falls grossly short of
the requirements of modern high-dimensional problems,
which often include thousands of variables.

Some heuristic algortihms also exist to aid this process.
For example

e Forward selection is a greedy algortihm, which
starts with an empty model, and successively adds
the variable that is most heavily correlated with
the response.



e Backwards elimination starts with a model contain-
ing all variables, and removes the least significant
ones one-by-one (this model is not applicable were
the number of variables is greater than N, in which
no ordinary least-squares estimate exists).

e Stepwise selection is basically forward selection,
but with the possiblity of deleting a single variable
— backwards-selection-style — at each forward step.
This heuristic procedure has recently been for-
malised and thoroughly analysed by [Zhang 2008],
under the name of FOBA, and promises to rival the
other techniques quoted in this paper.

These methods, of course, all require ‘stopping rules’.

Despite these methods, classical model selection re-
mains a very difficult problem computationally, espe-
cially for models that lie in higher dimensions. How can
penalised least squares help? The answer is that when
p is a convex function, the problem of minimising equa-
tion 15 becomes a convex optimisation problem, which
is exactly solvable in polynomial time. (See, for exam-
ple, [Boyd and Vandenberghe 2004] for an introduction
to the theory of convex optimisation). These expressions
are not as theoretically attractive as measures such as
the AIC (and we shall see in section VI that they often
lack some of the desirable properties of these measures),
but at least they are tractable, and can often lead to
remarkably good solutions.

In the next part of this paper, we consider these meth-
ods in more detail.

Part 11
Penalised Least Squares

In this section, we consider the method of penalised least
squares (introduced in section IV D) in more detail. This
method suggests that we should choose a 3 that min-
imises

d
CIY X8I+ Y pall) (16)

j=1

In this section, we will consider a wide range of penal-
ties py. In analysing them, it will be useful to consider
the orthonormal design case (see section IID). In the
orthonormal design case, we can use Theorem 5 to show
that minising equation 16 is equivalent to minimising

aB) =5 (B -5) +mish)  an

for each f;.
Before we begin, however, we first consider the prop-
erties that we would want from our p).
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VI. GENERAL CONSIDERATIONS

Fan and Li [Fan and Li 2001] suggest that any penalty
function py should result in an estimator B that fulfils
the following properites

Sparsity — we have already seen that in some ultra-high
dimensional models, we have prior reasons to be-
lieve that some of the components of 3 should be
0. We would therefore hope that any py we choose
will result in a method that sets some components
of 3 to 0.

Sparsity is also advantageous in shrinking the “ef-
fective number of parameters” in the model (def-
inition 7) and reducing the optimism w, but less
critical. Indeed, we will see that even if parame-
ters are not shrunk to exactly 0, a reduction in the
effective number of parameters still occurs.

Unbiasedness — as we saw in the previous section, pe-
nalised least squares and similar methods introduce
bias into 3 in the hope of reducing variance. How-
ever, this phenomenon mostly occurs where j3; is
small and our method shrinks it to 0. We would
therefore hope that any p) we choose will result
in an estimator that is approximately unbiased for
large components of 3.

Continuity — to prevent instabilities in prediction, we
~ OLS
would like our predictor to be continuous in 3

(ie: in the data in our training set).

We consider each of these conditions in detail in the
orthonormal design case. Recall that in that case, our
aim is to minimise equation 17 for each component 3;.
Now, let A = 2/N and let sgn(z) be the sign of . The
derivative® of equation 17 with respect to f3; is then

q(B;) = —ABP™S + AB; + sen(3;)ph (16;])
sgn(B;) {AIB;] +p4 (18;1)} — ABPES

‘Minimising’ ¢(8;) is equivalent to finding the point at
which ¢'(3;) = 0.

A. Sparsity

For sparsity, we require our method to at least have
the ability to set some of the 3; to 0. Or in other words,
we require the existence of some cases in which ¢’(0) = 0.

6 Strictly speaking, this derivative only exists when the penalty
function py is differentiable everywhere. In other cases, the for-
malism of subgradients must be applied — see Appendix E for
details.



inf {A|B] + P (18
A8+ 4 (181 Inf {AlB]+p5 (16D}

>

sgn(B) {AlB] + px (181)}

FIG. 4: An illustration of the sparsity condition. The heavy
line is the function sgn(B) {A|B] + pA (I8])} and the dashed
line is the function A|B| + ph (|3]). If 3°S falls in the zone
shaded in grey above, it is clear that ¢'(3) = heavy line —
|5AOLS\ will be positive for positive 3 and negative for negative
3. However, if the minimum of A|3| + p) (|8]) (dashed line)
is not positive (ie: condition 19 fails), there is no grey zone
for this to occur.

Now, consider a situation in which
A[3OVS| <52£{A\ﬁ|+p&(|ﬁ|)} (18)

In that case, ¢’(3) is positive for 3 > 0, and negative for
B3 < 0, and therefore ¢’'(0) = 0, precisely as required.

For condition 18 to be applicable, however, we require
the infimum on the RHS to be positive. Thus, our con-
dition for sparsity is

inf {Al8] + 74 (18)} > 0 (19)

This concept is illustrated in Figure 4.

B. TUnbiasedness

We know that the ordinary least-squares estimator
~ OLS
is unbiassed (see section ITA). Thus, we simply

~ OLS
require our estimator to be equal to 3 - for high values
of (.
Consider that if p4(|8]) = 0, ¢(8) = 8 — B°%S and

therefore clearly has a root at § = ﬁOLS7 as required.
Thus, our requirement for unbiasedness is

[PA(181) = 0 as |8] = oo (20)

C. Continuity

For our estimator § to be continuous, it must never
‘jump’ from one value to another discountinuously as the
input data is changed.
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Sign of ¢ + ; — : +

AlB|+ph (181)

30LS
16777

1]

FIG. 5: And illustration of what happens when the conti-
nuity condition (equation 21) is not met. The heavy line is
A|B| + pi (]8]), and the normal line is B3OS, Thus, q(B) =
Solid line - normal line. The sign of q'(3) at various points is
indicated in the diagram, and clearly shows that ¢(3) first in-
creases, then decreases and then increases again. This means
that the minimum of ¢ must occur at one of the points in-
dicated by black dots. However, which of those two points
it occurs at depends on exactly where BOLS is, and there is
therefore a point at which our solution discontinuously jumps
from one point to the other.

Sign of ¢’ — : +
: | A 1)

/ 8o,

*|6|

FIG. 6: And illustration of what happens when the continuity
condition (equation 21) is met. Details as in figure 5. In this
case, q() decreases to a minimum and then increases again.
There is only one possible solution, indicated by a black dot,
which varies continuously as BOLS changes.

We have already seen that if the condition in equa-
tion 18 is fulfilled, 3 is shrunk to 0. Therefore, let us
consider the other possibility

A|FOS| > inf {Al5]+p5 (16D}

In this situation, a necessary and almost sufficient”
condition for continuity is that the minimum of A|F| +

7 The condition is ‘almost’ sufficient because we also require that
the function A|B| + p)\ (|8]) be unimodal for all 8 € R. In other
words, we require there to be a t* such that the function is de-
creasing for all ¢ < ¢t* and increasing for all ¢ > ¢*. If this were
not the case, the curve in figure 6 might ‘come down’ and cross
the line a second time, creating the possibility for a discontinu-
ity. This subtlety was omitted by [Fan and Li 2001], and I am
grateful to Richard Samworth for pointing it out to me.



P (|3]) be attained at 0. In other words

arginfgep {Al8] +pA (18])} =0 (21)

Figure 5 explains why we lose continuity when this is
not the case, and figure 6 explains how this condition
fixes things.

D. Classical model selection

To conclude our discussion of the general conditions on
Dx, it is instructive to ask whether these conditions are
met for classical model selection procedures (AIC, BIC,
etc...), for which we saw

px(IBi]) = AL (15,120

First, we note that the derivative of py is the Dirac delta
function

Pa(1B;1) = Ad(1651)
Now, consider our three properties
Sparsity The sparsity condition in this case is

Inf {AIBI+ A3 (181)} >0

Clearly, this infimum cannot be negative, because
both its components are positive. Furthermore, at
B = 0, the function is clearly not 0 because the
Dirac delta function spikes. Thus, the infimum is
greater than 0, and the condition is fulfilled.

Unbiasedness Clearly, for large |§], the Dirac delta
function vanishes. Thus, the unbiasedness condi-
tion is fulfilled.

Continuity The continuity condition in this case is

arginfger {A|8] +Ad (16])} = 0

Unfortunately, it is clear that the continuity con-
dition is mot met — we could hardly claim that a
minimum occurs at § = 0, where the Dirac delta
function spikes.

Classical model selection, therefore, results in solutions
that are sparse and unbiassed, but which are unstable
with respect to input conditions. See [Breiman 1996]
for an extended discussion of this phenomenon. Clearly,
therefore, this is another advantage of penalised least
squares over classical model selection, as well as tractabil-
ity.

We are now ready to begin our discussion of various
specific forms of py.
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VII. BRIDGE REGRESSION

Two of the most important penalty functions we
will consider — the Ridge penalty and the LASSO
penalty are special cases of the bridge regression penalty
[Frank and Friedman 1993]

pA(B) = AlBi|I" v #0 (22)

The v = 0 case can be thought of as corresponding to
classical model selection. Since we usually define 0° = 1,
definition 22 does not include this special case.

In this section, we consider a number of general prop-
erties of bridge regression. We will then discuss the Ridge
and the LASSO in more detail.

A. Conditions on py

We begin by examining which of the conditions in sec-
tion VI the bridge penalty satisfies. We note that in all
cases for which v # 0

PA(B)) = M5
(The case v = 0 corresponds to classical model selection

and was dealt with at the end of section VI).

Sparsity The sparsity condition in this case is
inf {A |t
inf {AlB]+ 21871} >0
We then have the following behaviour:

e For v > 1, the function is well defined at § =
0, and so the infimum occurs § = 0, taking a
value of 0. Thus, sparsity is not fulfilled.

e For v < 1, the function blows up as § — 0,
and the infimum is therefore greater than 0.
Sparsity is therefore fulfilled.

Unbiasedness For large |3|, p\ only vanishes if v < 1.
Thus, the Bridge penalty is only unbiased if v < 1.

Continuity The continuity condition in this case is

arginfger {A|6] + M]3} = 0. (23)
We then have the following behaviour

e For v > 1, the function takes the value of 0
at § = 0 — this is clearly the infimum. Thus,
continuity s fulfilled.

e For v = 1, py is not differentiable, and we
need to invoke the concept of subgradients (see
Appendix E). The subgradient of |3] is

-1 #<0
{0:0€[-1,1]} pB=0
1 5>0

|| =

Clearly, the smallest value the subgradient can
have (-1) is realised that 8 = 0. Thus, the
infimum does indeed occur at 5 = 0.



e For v < 1, py is neither differentiable nor con-
vex, so even the concept of subgradients (as
defined in Appendix E) is of no assistance.

In practice, however, it is found that method
with v < 1 are not continuous. This is in-
tuitively understandable — a careful look at
equation 23 indicates that the derivative of
the penalty tends to infinity as § — 0. It
seems unlikely, therefore, that 23 would be
minimised at G = 0.

Another important aspect to consider is the convex-
ity of the penalty function. A problem involving a con-
vex penalty function can easily be optimised. Others are
much more difficult. In this case, only penalty functions
with v > 1 are convex.

This information is summarised in table I. Clearly, no
single penalty satisfies all conditions. The LASSO has
the advantage of being convex, continuous and sparse.
In section VIII, we will meet a penalty function that is
sparse, continuous, and unbiased.

B. Penalty plots

Before we dive into the mathematics of Bridge regres-
sion, it is useful to consider the form of the bridge penalty
functions for various values of . These are illustrated in
figure 7.

These figures go a long way towards explaining the
behaviour of these ridge penalties:

e For v < 1, it is clear that the penalties favour the
directions along the coordinate axes more than oth-
ers — in other words, the penalties favour directions
for which one of the coordinates is small. Thus, the
penalties lead to sparse 3 vectors.

e For 1 < v < 2, the penalties still favour the direc-
tions along the coordinate axes, but less so. Fur-
thermore, the distributions no longer have ‘corners’
at the coordinate axes — this, it turns out, is the
reason these penalties do not lead to sparse so-
lutions. We motivate this fact informally in Ap-
pendix E, in the context of sub-gradients, and see
[Tibshirani 1996] for a geometric explanation.

e For v = 2, the penalty does not favour any par-
ticular direction. Shrinkage still occurs, of course,
because the norm of the vector 3 is shrunk, but in
no particular direction.

e For v > 2, the penalty favours the directions
away from the coordinate axes — in other words,
it favours large parameters! This is clearly not de-
sirable in the context of shrinkage.

These observations go a long way to explain the formal
results in the previous section, and those we will discuss
when we consider the orthonormal design case.
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FIG. 7: The Bridge penalties for various values of 7, in the
case in which the vector 3 only has two components — 51 and
B2. The lines drawn are contours of equal |31]” + |32|”.

C. The Bayesian Approach

It is also very insightful to look at Bridge regression
from a Bayesian perspective. Once again, this gives us
some intuition behind the formal results.

The minimisation of the Bridge penalty can also be

thought of as the maximisation® of a log posterior distri-
bution of (8|Y") given by

1 2 ,
(BIY) ~ Coxp (~ 7 1Y = X8I =¥ 15317
It will be more convenient to write this as follows

(BIY) ~ Coxp (= IV - X8I -2 313"

8 Note that in a Bayesian context it is more usual to use the poste-
rior mean rather than the posterior mode (which is the quantity
we use here). In the case of Ridge regression (y = 2), the poste-
rior is Gaussian and so these two measures coincide. This is not
the case for other values of ~.
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Bridge regression
Classical (LASSO) (Ridge)|Elastic
model selection|y <1 ~vy=1 v>1 net [SCAD
Sparsity v v v v v
Unbiasedness v v v
Continuity v v v v
Convexity v v v

TABLE I: Properties of the penalty functions in this paper.

=(8) =(8)

v =20

FIG. 8: The implied prior 7(3) on 8 in Bridge regression, for
various values of 7. Note that these plots were all made with
the same value of A — in reality, Bridge regression at these
values of v would use different values of A to optimise the fit
(see section IX).

This modification does not imply any loss of generality,
because the changes can be absorbed into the arbitrary
constants C' and .

Now, Bayes’ Theorem relates the prior and posterior
distributions as follows

fFBIY) o f(Y]B)7(B)
(where w((8)) = f(B) is the prior distribution of 3). Fur-

thermore, if the errors € are normally distributed, then

rv18) s (~3 v - x81?)

By simple algebra, it follows that the priors on each
components of 3 are given by

7(B) x exp (—F7)

This prior is plotted for a few values of v in figure 8,
and provides an invaluable insight into the way Bridge
regression works.

e Ordinary least squares has a uniform prior.

e Bridge regression, however, involves a prior that
places greater weight on small values of § than large
ones, and this causes shrinkage.

e For v > 1, the distribution is slightly ‘flat’ at its
maximum, which means that variables tend not to
be shrunk all the way to 8 = 0.

e As « increases, the tails of the prior shrink, and
this introduces bias into the model for large values
of B. To the extent that for very high values of ~,
low values of 8 are not shrunk at all, but high ones
are.

D. Orthonormal Design

To gain further insight into the behaviour of these
penalties, we consider them in the orthonormal design
case of section IID. In that situation, the penalties take
the form of equation 17

R 2
q(8;) = % (@QLS - 5j) + AlB351”

We would like to examine the behaviour of this func-
tion in the following cases

e <yl
ey=1
ol <y<?2
e v=0
o v >2

The cases v = 1 and v = 2 admit analytical solutions.
Some other special cases do as well, but the details are
cumbersome and unenlightening, and we resort to simu-
lations instead. We present our findings for the behaviour
of Bridge regression penalties in figure 9.

We now consider each case above, and give details of
the analytic solution (if it exists) and comment on the
results.

Once again, we write A = 2/N and to simplify nota-
tion, we also write A = \/A.

1. 0<yx1

Unfortunately, it is not possible to find analytic solu-
tion for ¢(B) for any value of ~ in this range. We used
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pa(18)
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: B
pA(18) = B
FIG. 9: The Bridge penalties for various values of 7, and the resulting estimators ﬁ In each diagram, the dotted line is
57 5OLS drawn for reference. See text of the paper for comments.
simulations, however, to examine the behaviour of q. Due 3 1<vy<2

to the singularity at the origin, ¢ always has a minimum
at the origin. For large enough A, ¢ also has a mini-
mum elsewhere. This leads to a non-linear thresholding
behaviour, as illustrated in figure 9 for v = 0.5. The esti-
mator is unbiased for large 3, and successfully performs
variable selection.

2. v=1
This is the LASSO. In this case
1 /. 2
a(B;) = ~ (B9 = 8;) + 21,1

Minimising such a non-differentiable function requires
the use of subgradients — see Appendix E for details. The
solution is

FLASSO _ o (FOLS) (IBOLS| _ ;\)
Jr

Where zy = max(z,0).

This kind of function is called soft thresholding in the
literature. It is very clear from the diagram how the
LASSO biases the estimates of higher values of 3.

The case v = 1.5 admits an analytic solution here, but
the algebraic details are extremely involved, and com-
pletely uninteresting. We therefore omit details, and sim-
ply sketch the result.

The diagram clearly shows that in this range of ~,
we shrink small variables components of 3 by a large
amount, and large components of 3 by a lesser amount.

4. y=2
This is Ridge regression. In this case
L /soLs 2
a(8;) = % (B~ )+ Xgy

The analytical solution in this case is simple

In other words, Ridge regression performs proportional
shrinkage; the larger the variable, the more it is shrunk.



5. y>2

Once again, we resort to simulations and produce a
plot of the solution.

In this case, we clearly retain small components of §
and shrink larger components, as we predicted from the
form of the penalty. Clearly, this behaviour is not par-
ticularly useful in the context of this paper.

6. Summary

We see, therefore, that Bridge regression encompasses
a wide range of behaviours, both in terms of small and
large components.

Small components are either thresholded or not.
Whether this happens depends on whether the penalty
has a corner at the origin (y < 1) or not (y > 1).

The shrinakge of non-thresholded components depends
on the concavity of the function. Less concavity leads to
more shrinkage of small components, and large concavity
leads to more shrinkage of large components.

E. Additional Points on Ridge Regression

Ridge regression is simply DBridge regression
with ~ = 2. It was originally proposed by
[Hoerl and Kennard 1970}, with a very different motiva-
tion to that in this paper. They were looking to deal
with the problem of co-linearity in the columns of X. If
the columns of X are colinear, then the determinant of
XTX is likely to be very small (because it is the square
of the volume of the parallelepiped whose edges are the
columns of X). In turns, this means that (X7X)~!
is likely to have some very large eigenvalues. This is
problematic, because we saw in section II A that these
eigenvalues are the variances of the components of 3.
(Alternatively, in terms of principal components, small
eigenvalues of X7X implies that the variance is small
along some principal components, meaning the model is
hard to specify there). This problem is especially likely
to happen in high dimensional problems, where X has
many rows and few columns.

Ridge regression aims to solve this problem by min-
imising

Qa(8) = IV ~ X + 38

(Remember that A = AX/2).

The solution to this equation is unique among solutions
to penalised least squares problems, in that it can be
writen in closed form. Differentiating and setting to 0
leads to

A" = (XTX +A1) ' XTY
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The resulting hat matrix is
H® = X (XX + A1)~ X7 (24)

Intuitively, we see that Ridge regression simply increases
the eigenvalues of XTX.

We can gain a much deeper understanding of what hap-
pens by considering the singular-value decomposition of

vt (section II B). Recall that the singular-value decom-
position of X is X = UDVT. We then have
v" = UDVT (VDUTUDV? 4 A1) ' VDUTY
—UDV” (VD2V” + A1) vDU"Y
— UD (D*+ A1) ' DUTY
p d2
; T2

Comparing this to the analogous expression for ordi-
nary least squares (equation 7), we see that just like or-
dinary least squares, ridge regression first expresses Y in
terms of the principal components of Y. But then, be-
fore converting back to ‘Y -space’; it multiplies the com-
ponents by a factor df/(d? + A). It seems, therefore, that
Ridge regression shrinks our projection along the prin-
cipal components, but shrinks it much more along those
principal components with small values of d;. These,
however, are precisely the components along which our
observations are not spread out (ie: along which X has
a low variance) — in other words, these are the very com-
ponents through which it is difficult to fit a straight line,
and that would therefore have a high variance.

Ridge regression, therefore, shrinks our projection pre-
cisely along those axes for which the variance of our pre-
dictor would be very high otherwise.

We can also use this singular value decomposition to

work out the effective number of parameters in ridge re-
gression (definition 7)

dgff = Tr(H)
p d2
_ J T
=Tr ;ujid? ¥ )\uj

5
- 2
2+

This result is smaller than p, which was the effective
number of parameters for ordinary least squares. We
have therefore succeeded in reducing the optimism of the
training error in this case, despite the fact we have not
reduced the number of nonzero parameters.

It can be shown that Ridge regression leads to
a better estimate (in the mean squared error sense)
than ordinary least squares for sufficiently small A\ (see
[Hoerl and Kennard 1970]). Unfortunately, choosing A
too large can significantly reduce the quality of the
model. See section IX for a discussion on choosing the
correct parameter.




F. Additional comments on the LASSO

A few miscellaneous points on the LASSO

e Unlike the Ridge, the LASSO does not admit an-
alytical solutions. However, it is still possible to
make some deductions about the effective number
of variables in the LASSO.

One might be tempted to simply say that dIgf‘f*SSO
is equal to the number of parameters in our model.
This however, is too simplistic, because it fails to
take into account the search for the correct vari-
ables. That said, [Zou Hastie and Tibshirani 2007]
show that the number of variables selected is an
unbiased estimator of the real value of dipS50.

The LASSO is convex, and can therefore be
calculated with relative ease. In addition,
[Efron Hastie Johnstone and Tibshirani 2004] in-
troduced an even faster algorithm, called least an-
gle regression (LARS). The technique is useful in
its own right, and with a slight modification can
also find LASSO solutions.

Due to space constraints, we will only give a quali-
tative description of the LARS algorithm. LARS is
very similar to forward selection (see section V) in
that it starts with an empty solution and adds the
most correlated variable to the response Y — for
arguments’ sake, call that variable X;. However, it
is unlike forward selection in the way it chooses the
coefficient for this variable

— Forward variable selection would choose the

coefficient in the most obvious way, using or-
dinary least squares. This would result in an
estimate Y, with the property that the resid-
uals Y — Y are totally uncorrelated with the
variable X7.
This is because ordinary least squares works
by projecting the vector Y onto the space
spanned by X; — the resulting residual Y —Y
is therefore necessarily perpendicular to Xj.

— Least angle regression, on the other hand,
takes a more ‘democratic’ approach. It pro-

~ LA
duces an estimate Y by adding as much
of the variable X; as needed to ensure that

the correlation of YLA with X7 is equal to
its correlation with the next-most-significant
variable (say Xs). At which point it stops,
and repeats the process for the next most cor-
related variable (say X3).

e [Zhao and Yu 2006] showed that the LASSO only
performs consistent variable selection (finds the
correct model with probability 1 as n tends to infin-
ity) if the model satisfies a so-called irrepresentable
condition. Some methods have been devised to
deal with the situation in which this condition is
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not met. We discuss one of them, the randomised
LASSO, in section XII.

G. Bridge regression in its own right

Bridge Regression can also be used in its own right,
with the methods of section IX used to select both
A and v > 1. This was, indeed, the context in
which [Frank and Friedman 1993] originally introduced
the method. [Fu 1998] analyses the performance of the
Bridge and notes that it does sometimes outperform the
LASSO (which makes sense, given that the LASSO is a
subset of the Bridge), but that the method is frought
with difficulty, because the non-linearity of the Bridge
estimates makes generalised-cross validation an inappro-
priate tool for the selection of v and .

VIII. SCAD

As discussed in sections VII A and VID, neither clas-
sical model selection nor any of the Bridge penalties
satisfy all three conditions in section VI. As a result,
[Fan and Li 2001] suggest the Smoothly Clipped Abso-
lute Deviation Penalty (SCAD), which does fulfil all three
conditions. SCAD is defined by its derivative

(a:\ —16])+
1)

p&(|ﬂ|)=)\{1|5|<5\+ (@a— 1 ]1[3|>5\} (25)

Even in the orthonormal design case, the solution is
somewhat difficult to find. Details are provided in Ap-
pendix E, and the result is

sgn(3O1) (1801 = X) 3OS < 22
(a—1)3°"5 —sgn(3°5)al !

3SCAD _
(a=2)

2X < |GOFS] < ad
|BOLS| > a\

BOLS

The SCAD penalty and this result are plotted in fig-
ure 10, together with the Bayesian prior on 8 implied by
SCAD (see section VIIC).

The diagram clearly illustrates how SCAD resolves the
bias of the LASSO. The estimator shrinks 3 towards the
mean for small values of 8, but then returns to the or-
dinary least squares estimate. In terms of the Bayesian
framework, SCAD retains the ‘sharpness’ of the maxi-
mum observed in LASSO, but keeps the tails constant
and therefore reduces bias for large values of .

The only issue with SCAD is that it is not convex, and
is therefore very difficult to optimize. [Zou and Li 2008]
suggested the following local linear approxmation near
the point [y

pa(81) = pa(lBol) + PA(16ol) (18] = 16ol)
= p\(|8o])|B] + Constants
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FIG. 10: Top: The SCAD penalty py. Middle: The prior on
[ implied by the SCAD penalty (see section VIIC). Bottom:
The SCAD estimator 3°C“P. The dotted line is 354 =
BOLS, drawn for reference.

We can then solve SCAD by choosing a sensible starting
point [y and iterating as follows

Ak41 ) 1 - %
B = argming ~ Y — X3 + Zp&(lﬁf)Iﬁjl

j=1

Remarkably, provided the initial estimator is reasonably
good (obtained using the LASSO, for example), it turns
out that one step of the procedure is as good as the fully
iterative procedure. Furthermore, under certain regular-
ity conditions, this estimator can be shown to fulfil the
oracle property.

[Fan and Li 2001] also propose a local quadratic ap-
proximation to SCAD.

A further complication comes from the fact that the
SCAD penalty function contains two undetermined con-
stants; A and a. Both could be estimated using the meth-
ods in section IX, but this is very computationally in-
tensive. Instead, [Fan and Li 2001] suggest the following
Bayesian argument to fix a

e Set A = /2log(p). This is called wuni-
versal thresholding, and was suggested by

[Donoho and Johnstone 1994].

e Assume 3 has a normal prior with mean 0 and vari-
ance al.

20

e Computer the Bayes’ Risk for each value of a by
numerical integration. The Bayes’ Risk is simply

E{L8.8)}

e Carry out the simulation for a number of values of
p.

In all cases, the minimum risk occurs at a =~ 3.7, and in
simulations this value performs similarly to values of a
obtained by cross-validation (see section IX).

IX. CHOOSING THE REGULARISATION
PARAMETER X

Every method we have considered so far has involved
a regularisation parameter A. This parameter regulates
the severity of the penalty py. A also indictes how far
we are along the bias-variance spectrum. Small values of
A reduce the penalty and therefore allow more complex
models — this reduces the bias but increases the variance.

Let M? represent the model obtained from a certain
method, with a regularisation parameter A\, and let A be
the set of possible parameters. Our task is to choose one
model (the ‘best’) out of the set of all possible models

{MNA eA}

In this section, we consider methods to do this.

A. Cross-valdiation & Generalised Cross-validation

By far the most common approach to the choice of A
is cross-validation and generalised cross validation.

Cross validation was described in detail in sec-
tion IIT A. Effectively, the set A is filled with a number of
discrete potential values for A. For each of these values,
we work out the cross-validation score, defined by

Definition 12 (Cross-Validation Score). We divide our
training set 7 into K equal segments or folds. We write
Y —r(D:X o represent the fitted value of y when our model
is fitted to 7 minus the segment containing data point
i, with regularisation parameter \. The cross-validation
score is then

N

CV (f) = %ZL (Y;’f/—n(i),)\)

i=1

Finally, we choose the value of A € A that produces
the lowest cross-validation score.



In some cases, it is possible to calculate a generalised
cross-validation score, which usually requires less com-
putation. For example, for the specific case of ridge re-
gression, [Golub Heath and Wahba 1979] show that min-
imising the following generalised-cross validation score
(much easier to evaluate than the cross-validation score
above) works just as well as minimising the cross valida-
tion score.

. |y - HEY||?
GCV (f) =N"—"—"—-
(1 —Tr (H"))
Where H? is the hat matrix for the ridge estimate, de-
fined in equation 24.

B. Stability selection

Cross-validation entails the selection of a single model
out of the set

{MA;A € A}

This might not, however, be the best approach, because
it is possible that the ‘best’ model is not even in this set.

Stability selection takes a different approach, some-
what reminiscent of the bootstrap (section IIIB). It re-
peatedly perturbs the data and looks for variables that
occur in a large fraction of the resulting models produced.
These are the variables that are then chosen to form part

of our final model Mstable
We now state this process formally.

Definition 13 (Selection probabilities). Let I be a ran-
dom sample from our data of size |n/2| (where |z] is the
largest integer smaller than or equal to =) drawn without

replacement. Let M*(I) be the result of using a method
with regularisation parameter A on the data I.

Now, consider any variable k£ in our problem. We de-
note the probability of this variable being selected by

=P (k c MA(I))
The probability IP is taken over all possible subsamples
1.

We are now ready to define our stable model

Definition 14 (Stable model). Our stable model
Mtable §g chosen as follows

Metable — {k : max [T} > 7r}
AEA

where 7 is a cutoff value with 0 < 7w < 1
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In other words, we keep variables with high selection
probability and discard those with low selection proba-
bility.

It remains to discuss how to choose m and A.
Before we do, however, it is worth noting that
[Meinshausen and Bliehlmann 2010] show empirically
that the results vary little for sensible choices in a range
of the cutoff — say = € (0.6,0.9).

In choosing 7, we are trying to reduce the per-family
error rate V.

Definition 15 (Per-family error rate). The per-family
error rate, V, is defined as the number of ‘noise’ variables
selected in MS¥Ple —je: the number of variables selected
that, in the real underlying model, do not affect Y.

We also make the following definition

Definition 16 (Selection range of A). The selection
range of A, qu, is the total number of variables that our
method is capable of selecting from subsamples as our
model takes every value in the set A.

ax = E (|uea¥(1))

Depending on the method used for fitting, it should
be relatively simple to relate g to A. For example, for
the LASSO, smaller A means less variables, so if Ay, iS
the smallest member of A, ga is simply the number of
variables in M2, .

The following theorem then holds

Theorem 7. Under certain assumptions (see

[Meinshausen and Biehlmann 2010, p 7]), the per-
family error rate is bounded as follows
1 q}
EV)< —— 2 26

where p is the total number of variables in our model.

Proof. See  [Meinshausen and Biiehlmann 2010, §6.2].

O

Unsurprisingly, the theorem predicts that as we in-
crease our threshold 7 and as we reduce the total num-
ber of variables our method could possible select gu, the
probability of choosing a noise variable decreases.

Our tactic is then to set one of gy and m, and then
use equation 26 to set the other to achieve the desired
expected per-family error rate. A typical approach would
be to set m = 0.9, and then to set ga (and therefore A)
accordingly.



Note also that in some cases, the particular method
used for fitting is so computationally intensive that
it becomes impractical to apply stability selection for
a large number of values of A\. In such case, it is
possible to choose a single value of A and set A =
A. [Meinshausen and Biiehlmann 2010] empirically show
this method to be very successful provided that this sin-
gle value of X is chosen such that some overfitting occurs
(ie: such that the model M? is too large).

Part 111
Improvements

There have been a very large number of improvements on
the methods we have discussed in this paper, designed to
cope with various non-standard cases. Due to space con-
straints, we will only consider three here — the elastic
net, Sure Independence Screening and the randomized
LASSO. Others, of relevance to the topics in this paper
are the adaptive LASSO [Zou 2006] and the Dantzig se-
lector [Candes and Tao 2007].

X. DEALING WITH CORRELATED
VARIABLES — THE ELASTIC NET

A. Introduction

The elastic net was proposed by [Zou and Hastie 2005]
to solve two problems

1. LASSO is never able to construct a model
with more than n variables, where n is
the number of data points available (see
[Efron Hastie Johnstone and Tibshirani 2004]). If
the dimension of the problem, p, is much greater
than n (as is, for example, the case in genetic
analyses where thousands of genes are screened
using less than ten microarray experiments), this
can be problematic.

The Ridge is able to select larger models, but does
not perform variable selection (ie: is not sparse).

2. If a model contains a number of correlated vari-
ables, the LASSO is most likely to pick any one
of these correlated variables (we will examine this
behaviour in more detail shortly). In many applica-
tions, this is desirable. For example, in ultra-high
dimensional models, it is likely that every signifi-
cant variable will have a number of ‘noise’ variables
correlated to it (see section XI) — in that case, we
prefer to only select the most significant variable.

However, this can also be problematic in applica-
tions where we have reason to believe that corre-
lated variables form a ‘group’. This occurs, for
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example, in genetic studies where genes regulat-
ing a particular metabolic pathways are strongly
correlated, and are all needed in the model if the
metabolic pathway affects the response.

The Ridge does not exhibit this behaviour — in fact,
it tends to pick correlated variables together in a
model. However the Ridge does not perform vari-
able selection.

Our aim is to find a penalty that is both sparse, and
groups correlated variables together.

Before we proceed, however, we spend some time con-
sidering the behaviour of penalised least squares with re-
spect to correlated variables.

B. Correlated variables

[Zou and Hastie 2005] and [Tibshirani 1996] use
analytical solutions to examine the way LASSO
and Ridge solution paths behave when faced with
correlated variables. Their analysis is limited
to the two-variable -case. The LARS algorithm
[Efron Hastie Johnstone and Tibshirani 2004] also pro-
vides some intuition as to why the LASSO only picks one
variable out of a group of correlated variables. Indeed —
once the ‘best’ variable in the group has been added to
a LARS path, the residuals are unlikely to be correlated
to the remaining variables in the correlated group.

We choose to provide a novel geometrical explanation
of this behaviour, in terms of the LASSO penalisation
function itself. Consider the penalised least squares prob-
lem

P
B = argming |Y — XB|* + > Ap(I8i])

=1

The theory of convex optimisation (see, for example,
[Boyd and Vandenberghe 2004]) imply that this problem
is identical to the optimisation problem

p
3 = min ||Y — X3||> subject to i) <t
B = min | B|I” subj > p(18i]) <

i=1

for some ¢t. The A in the first formulation can be viewed
as a Lagrange multiplier.

This optimisation problem effectively tries to get as
close as possible to the ordinary least squares esti-

mate ,BOLS while staying within the constraint. Thus,
the solution will lie at the intersection of the con-
tours of |[Y — X||* and the contour corresponding to

P p(|3i]) = t. Let us consider the form of these con-
tours

e Contours of constant ||[Y —Xg|*> are clearly el-
lipses, and the minimum (ie: the centre of the el-
lipse) is clearly at the ordinary least squares esti-
mate of B



FIG. 11: Penalised least squares as a constrainted opti-
misation problem. The dotted lines are the contours of
lY — XB|* (centred at the ordinary least squares estimate),
and the solid lines are the contours over which the Ridge and
LASSO penalty functions are equal to a fixed constant t. The
solutions occurs at the intersection of these contours.

e Contours of constant > -_, p(|8;|) < t depend on
the type of penalty used. For the Ridge penalty
(p(|8]) = |8]?), the contours are circles centred at
the origin, and for the LASSO penalty (p(|3|) =
|8]), the contours are diamonds, centred at the ori-
gin.

These concepts are illustrated in figure 11.
We now consider the geometry of the [|[Y — X3||* con-
tours in more detail. First, notice that

Y - X8> =YY —2v"X8 + 87X"X3

Notice, however, that X7X is simply the covariance
matrix of X. The geometry ellipses implies that the semi-
major axes of the elliptical contours are inversely related
to the eigenvalues of this matrix (see Appendix F).

Let us consider the two-variable case. Assuming the
normalisation conditions in definition 5 are met, the co-
variance matrix is given by

p 1

The eigenvalues of this matrix are
1+pand1—p
And the semi-axes of the ellipse are therefore propor-
tional to
1 1

—— and ——
an =,
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FIG. 12: The LASSO and the Ridge for two highly correlated
variables (p = —0.99). The dotted lines are the elongated
contours of ||Y — X3||%2. The Ridge bulges outwards, and
picks a solution involving both variables. The LASSO does
not, and as a result only picks one of the two variables (in
this case, (1). [Note that this diagram is slightly misleading
in that the design matrix X used to produce it does not satisfy
the normalisation conditions in definition 5. See Appendix G
for a discussion of why this was necessary.|

This means that as the variables become more corre-
lated (ie: as p — 1), the ellipse becomes more and more
elongated.

We are now able to understand the behaviour of the
LASSO and the Ridge when presented with a very long
and thin ellipse, due to correlated variables:

e The Ridge (or indeed, any other strictly convex
penalty) ‘bulges out’ to ‘meet’ the ellipse — thus,
the solution occurs far from the axes and both vari-
ables are included.

e The LASSO (or any other concave penalty) does
not ‘bulge out’ to meet the ellipse.

In the case of non-correlated variables, this does
not make a difference, because the ellipse itself will
‘bulge out’, and the LASSO is likely to pick both
variables (like it does, for example, in figure 11).

If the variables are correlated, however, the ellipse
will also be very elongated, and depending on the
inclination of the ellipse, the LASSO will choose
one or the other of the correlated variables.

This phenomenom, in the case of high correlation, is il-
lustrated in figure 12.

In summary, therefore, we see that a necessary condi-
tion for group selection of correlated variables is strict
convexity of the penalty function.
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FIG. 13: Top: Contours of constant naive elastic net penalty
(in the two-variable case). Bottom: the effect of the naive
elastic net in the orthonormal design case.

C. The Solution

At first sight, it would appear that this problem can be
solved by using Bridge regression with 1 < v < 2 — these
functions being strictly convex. This, however, is not the
case — as we saw in section VII A, Bridge regression is
only sparse for v < 1.

[Zou and Hastie 2005] proposed, instead, to use a lin-
ear combination of the LASSO and the Ridge

pa(18]) = M |B] + K62 (27)

They call this the elastic net.

The resulting solution is easily calculated from the re-
sults for the LASSO and the Ridge, and we omit the
algebraic details. The form of the penalty function and
of the elastic net estimator are shown in figure 13. Notice
that the penalty function still has ‘corners’ at the origins,
but is also strictly convex. This is what gives it both the
properties we desire.

The diagram makes it clear that the elastic net is equiv-
alent to performing Ridge shrinkage followed by LASSO
thresholding. Unfortunately, this double-shrinkage pro-
duces in sub-optimal results, because it pushes us too far
along the bias-variance tradeoff.
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As a result, [Zou and Hastie 2005] call the method
above the ‘naive elastic net’, and suggest a corrected es-
timator given by

~ Elastic ~ Naive elastic

B8 =(1+X)B

The factor of 1 + Ay simply has the effect of ‘undoing’
some of the shrinkage, and is strongly motivated in a
number of ways in [Zou and Hastie 2005].

XI. DEALING WITH ULTRA-HIGH
DIMENSIONAL PROBLEMS - SURE
INDEPENDENCE SCREENING

In this section, we consider ultra-high dimensional
problems — that is, problems in which the input vectors
X are so large that even the methods we have discussed
thus far are unable to fit the model. This can occur for
a number of reasons. The two most obvious ones are

e Convex optimization algorithms usually take longer
in very high dimensional spaces.

e When the number of variables grows extremely
large, it becomes very probable that a number of
variables will be correlated with each other (see
[Fan and Lv 2008, p. 5] for a simulation demon-
strating this). This makes it very difficult to know
which variables actually affects Y, and which vari-
ables are just spuriously correlated to Y. This
makes the model less identifiable.

For a more thorough discussion of the problems of high
dimensionality, see [Fan and Lv 2008], [Donoho 2000]
and [Fan and Li 2006].

Sure independence screening [Fan and Lv 2008] is a
rapid and simple procedure for ‘pruning’ some of the vari-
ables in ultra-high dimensional problems. The resulting
model is then small enough to allow the application of
the methods we have discussed earlier in this paper.

A. Basic SIS

The method used by sure indpendence screening is de-
ceptively simple. It simply selects the variables that are
most heavily correlated with the response Y. More for-
mally, we let

w=X"Y

Since the columns of X and Y are scaled to ensure their
mean is 0, w effectively contains the correlation of each
variable with each variable. SIS then simply chooses vari-
able i if w; is among the highest of all components of w.

The number of variables we choose to retain in the
model depends on our aims. A sensible suggestion is to
retain n — 1 variables, to bring our model into the realm
of more classical methods.



Despite its apparent simplicity, it can be shown that
SIS possess the sure screening property. Let M., be the
‘real’ underlying model, and let M., be the model chosen
by SIS. Then

P(M.,CM,)—1lasn— oo (28)

The proof is very involved — see [Fan and Lv 2008] for
details.

B. [Iterated SIS (ISIS)

SIS may break down if?

o A variable is jointly correlated with the Y (ie: when
considered in conjunction with other variables, it
does affect the response) but marginally uncorre-
lated (ie: by itself, it doesn’t affect the response
much). In that case, SIS would not rank the vari-
able highly enough, and simply discard it.

As an example, consider a true underlying model
involving J + 1 variables X;--- X, 1, such that
Cov(X;, X;) = p. Imagine our true model is

Y=X1+ -+ X;—-JpX; 1

Clearly, if J is large, X ;41 heavily affects Y. How-
ever

J
Cov(Xj41,9) = Y Cov(X;11,X;)
=1

— Cov(Xj41,JpXj11) =0

SIS would therefore rank this important variable
last in the list of potential variables!

e A ‘spurious variable’ is correlated to Y only by
virtue of its correlation to other variables which
are genuinly correlated to Y. These ‘spurious vari-
ables’ may be ranked higher than other, genuine
variables.

As an example, consider a true underlying model
involving three variables, Xy, X7 and X5, such that
X is uncorrelated to the other two. Imagine our
true model is

Y =pXo+ X1+ Xo

Now imagine a third variable, X3, is corre-
lated to X; and X5 such that Cov(X3,X;) =
Cov (X3, X2) = p, but uncorrelated to Xo. We then
have

(COV(Xo, Y) =p

9 The examples given here were inspired by similar examples given
in [Fan and Lv 2010, pp. 127-128], a review paper on high di-
mensional variable selection.
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Cov(X3,Y) = Cov(X3, X1 + X2) = 2p

X3, the spurious correlated, is more strongly cor-
related to Y than Xy. Thus, SIS would rank X3
higher than Xj.

Tterated SIS (ISIS) is a method that seeks to over-
come these difficulties. It was first proposed in
[Fan and Lv 2008], and an improved version was pro-
posed in [Fan Samworth and Wu 2009]. We give an ac-
count of the latter version.

1. Begin with an ultrahigh dimensional problem con-
taining p variables.

2. Using SIS, select k; of these variables. Let A; be
the resulting set of variables.

3. Use the LASSO (or any other similar method) to
select a subset of these variables. We let

e M be the resulting set of variables

° ﬁ M, be the corresponding vector of fitted co-
efficients

e x; A, be the sub-vector of ; containing only
those elements in M.

4. Look at each variable j that was not selected in
My, and calculate the following quantity!®

1
L(-Q): min —

J By B N ZL (Yvi’wz:/\/lllﬁj\/h + Xijﬁj)

i=1

This quantity looks somewhat daunting, but is in
fact quite simple. It does the following

e Consider a model containing all the variables
in M; as well as variable j.

e Find the minimum erT for that model

Effectively, it asks “if I were to add variable j to
my model as well as those variables in Mj, how
low would I be able to get err?”

5. Select those variables j with the least value of L§2),

and put then into a set Aj.

6. Now consider the set M7 U Ay and use the LASSO
(or any other similar method) to select a subset of
these variables. Call the resulting set of variables

Ma.

7. Return to step 4 with My instead of Mj.

10 This is where the ISIS algorithm in [Fan and Lv 2008] differs
from that in [Fan Samworth and Wu 2009]. The former advo-
cates using the residuals from the previous step of fitting instead

of L§-2>



The process can be repeated either until My = M,_4
or until we have reached a set containing the prescribed
number of variables d. [Fan Samworth and Wu 2009]
chose k1 = |2d/3| (where |z| is the largest integer
smaller than or equal to x) and k. = d — || M,._1|| there-
after, to ensure that ISIS takes at least two iterations to
terminate.

How does ISIS deal with the shortcomings of SIS men-
tioned above?

e Even if a variable is not very highly ranked in the
first stage of ISIS, it is very likely to be selected at
a later stage if it is indeed jointly correlated with
Y.

e Even if a variable is highly correlated with Y, it
will not be selected unless it also significantly im-
proves the prediction accuracy of the model. Thus,
in the example above, once X; and X5 are selected,
X3 is unlikely to also be selected, because it won’t
significantly improve the model. This allows X to
be selected.

These improvements are borne out by empirical studies
in the aforementioned papers.

C. Variants on ISIS

A number of attempts exist to further improve the per-
formance of ISIS. We very briefly consider two of them
here

e [Fan and Lv 2008] suggest transformation of vari-
ables as a way of dealing with correlation. For ex-
ample, weights wy, wo and ws at 2, 9 and 18 years
are clearly positvely correlated. Considering, in-
stead, the variables wy, we — w1 and ws — wo can
significantly weaken the correlation. This is an ex-
ample of a subject related transformation.

e [Fan Samworth and Wu 2009] suggest the follow-
ing method

— Partition the n data points into two halves at
random.

— Perform SIS or ISIS separately to the data in
each partition. This will gives two sets of vari-
ables A; and As.

— Both of these sets will satisfy the sure-
screening property (equation 28) and will
therefore contain many variables that are truly
in the model. They will also, however, contain
many variables that are not in the underlying
model (ie: the false discovery rate (FDR) for
these sets will be high).

— Construct the set

A=A NA;
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This set will also satisfy the sure screening
property, but will also contain many less ‘false
positives’ (this statement is formalised in the

paper).

XII. DEALING WITH FAILURES IN
REGULARITY CONDITIONS - RANDOMIZED
LASSO

We mentioned above that [Zhao and Yu 2006] showed
that the LASSO only performs consistent variable selec-
tion if the model satisfies a so-called irrepresentable con-
dition. [Zou 2006] proposed a solution to this problem
in the form of the adaptive LASSO, a two-stage proce-
dure. We consider an alternative algortihm here, due
to [Meinshausen and Biiehlmann 2010] — the randomised
LASSO. Despite its simplicity, it is consistent for variable
selection even if the irrepresentable condition is violated.

The basic idea of the randomised LASSO is simply to
change the regularisation parameter A for every compo-
nent of (.

Definition 17 (Randomised LASSO). Choose « € (0, 1]
(the weakness of our algorithm), and let Wi be inde-
pendent identically distributed variables in [«,1], for
k=1,---,p. The randomised LASSO estimator is then

P

~ LASSO,\, W ) 2 Bk

= argmingcg, | Y — X85 + )\Z %
k=1

Of course, it is nonsensical to hope that this random
perturbation will uniformly lead to an improvement — and
indeed, if applied once, the randomised LASSO is not
very useful. However, applying the randomised LASSO
many times and looking for variables that are often cho-
sen turns out to be a very powerful procedure.

Part IV
Conclusions

This paper has considered a number of methods of deal-
ing with statistical learning problems that lie in very high
dimensions. Before we conclude, we list these methods,
and their salient points

Bootstrapping and cross-validation are very power-
ful methods, especially when large amounts of data
are available.

Classical model selection is arguably the most ‘accu-
rate’ method, but is unfortunately extremely slow
for more than about 30 variables.



Ridge regression shrinks the contribution of all vari-
ables to a certain extent, but no contributions to 0.
It is well suited for models in which we have reason
to believe every variable affects the response in a
small way.

The LASSO performs simultaneous fitting and model
selection, by shrinking the coefficient of some vari-
ables to 0. Unfortunately, it also introduces bias
into larger coeflicients. It is well suited for models
in which we have reason to believe most variables
have no effect on the response.

SCAD works like the LASSO, but without the bias issue
of the LASSO. It is, however, a non-convex linear
program, and therefore entails some implementa-
tion difficulties.

Elastic net regression is useful in situations in which
we have reason to believe many variables do not
affect the response, and those that do are part of a
number of correlated groups.

Randomised LASSO regression is useful in situa-
tions in which regularity conditions on X are bro-
ken.

XIII. CONCLUDING REMARKS

This paper has reviewed the various methods currently
available for high dimensional variable selection. The
story, however, is far from complete, and the field is still
very much at the forefront of research.

New inovative techniques continue to be proposed —
the Dantzig selector [Candes and Tao 2007, the adaptive
LASSO [Zou 2006] and the minimum concavity penalty
(MCP) [Zhang 2007] are only a few examples of recent
methods which we did not considered in this paper. We
consider the elastic net as an attempt to combine a num-
ber of existing method together, and it is one of several
such methods.

Another area of interest, which we did not consider
in this paper, is a critical assessment of the statistical
properties of these techniques under various conditions.
We briefly mentioned the sure screening property in the
context of sure independence screening. A number of
other such properties are used to asses the performance
of variable selection techniques (the oracle property, for
example [Fan and Li 2001]). There is also a tremendous
amount of recent work on the distribution of pe-
nalised likelihood estimators, and associated confidence
sets — see, for example, [Potscher and Leeb 2009],
[Potscher and Schneider 2010] and
[Potscher and Schneider 2009]. In addition, the methods
considered in this paper sometimes perform poorly for
certain kinds of design matrices X — it is of interest to
characterise the situations in which this happens, and to
devise methods that avoid these problems.
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Our focus in this paper has mostly been on
the linear model. There are, however, a num-
ber of methods designed to deal with high di-
mensional variable selection beyond the linear
model. See [Hastie Tibshirani and Friedman 2009]
and  references  therein  (and, for  example,
[Fan Samworth and Wu 2009]).  This is also an ac-
tive area of current research.

Finally, opportunities abound to design robust and
user-friendly algorithms and software to quickly and eas-
ily implement the theoretical ideas we have considered in
this paper.
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Part V
Appendices

Appendix A: Expectations

Definition 18 (Expectations). In this paper, we use sev-
eral different kinds of expectations

e E(, ) represents taking an average over every pos-
sible pair of input and output that could possibly
arise.

e E(x v)er represents taking an average over those
pairs of (X,Y) in our training set 7 only.

e Er represents taking an average over all possible
training sets.

e Ey~ew is used in the definition of the in-sample
error (definition 19). There, YVEW represents a
new observation of Y for a given input X. This
expectation represents taking an average over all
such new instances.

Appendix B: Expected Optimisim

In this appendix, we prove theorem 2.
We will be using a slightly different version of the ex-
pected generalisation error, called the in-sample error



Definition 19 (In-sample error).

Err;, = ]EyNEWE(X7y)eT {L (yNEW, f(X)>}
N
= ; L (V. Y:)

where YNEXV represents a mew observation at the same
point X;, Y; = E{f(X;)} represents the average of all

such observations, and Y; = f(X), as usual.

The similarity to the expected generalisation error
(definition 2) is obvious. Both consider new data points
outside the training set — the only difference is that the
in-sample error constrains these new data points to be at
the same X coordinates as those in the training set.

Our new definition of the expected optimism is then

Definition 20 (Expected Optimism (reviewed)).

w = Er {Err;, — et}

We first develop a lemma necessary for the proof of our
theorem

Lemma 1. Let £ be a concave function, and consider a
class of loss functions defined as follows

L (yiy9i) = £ () + € () (i — ) — £ (y)

For loss functions in this class,

1 & .
=N > Er {Ci (yi —?i)}
i=1
Where & 1s the vector with ith component
=L ()
w is the expected optimism (definition 20), N is the num-

ber of items in the training set T, y; is the ith output in
the training set, G, is the average of all outputs Y; for in-

put X; and 4; = f(XZ), our model’s prediction of what
y; should be.

(B1)

Proof. 1! For loss functions satisfying B1

Ly "W 0:) = L (yi, )

=—L(y )( -y ") +€(y¢)—4(yzNEW)

11 The proof of this Lemma is based on a similar theorem for binary
outputs in [Efron 1986].
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Therefore

Err;, —err

N
Z 5+ o) — vy P

Finally, remember that w = Eg {Errj, —ert}. When
taking this expectation with respect to all training sets,
the last two terms in equation B2 vanish, because
E(yNEW) = y;, and so E {{(yNF")} = £(y;) . As such

1
=N ZET {Ci (yi — ?i)}
i=1
Where, in the last step, we used linearity of expectations

to swap the expectation and the sum. O]

Theorem 8. For squared error loss (definition 1)

9 N
= > Cov (¥i.Yi)
i=1

where w is the expected optimism (definition 20), N is

the number of items in the training set T, Y; is the ith

output in the training set and Y; = f(X;), our model’s

prediction of what Y; should be.

Proof. 12 Putting
L(x)=2(1—2)

in equation B1 confirms that squared error loss does in-
deed belong to that class.
By Lemma 1, we therefore have that

1 & .
= N;ET {Cz (i _?i)}

For squared error loss, we also have that

=201
and so
LN
w = NZET{(%@—U (i —7:)}
=1
1 o = =
= 5 2 Br {(26 — 20 +25, 1) (v~ 7)}
1 1;1 )
=~ ZET {295 —29;) (vi —7:)}
i=1

N
Z 2, — 1) Ex {y: — 7}

12 The proof of this Theorem is based on a similar theorem for
binary outputs in [Efron 1986].



where 7, = E(f(X)) is a constant (and was therefore
taken out of the expectation in the last step). Finally,
note that E7(y;) = ¥;, and so the last term vanishes.
Thus

1 -
w = ﬁZET{@ﬁv*%L) (yi*yi)}

i=1

2 & .
v 2 Cov (V2v)

i=1

As required. O

Finally, we derive the form of the optimism in the par-
ticular case of the linear model.

Theorem 9. For a prediction method satisfying Y =
HY, the expected optimism is given by

2

= —Tr(H)o?

~Tr(H)o?
Proof. Recall that in the linear model, Y = HY, where
H is the hat matrix (definition 6). Let H; represent the
ith row of the matrix H. Then

Yi = HY
N
= Y HuYi
k=1
Therefore
9 N
w = —Z(Cov (f’i,Yi)
N=
5 N N
NZ ov <Z H; Yy, Y )
i=1 k=1

The Y; are all independent, so only one covariance re-
mains

2 N
= NZCOV (H:Yi, ;)

N
- Z HiiVar
i=1
= z'er(H) 2 (B3)
N
As required. O

Theorem 10. If a linear model is fit using ordinary least

squares (with f(X) = XB°9)
2p o2
W= o

where p is the number of covariates in X and o? =
Var(Y;), the irreducible error in the underlying model.
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Proof. We first show that in this particular case, Tr(H) =

p. We simply note that H = X (XTX)f1 XT and that
Tr(ABC) = Tr(CAB). As such

Te(H) = Tr { X (X7X) ' X7}
- { XX (X"X) "'}

XT X is a square matrix, with as many columns as there
are columns in X. Therefore

= Tr(I,)
=p (B4)
Combining equations B3 and B4, we obtain

2p o2
N 6
As required.
O

Appendix C: Expanding the expectation of the loss
in model selection

Proof. In this appendix, we prove theorem 1

Ewy {L f@)} = E { (v- f@))Q}

= e{ (@) + e~ i)}
— efe+ (f@) - f@)
+2¢ (f(2) - f(a)) |

Note, however, that E(e) = 0 and that € is independent
of X, so that the last term in the expectation vanishes.
Further note that E(e?) = Var(e). Therefore:

B {1y @)} = vartd + B{ (7@ - f(@) '}
= Var(e) + Var (f( ))

+[2(f00) - r0]

As required. O

Appendix D: Orthonormal Design

Theorem 11. In the orthonormal design case, in which
XTX =1, equation 3 can be written as

QB) =

OLS

2
o L I

~ OL
where (3
and YOLS

is the ordinary least squares estimate of 3

is the ordinary least squares estimate of Y .



Proof.
Iy —xg|?

Y2 - 28"XTYy + BgTXTXp3

= Y2 2vyTxXXTy
+YTXXTY + YTXXTY
—28"XTy + B'XTXp

= Y2 _2vTxX"y
+YTXXTXXTY + YTXXTY
—28"XTy + B'XTX}3

= Y7 (1-xx7)" (1-XX")Y

+(XTY - 8)" (XTY - B)

~ OLS ~ OLS
LA R Gt

As required. O

Appendix E: Subgradients

In this appendix, we find the value of 8 at which the
function

1

a(9) = % (3°% —8)" + (180

attains its minimum, when the function p is nondiffer-
entiable at the origin.
We will need the concept of a sub-gradient

Definition 21 (Subgradient). Let f : R? — (—o0, 00) be
a convex function. We say that * € RP is a subgradient
of f at x if

fy) = f(@) + (" y—x) VyeR”

Intuitively, @ is the gradient of a plane that touches f at
y, and lies below it everywhere else.

At points where f is continuous, there is a single sub-
gradient equal to the derivative. At other points, there
is a set of subgradients, denoted

of(x)
Note also that
0cdf(x) & fly) > f(x)

In other words,  is a minimum of f if and only if 0 is
in the set of subgradients at that point.

Vy € RP

We now use this concept to minimize ¢(5). We will

also find it useful to remember that
q'(8;) = sgn(B;) {AIB;] + pi (18;1)} — ABPES
Where, as usual, A = 2/N. We also let A = \/A.
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1. The LASSO

For the LASSO

R 2
a(9) = + (5%~ 5)” +\lg
Note that
AB — ABOLS 4 ) B>0
9q(B) = {-AB°YS 1 or:0€[-1,1]} B=0

AB — ABOLS — )\ B<0

This function is minimised for those values of (3 for
which 0 € 9¢(5). This immediately yields

FLASSO _ o (FOLS) <|BOLS| _ 5\)
+

Where x4 = max(z,0).

2. SCAD

The SCAD function is not convex, but it is piecewise
convex near the origin. Since the origin is the only place
at which there is some ambiguity as to the gradient of
the function, we can use subgradients again.

The SCAD penalty is

5_
INEER {]lmd + (alﬁl)ﬂlﬁb;}

(a—1)A
As such
AB — ABOLS B> a\
Aﬂ—Aﬂ:OLS+% 5\<ﬂ<a~5\
AB — ABOFS 4\ 0<pf<A
() = { {-aBS+oni0e]}  B=0
AB — ABOLS — ) 0<B<A
AB — AB:OLS R C=in A< f<al
AB — ABOLS B> aX

This function is minimised for those values of 8 for which
0 € 9q(B). After some manipulation, this yields

sgn(B015) (895~ A) |

(a=1)B°° —sgn(F°"%)aA
(a=2)

mOLS‘ < 2;\

ASCAD ~ ~ ~
s = 2\ < |BO1S| < aX

|BOLS| > a\

BOLS

3. Sparsity

[Tibshirani 1996] graphically shows that sparsity only
occurs for penalty functions such as the LASSO and
SCAD, which have ‘corners’ at the origin (ie: are non-
differentiable).



We suggest an alternative motivation for this state-
ment. The discussion above has made it clear that for
sparsity to occur, 0 must be a member of the set of sub-
gradients for more than one value of B This, however,
can only occur if the set of subgradients contains more
than one member when § = 0 This, in turn, only occurs
when the penalty function is non-differentiable at 3 =0
— because then, the subgradients take a range of values
at § = 0 as the ‘jump’ from the ‘pre-corner’ gradient to
the ‘post-corner’ gradient.

Appendix F: The Geometry of Ellipses

The general form of an ellipse is given by
AX?+2BXY +CY?+2DX +2FY + M =0

This can be written in matrix form (which generalises to
higher dimensions) as

XTAX +2JTX + M =0

~(e) ()

Our first step will be to diagonalise our matrix A, and
write it as

Where

A =PD?PT

where D is a diagonal matrix and PTP = PNPT =1

_ We then define a new coordinate system X, such that
X = P7X (this is equivalent to rotating our coordinate
axes to align them with the coordinate of the ellipse — ie:
with the eigenvectors of A). We can then re-write our
ellipse as

X'D2X + 2JTPX + M =0
Completing the square, this becomes
- 2
(DX + D—lJTP) —PTJD2JTP + M =0

Finally, we define a new coordinate system X such that
X = X — D 2JTP. Our ellipse then becomes

N2
(DX) = Constant

Which makes it clear that the semi-axes of the ellipse
are, indeed, equal to the reciprocal of the values on the
diagonal of D — which are the eigenvalues of A.
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QLASS()

FIG. 14: Figure 12 for a situation in which the matrix X satis-
fies the normalisation conditions in defintiion 5. Clearly, there
are a number of possible LASSO solutions, most of which in-
volve both variables.

Appendix G: Figure 12

This appendix discusses some subtelties associated
with the diagram in figure 12. The caption of the fig-
ure cautions the reader that the design matrix X used
to produce the diagram did not satisfy the normalisation
conditions in definition 5.

To understand why this was necessary, recall that the
normalisation conditions imply that, in the two variable

case,
XTx =1 7).
p 1

Recall also that the eigenvectors of that matrix lie along
the axes of the ellipse (as discussion in section F).

The eigenvector of this particular matrix, however, are
(1 1)T and (1 — 1)T, and this implies that the ellipse
in question lies at a 45° angle to the axes. This means
that the ellipse would have been exactly parallel to the
LASSO penalty function. See figure 14 for the diagram
that would have resulted.

Figure 14 makes it clear that in that case, there are
a number of LASSO solutions, most involving both (1
and (2. This special case in two dimensions is therefore
the exception to the rule that the lasso picks one of a
group of correlated variables. To illustrate our point, we
therefore preferred to use a non-normalised X.
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