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Preliminary Computing 

 

Directory, Linux & Miscellaneous operations 

 Changing password: passwd 

 Creating a new directory: mkdir 

 Changing to directoy newDir: cd newDir. The command cd .. 

moves up one level in the directoy tree. 

 List all files in the current directory: ls. Can be followed by *.tex, 

for example, to only list tex files. 

 Delete File1: rm File1 

 Move File1 to directory newDir: mv File1 newDir 

 Copy File1 to a file with name File2: cp File1 File2 

 Examine the content of File1: more File1 

 Leaving emacs: ctrl x, ctrl c 

 

Printing 

 Looking at the print queue: lpq 

 Looking at my jobs: ps x 

 

General Splus7 stuff 

 Opening Splus for the first time in a given directory: Splus7 
CHAPTER 

 Opening Splus7: Splus7 –e The –e allows the use of arrows 

 Leaving Splus7: q() 

 Listing all objects created: objects() 

 Removing an object: rm(objectName) 

 Getting help with function blah: ?blah 

 rep(1:5,9) repeats the sequence “1 2 3 4 5” 9 times. rep(1:5,9) 

produces 9 1s, followed by 9 2s, etc… 

 

Imputing and handling data 

 Reading FileName into table dataVar with column titles x and y: 

dataVar <- scan(“FileName”, list(x=0,y=0)) The “list” function 
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simply creates an empty table with two columns; x containing value 0 and y containing value 0. Without this argument, the 

entire file is read left-to-right into a single list. 

 Reading FileName into table dataVar, when the column titles are 

already included in the file FileName: dataVar <- 
read.table(“tumour”, header=T) 

 Inputting a vector directly into x: x <- scan()End input with a blank line 

 Listing the columns of a table tableName: names(tableName) 

 Extracting the x from the table dataVar: dataVector <- 
dataVar$x 

 x[-11] returns vector x without observation 11 

 Saving each column in table dataVar as a separate vector, with the 

same name as the column title: attach(dataVar) 

 Joining several columns into a matrix: cbind(...) 

 Many functions (glm, plot, etc…) can be applied to subsets of the 

data by adding an argument to the function. For example, the run a 

function only on data in which var1 takes the value A, add the 

argument subset=(var1==”A”) to the function. 

 table(var1,var2) will create a contingency table, listing the 

number of times each possible pair of values occurs. 

 

Simple graphical stuff 

 Plotting two vectors against each other: plot(xVector, yVector) 

 Follow the above by: identify(xVector, yVector) to be able to 

identify different points on the plot. 

 Adding a straight line to the current plot: lines(xVector, 

yVector,typeOptional) “Type” takes values “p” for points, “l” for a line or “b” for both 

 Fitting two-by-two plots on each page: par(mfrow=c(2,2)) 

 

Outputting stuff to a file 

 To output graphics, begin with postscript(file=’fileName.ps’) 

and create all graph using plot (none of them will appear on screen). 

When done, use dev.off(). 

 To save output to a file, start with sink(‘fileName’) – all 

subsequent output will go to the file. End with sink(). 
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Simple statistical stuff 

 The upper a  point of a tn distribution is given by: qt(1–a, n) 

 The upper a  of an 
,m n

F  distribution is given by: qf(1–a, m, n) 

 Generating vectors containing a sample of n simulated N(0,1) 

observations: rnorm(n) 
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Preliminary Mathematics 

 

This section contains preliminary mathematics and proofs that are assumed in 

these notes. 

 

Projections 

 A idempotent matrix P on an underlying vector space W satisfies 2P P=  

and is a projection. The eigenvalues of P can only be 0 or 1, with the 

following eigenspaces 

{ }
{ }

Range/Image of :

Null space/kernel of : 0,

U P P

V P P

W

W

= Î=

= Î= =

y y

x x x
 

We say P projects W onto U. 

 W U V= Å ; for any WÎx  we can write ( )P P= + -x x x x , where the 

first vector is in U and the second is in W. 
 

If U and V are orthogonal (see next point), we can show that such a 

decomposition is unique . Consider 

¢ ¢= + = +x u v u v  

Then 

( ) ( ) ( ) ( )
2 2 22

0 ¢ ¢ ¢ ¢= - = - + - = - + -x x u u v v u u v v  

Since { } { }U VÎ ^¢ ¢- - Îu u v v . Thus, we must have ,¢ ¢= =u u v v . 

 A projection is orthogonal if { }: 0,TWV U U^ = Î = " Î= u y uy . 

Consider , WÎx y  and P UÎ=u x , VP= Î-v y y . We then have 

( ) ( )T T T TP P P P⋅ = - = -u v x y y x y  

We therefore have that a projection is orthogonal if and only if TP P= . 

 If P and Q are projections and PQ = 0, then the range of each of these 

vectors are orthonormal. 

 For the orthogonal projection onto a vector u, TP = uu . 

 

Generating Functions 

 Let X be a real-valued random variable. The moment generating function 

of X is given by 
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( ) ( ) s( .) t. ttX XM t e t e= " < ¥   

 Note that, by an extension of linearity 

( )

( )
0 0 0

0

( )
! ! !

d

d

k k k k k
k

k k k

n
n

n

t

t X t X t
M t X

k k k

M
X

t

¥ ¥ ¥

= = =

=

æ ö æ ö÷ ÷ç ç÷ ÷= = =ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

=

å å å  


 

 If ( )2~ ,X N m s , then 

2 21
( ) exp

2
M t t tm s

æ ö÷ç ÷= +ç ÷ç ÷çè ø
 

 The cumulant generating function is given by 

( ) log ( )K t M t=  

We can write K as a power series 

1

( ) log ( )
!

n

n
n

t
K t M t

n
k

¥

=

= =å  

n
k  is called the nth cumulant. Clearly 

0

d ( )

d

r

Y
r r

t

K t

t
k

=

=  

Note also that we can use the expansion ( ) 21
2

log 1 z z z+ = - + on the 

series expansion ( ) ( )2 21
2

( ) 1M t t X t X= + + +   to get 

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ){ }
( ){ } ( ) ( ){ }

2
2 2 2 21 1 1

2 2 2

2
2 2 21 1

2 2

22
2

2
2

( )

2

2

K t t X t X t X t X

t X t X t X

t
X t X X

t
tm s

= + - +

é ù= + - +ê úë û

é ù= + - ê úë û

= +



   

  

  
 

This confirms that 
1

k m=  and 2

2
k s= . 

 

Distributions 

 If ( )~ 0,1
i

Z N  where , ,1i n=   

2 2

1

~
n

i n
i

Z c
=
å  

Where 2

n
c  is a 2c  distribution on n degrees of freedom. 

( )2

n
nc =  
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 If ( )~ 0,1Z N  and 2~
n

Y c  and Z and Y are independent, then 

~
/

n

Z
t

Y n
 

Where tn is a t distribution on n degrees of freedom, which is symmetric 

with heaver tails than the normal distribution, and converges in 

distribution to (0,1)N  as n  ¥ . 

( ) 0
n
t =  

 If 2~
m

X c  and 2~
n

Y c  and X and Y are independent 

,

/
~

/ m n

X m
F

Y n
 

Where Fm,n is an F distribution on m and n degrees of freedom. Note that 

,
( )

1m n

n
F

n
=

-
  

 If ( )~ ,
n

N IZ m , then TU = Z Z  has a non-central 2c  distribution 2( )
n

c d  

with n degrees of freedom and non-centrality parameter Td = m m . 

( )2( )
n

nc d d= +  

 If 
1

2
1
~ ( )

n
W c d  and 

2

2
2
~ ( )

n
W c d  and W1 and W2 are independent, then 1 1

2 2

/

/

W n

W n
 

has a non-central F distribution 
1 2,

( )
n n

F d  with n1 and n2 degrees of freedom 

and non-centrality parameter d .  

( ) ( )
( )1 2

2 1

,

1 2

( )
2n n

n n
F

n n

d
d

+
=

-
  

 

The Multivariate Normal 

Y has a univariate normal distribution with mean m  and variance ( )2 0,s Î ¥ , 

and we write 2~ ( , )Y N m s  if its density is 

( ) ( )22

22

1 1
; , exp

22
y
f y y ym s m

sps

ì üï ïï ï= - -í ýï ïï ïî þ
Î   

It’s also convenient to define a degenerate normal distribution ~ ( ,0)Y N m  in 

which ( ) 1y m= = . 
 

Definition: We say a random vector nÎY   has an n-

variate normal distribution if for every vector nÎt  , 

the random variable Tt Y  has a (possibly degenerate) 

univariate distribution. We write ( )~ ,
n

N SY m . 
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We write ( )= Ym   for the mean vector and 

( )covS = Y  for the covariance matrix1 of Y, so that 

{ } ( )( )( )
ij i i j j i j i j

Y Y YYm m m mS = - - = -   
 

The entire dependence structure of Y is determined by S . Components of Y 

are independent if and only if S  is diagonal2. 
 

In general, S  is symmetric and non-negative definite, because 

( )varT TS =t t t Y  and variances are non-negative. 
 

If, in addition, S  is positive definite, then none of its eigenvalues are 0 and it 

is invertible. We then have 

( )
( )

( ) ( )11 1
; , exp

2
2

T

n

nf

p

-
ì üï ïï ïS = - - S -í ýï ïï ïî þS

Î
y

y y y ym m m   

Even if S  is only non-negative definite, its MGF is 

( ) 1
2( )

T TT

M e e
S

= =
t t tt Y

y
t

m+  

We finally note that if ( )~ ,
n

N SY m  and A is a p × n matrix, then 

( )~ , T

p
A N A A ASY m 3. 

 

Laws of Large Numbers 

Chebyshev’s Inequality: Let X be a random variable 

with ( )X m=  and 2ar( )X s= . Then 

( )
2

2
X

s
m a

a
- ³ £  

 

                                                 
1  The covariance matrix is given by ( ) ( )( )cov

Tæ ö÷ç= S = - - ÷ç ÷çè ø
X X Xm m , and note that 

( ) ( )cov cov TA A A=X X . 

2 Note that in general, cov[u, v] ¹ 0 does not imply u and v are independent unless they are 

jointly normal. 

3  To prove it’s p-variate normal, choose pt Î  , and note that ( )TT Tt A A t=Y Y  where 

( )TT nA t Î  . For the mean, note that ( ) ( )A A A= =Y Y m   and for the variance 

( ) ( ) ( ) ( )cov ( ) ,( ) cov , cov , T

i j i j i j i j ij
A A A Y A Y A A Y Y A A A Aa a b b a b a b a b ab= = = S = SY Y  
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Proof: 

( ) { }( )
( )

( )
{ }

2

2

2

2

2

2

1

1
( )

X

X

X X

X

m

a

m

a

m a m a

m
a
s
a

-

-

- ³ = - ³
æ öì üï ïï ï÷ç= ³ ÷í ýç ÷÷ç ï ïè øï ïî þ
æ ö÷ç£ ÷ç ÷çè ø

= -

=

  

 





 

As required.  

 

We define the following modes of convergence 
 

We say that a sequence of random vectors ( )n
Y  

converges almost surely to Y if 

( )lim( ) 1
nn

Y Y
¥

= =  

or equivalently, for every 0e >  

sup 0 as 
n

n
m

Y Y ne
³

æ ö÷ç - >   ¥÷ç ÷çè ø
  

And we write . .a s

n
Y Y . 

 

We say that a sequence of random vectors ( )n
Y  

converges in probability to Y if for every 0e >  

( ) 0 as 
n

Y Y ne- >   ¥  

And we write p

n
Y Y . 

 

We say that a sequence of random vectors ( )n
Y  

converges in distribution to Y if 

{ } { }( ) ( )
n

f Y f Y   

for all bounded, continuous, real-valued functions f. In 

fact, it is enough that the convergence occurs when f is 

bounded and Lipschitz (ie:  0L$ >  such that 

( ) ( )f x f y L x y- £ - ). Equivalently, if and only if 

( ) ( )n
Y Yy y£ £   
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at all points where the distribution function of Y is 

continuous. 
 

We write d

n
Y Y . 

 

. .a s p d

n n n
Y Y Y Y Y Y     

For any h continuous and real-valued: 
? ?) ( )(

n n
Y Y Y f Yf   

In fact, h may have a set of discontinuities Dh provided 

that ( ) 0
h

Y DÎ = . 

 

We are now ready to prove the weak law of large numbers 
 

Weak Law of Large Numbers: Let 
1 2
, ,X X   be an 

infinite sequence of IID random variables with 

1 2
( ) ( )X X m= = = < ¥  . Define 

( )1
1 nn n

XX X= + +  

Then assuming 2

1 2
ar( ) ar( )X X s= = = < ¥  4 

as p

n
X nm¾¾  ¥  

 

Proof: By linearity and independence of the Xi, we 

have that 

2

1
1

21
1

( ) ( )

ar( ) ar( ) /
n nn

n nn

X X X

X X X n

m

s

= + + =

= + + =




 
   

Then by Chebyshev’s Inequality 

( )
2

2
0 as 

n
X n

n

s
m e

e
- ³ £   ¥  

Thus, by the definition of convergence in probability, 

we have proved our theorem.  

 

Strong Law of Large Numbers: With all the definitions 

above, 
. . as a s

n
X nm¾¾¾  ¥  

 

                                                 
4 The theorem is still true if this condition fails to hold, but the proof is more involved. 
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Uniform Law of Large Numbers: Suppose ( , )f x q  is a 

function defined for q Î Q . Further suppose that 

 1. Q  is compact (closed and bounded). 

 2. ( , )f x q  is continuous at each q Î Q  for almost all 

x. 

 3. There exists a dominating function g(x) such 

that { }( )g X < ¥  and 

   ( ) ), (gf x xq q£ " Î Q  

Then { }( , )f X q  is continuous in q  and 

{ }1

1

sup ( , ) ( , ) 0
n

p

in
i

f X f X
q

q q
ÎQ =

ì üï ïï ï- ¾¾í ýï ïï ïî þ
å   

 

Slutsky’s Theorem 

Slutsky’s Theorem: If Yn and Zn be sequences of 

random vectors with d
n
Y Y and d

n
Z c where c is 

constant, then 

( ) ( ), ,d

n n
¾¾Y Z Y c  

and for any continuous real-valued function g 

( ) ( ), ,d

n n
g g¾¾Y Z Y c  
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Proof: Let f be a bounded, Lipschitz function with 

Lipschitz constant L.5 
 

Given 0e > , let { }/ 3( 1)Ld e= + . 
 

Since d
n
Z c we can choose 

0
n Î   such that6 

( ) ( )6 1
n

f

e
d

¥

- > £
+

Z c  for all n > n0 

Since d
n
Y Y and ( , )f ⋅ c  is bounded and continuous, 

we can also choose 
1

n Î   such that 

{ } { }( ( ,
3

, )
n

f f
e

<-Y c Y c   for all n > n1 

 

We then have that for 
0 1

max{ , }n n n=  

{ } { }
{ } { } { } { }
{ } { } { }
{ } { }

{ } { }

{ } { }

( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

n

n

n n

n n n n

n n n n

n n n c

n n n c

n

f f

f f f f

f f f f

f f

f f

f f

d

d

- £

- >

-

- - +

- - +

£ -

=

+

-

=

-

+

Z

Z

Y Z Y c

Y Z Y c Y c Y c

Y Z Y c Y c Y c

Y Z Y c

Y Z Y c

Y c Y c

 
   
  
 

 
 

 

 

As required.  

 

                                                 
5 Lipschitz continuity is a smoothness condition for functions which is stronger than regular 

continuity; it limits how fast a function can change. If a function :f    is Lipschitz 

continuous with Lipschitz constant L, then 

1 2

1 2

1 2

( ) ( )f x f x

x x
L x x

-

-
£ " ¹  

Intuitively, a line joining any two points on the graph of f will never have a slop steeper than 

L; so there is a double white cone whose vertex can be translated along the graph so that the 

graph always remains entirely outside the code. 

6 For a bounded function f defined over the set S, { }
,

sup ( ) :
S

f f f x Sx
¥ ¥

= = Î . 
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Linear Models 

 

Introduction and MLEs 

A general linear model in which we make n observations and we want to fit p 

parameters takes the following form: 

   
1 11

   
n n p np

X
´ ´ ´´

= +Y b e  

Where 

 X is an n p´  matrix of known covariates or explanatory variables 

(with the first column consisting of 1s, for the intercept). Also called 

the design matrix. 
 

It is usual to assume that this matrix has full rank so that TX X  is 

positive definite7. 

 Y is an 1n´  vector of observations or response variables. 

 e  is an 1n´  vector of IID errors ( )2~ 0,
n

N se . 

 b  is an unknown vector of regression coefficients. 

Y is a linear combination of constants and normal variables, and in fact 

( )2~ ,
n

N X sY b   

 

In this parametric model, the unknown parameter is 2( , )Ts=q b . The 

maximum likelihood estimators of b  and s  can be worked out8 

                                                 
7 If X had linearly dependent rows, there would be a vector z such that zXTXz = ||Xz||2 = 0, 

which would imply XTX were not positive definite. 
8 …by maximising, with respect to both b and s, the loglikelihood 

( ) 22 2

2

1
; , log constants

2 2

n
Xs s

s
= - - - +Y Yb b  

Specifically, 

 In the b case, this amounts to minimising the following, with respect to b  

( ) ( )T T T T T T TX X X X X X X- = - - = - - +Y Y Y Y Y Y Yb b b b b b b  

Differentiate using ( (¶ ¶

¶ ¶
= =x x xb) b )

b b
, ( (T T T¶ ¶

¶ ¶
= =x x xb ) b )

b b
 and ( )( )TA T TA A¶

¶
= +b b

b
b , 

then transpose the lot. For distribution, note that b  is a linear transformation of Y. 

 In the s2 case, it’s a straight differentiation with respect to 2s . s  is not a linear 

transformation of Y, and so the distribution requires Cochran’s Theorem – start with 
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( ) ( )1 1
2ˆ ~ ,T T T

p
X X X N X X s

- -æ ö÷ç= ÷ç ÷çè ø
Yb b  

22
2 21 ˆˆ ~

n p
X

n n

s
s c -= -Y b  

And these are independent of each other9. (Note that the 
2ˆX-Y b  term in 

the expression for 2ŝ  is just the residual sum of squares, RSS = ˆ ˆTe e , and that 

it can also be written as ( )
22ˆ I H- = -Y Y Y ). 

 

Note that 

 b̂  is an unbiased estimator, but its different components may be 

correlated, since the covariance matrix is not, in general, diagonal. 

                                                                                                                                            

( ) ( ) ( )

( ) ( ) ( )( )

22 2
2 1 1 1 1ˆ ˆˆ

1 1

TT

TT

X I H I H I H
n n n n

I H X I H X
n n

s = - = - = - = - -

= - = - - -

Y Y Y Y Y Y

Y Y Y Y

b

b b
 

(The last step is non-trivial and requires some working – start with the result and work 

backwards). We also have that ( )I H I H= + -  with both H and I – H symmetric. All 

we now need to show is that rank( ) rank( )H I H n+ - = . We do that by noting that H2 

= H which means that all the eigenvalues of H are 0 or 1, and we can find Q such that 
TQ Q I=  and TQ HQ D=  where D is diagonal and contains only 0s or 1s. Thus 

( )1rank( ) rank( ) tr( ) tr( ) tr( ) tr( ) tr ( )

pI

T T T TH D D DQ Q QDQ H X X X X p-= = = = = = =


 

And ( )T T

n n n
I H I QDQ Q I D Q- = - = - , so 

( )rank( ) rank
n n

I H I D n p- = - = -  

9 From the penultimate line in the previous footnote, 

( )
,

0
( )

0 0 0
n p n pT T T

n n
p n p

I I
I H Q I D Q Q Q LL L Q- -

-

æ ö æ ö÷ ÷ç ç÷ ÷ç ç- = - = = =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 

Now consider the vector T = T

B

L

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø
Y with ( ) 1

T TB X X X
-

= . Note that ˆB =Y b  and that 

( )
2

2ˆ T T T TY I H Y Y LL Y L Ys = - = = . So if we can show the two components of the vector 

are independent, we have shown what we wanted. Consider the covariance matrix of T. 

( )2 2

T

T
T T T T

B BB BL
B L

L L B L L
s s

æ öæ ö ÷÷ çç ÷÷ ççS = = ÷÷ çç ÷÷ çç ÷÷ç ÷çè ø è ø
 

And finally, note that 

( )

( ) ( ) ( )

,
,

1 1

0
0

0

n pT T

n p n p p n p
p n p

T T T T T

I
L L I Q Q I

BL BLL L B I H L X X X X I X X X X L

-
- - -

-

- -

æ ö÷ç ÷ç= =÷ç ÷ç ÷çè ø
æ ö÷ç= = - = - =÷ç ÷çè ø

 

The covariance matrix is therefore diagonal, and so the components are independent. 
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 ( )2 2ˆ n p

n
s s-= , and so 2ŝ  is a slightly biased estimator. An unbiased 

estimator for 2s  is 

22
2 21 ˆ ~

n pn p
s X

n p

s
c --

= -
-

Y b  

This is the estimator to use in working out the covariance of b , which 

is therefore given by ( ) ( ) 1
2ˆcov TX X s

-
=b . 

 

Geometrical interpretation 

The vector of fitted values contains our best guess of what Y should be and is 

given by 

( ) 1ˆˆ T TX X X X X H
-

= = =Y Y Yb  

We note that H is symmetric and idempotent (HH = H, which also implies 

that (I – H)(I – H) = I – H). These are the properties of a projection matrix; 

indeed H projects Y onto the space spanned by the columns of X, which 

contains all Xb . Thus, H effectively finds the closest fit in 

{ }: pXW = Îb b   for Y. (The residuals are given by 

( ) ( )2ˆˆ ~ 0,( )
n

I H N I H s= - = - -Y Y Ye ): 
 

 
 

Hypothesis tests on b 

For each component of b̂ , we have that 

 ( ) 2 1ˆvar ( )T

i ii
X Xb s -=  

 Our best estimator of this is ( ) 2 1ˆse ( )T

i ii
s X Xb -=  

ê

{ }: pXW = Îb b 

This is what 

we minimise 
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So: 

( )

2

2

2 1

2 1

2 1 2 1

2 1

( )1

ˆ ˆ

ˆse ( )

ˆ / ( )

( ) / ( )

ˆ / ( )

i i

T
i ii

T

i ii

n p T T

ii iin p

T

i ii

s n p

n p

s X X

X X

s X X X X

X X

s

b b

b

b s

s

b s

-

-

- - -
-

-

-

-

=

=

=

 

Since ( )2 1ˆ ~ , ( )T

i i ii
N X Xb b s -  and 

22 2

n pn p
s s c --

= , we can write 

( )
21

,1
~ i

n pn p

N b

c
--

 

If 0
i

b = , then this ratio is a t distribution with n – p degrees of freedom: 

( )20 0,
: 1

ˆ
( )

ˆsei

i
n p

i

tH
b s

a
b

a
b -=

æ ö÷ç ÷ç ÷ = -ç ÷ç ÷ç ÷ç ø
£

è
  

So a (1–a )-level confidence set for 
i

b  assuming 0
i

b =  is 

( )
ˆ

: ( )
ˆse
i

i n p

i

t
b

b a
b -

ì üï ïï ïï ïÎ £í ýï ïï ïï ïî þ

  

 

We can also find a confidence set for b . First, notice that 

( ) 1 2ˆ ~ (0,( ) )T

p
N X X s--b b  

this implies that10 

( ) ( ) 2 2ˆ ˆ ~
T

T

p
X X s c- -b b b b  

we also know that 
2

2 2

n p
s

n p

s
c -=

-
 

This implies that the ratio of these two quantities has an F distribution: 

( ) ( )
2

1

2, ,
(

ˆ ˆ
1)

p n p

T
T

p
X

F
X

ss
aa-

æ ö÷ç - - ÷ç ÷ç ÷ = -ç ÷ç ÷ç ÷÷çè ø

£
b

b b b b
  

So a (1–a )-level confidence set for b  is 

                                                 
10 If ~ (0, )N SX , then 1/2 ~ (0, )N I-S X  and so 1 2~T c-SX X . In this case, 2 1( )TX Xs -S = . 
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( ) ( )1

2 ,

ˆ
(: )

ˆ
p

p n p

T
T

p
X X

s
F a-

ì üï ïï ï- -ï ïï ïí ýï ïï ïï ïï ïî þ

Î £
b b b b

b   

 

[Note: imagine p = 1, so that we only have 1 b  to test, and that we’re testing 

whether 0b = , this becomes 

1, 12 1 1, 1

2 2

2
(

ˆ ˆ
: :

( )
) ( )p

T

n T

p

n

X X

s s X
F F

X
b a b a

b b
-- -

Î £  Î
ì ü ì üï ï ï ïï ï ï ïí ý í ýï ï ï ïï ï ï ïî î

£
þ þ

   

it so happens that 2

1, 1 1
( ) ( )

n n
F ta a- -= , so this is precisely a t-test]. 

 

Diagnostic Tests 

A number of diagnostic tests can be carried out to check whether a model we 

have fitted is appropriate: 

 We can check whether a larger model is needed (ie: more columns of X) 

by adding extra terms (like x2) and seeing whether they’re needed using 

the t-test above. 

 We can use the fact that ê  and Ŷ  are uncorrelated under the MLE 

fit11, as are ê  and b̂ . This means that a plot of errors against fitted 

values should show no systematic relationship. 
 

If it did, then a transformation of the Yi might make sense. To 

understand why, imagine a situation in which the variance and mean of 

Y are correlated, and a “well-behaved” transformation ( )f ⋅  

( )
( ) ( )

2

approx
22

~ , ( )

( ) ( ) ~ ( ), ( ) ( )

i
Y N

f Y f Y f N f f

m s m

m m m m s m mæ öé ù ÷¢ ¢ç= + - ÷ê úç ÷ë ûè ø

 

We can then choose an f such that 
22( ) ( )fs m mé ù¢ê úë û  is approximately 

constant. We try to choose f to stabilise the variance. A standard 

example is to try log
i i

Y a e= + +xb . 
 

                                                 
11 This follows from the fact that 

( ) ( )( ) ( ) ( )ˆˆcov , cov , cov , 0I H H I H H= - = - =Y Y Y Y Ye  

and the fact that the variables are normally distributed. 
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Another example is to use a Box-Cox transformation, in which each y 

is transformed to 

( )
( 1) /

l

0

og 0

y
y

y

l
l l l

l

ìï -ïï= í
=
¹

ïïïî
 

This family of transformations combines power and log transformations, 

is parameterised by l  and is continuous in l . We wish to find the 

“best l ”. If we have ( )( )Y Xl b= , then the likelihood of l  given the 

observed Y is12 

( ) ( )( ) ( ) 1

22
1

1 1
exp

2(2 )

nT

in
i

X X Yl l l

sps
-

=

æ ö÷ç ÷- - -ç ÷ç ÷çè ø
Y Yb b  

Fitting the linear model gives ( ) 1
( )ˆ( ) T TX X X ll

-
= Yb  and 

( ) ( )2 ( ) ( )1ˆ ( ) /
T

n
I H RSS nl ls l= - =Y Y , and the log-likelihood becomes 

( )

( ) ( )

2

2
1

2
1

( ) const log ( 1) log

( ) const log ( ) / ( 1) log

n
n

i
i

n
n

i
i

L Y

L RSS n Y

l s l

l l l

=

=

= - + -

= - + -

å

å
 

We can plot this function and pick an MLE l̂  that is closest to its 

maximum. The corresponding likelihood ratio test rejects the 

hypothesis 
0 0
:H l l=  if 

( ) ( )( ) 2

0 1
ˆ2 ( )L Ll l c a- >  

Where 2

1
( )c a  is the upper 100a% point of a 2

1
c -distribution. 

 Our model assumes that ( ) ( )/
i

xxe s= F£ . We can approximate 

this by the empirical distribution function of the residuals 

{ }ˆ# :
ˆ i

n

xi
F

n

e £
=  

If our assumptions are acceptable, then 

( )1 ˆ ( )
n

F x
x

s
-F »  

A Q-Q Plot 
î

e  against ( )1 ˆ ( )
n i

F-F e . If everything is as it should be, the 

points should, roughly, lie on a straight line. 
 

                                                 
12 Note that if u = u(x), then Pu du = Px dx, and so Pu = Px dx/du, where the last term is 

called the Jacobian. This is where the last term comes from. 



Stat Theory & Applied Stats  Page 19 of 79 

© Daniel Guetta, 2010 

Based on lectures by Richard Samworth and Susan Pitts, Michaelmas 2009 

We note that since ( ) ( ) 2ˆvar 1
i ii

He s= - , we could also use 

ˆ / 1
i ii

Hs -e  or ˆ / 1
i ii

s H-e , to ensure all variables has variance 

approximately equal to 1.  

 We can check if any points appear to be influential points (pints whose 

deletion causes a large change in the analysis) by calculating the Cook 

Distance, Di for each point i. Let 
( )

ˆ
i

Y  be the fitted values from a model 

omitting point i. Then 

( ) ( )( ) ( )

2

ˆ ˆ ˆ ˆ
T

i i

i
D

s p

- -
=

Y Y Y Y
 

Where p is the number of parameters in b . Large values could indicate 

an influential observation. 

 

Nested Models 

Sometimes, we want to test whether a number of the b  in our model are 

redundant. In other, we want to test the following hypotheses 

1 1 1 1 2
: :X XwW = + = +  =Y Y 0b e b e b  

Where 

 
[Note even though b  partitions into 

1
b  and 

2
b , it is not always the case that 

b̂  partitions into 
1

b̂  and 
2

b̂ . Similarly, ŝ  is not necessarily equal to 
1̂

s ]. 
 

The alternative, model, in fact, corresponds to a projection of Y onto a 

smaller subspace spanned by the columns of X1 only, { }1

1 1 1 1
: pXw = Îb b  . 

{ }
1

: nHw Î= Y Y  . The projection matrices are13 

                                                 
13 It is useful to note that 

( )
Partition 

1 1

Partition n

n w w

W

^ ^= Å WÇ ÅW







 

To show this is true, consider the fact that any vector nÎy   may be written as 

( ) ( ) ( )
1 1 1 1

( ) ( )I H H H I H H H H I Hw w w wW W W W
= = + - + - = + - + -y y y y y y  

And that 

( ) 1

1 2
2

X X X
æ ö÷ç ÷ç= = ÷ç ÷ç ÷çè ø

b
b

b
n p´ 

1
n p´

2
n p´

1p´ 1
1p ´

2
1p ´
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( ) ( )
1

1 1

1 1 1 1

T T T TH X X X X H X X X Xw

- -

W= =  

{ } { }1

1 1 1 1
: :p pX Xw Î Í W=Î= b b b b   because any vector in the LHS 

set can be obtained by setting some entries of b  in the RHS set to 0.  

 
Clearly, 

1

ˆ ˆ
w W

>e e . What will determine whether to accept or reject 
1

w  is 

exactly how much bigger 
1

ˆ
we  is. If it’s not much bigger, then we might as well 

drop all the extra superfluous parameters. We can formalise this in terms of a 

likelihood-ratio test. The log-likelihood is as usual in the linear model 

                                                                                                                                            

 
1 1

Hw wÎy  (obviously!) 

 ( ) ( )
1 1

H Hw w^
W

Î WÇ- y . To see why, we must show it is both in W  and 
1

w^  

o Clearly 
1

( )H HwW
- Î Wy  because H

W
Î Wy  and 

1 1
Hw wÎ Í Wy . 

o Consider a 
1

wÎz . Then 
1 1 1

[( ) ] ( ) ( ) 0T T TH H H H H Hw w wW W W
- ⋅ = - = - =y z y z y z z , 

since 
11

H Hww
W

Î Í = =W z z z z . Thus, 
1 1

( )H Hw w^
W
- Îy . 

 ( )I H ^
W- Î Wy . Consider a Î Wz . Then ( ) ( ) 0

T
TI H z H

W W
é ù- ⋅ = - =ê úë ûy z y z , since 

H
W

Î W  =z z z . 

Furthermore, we note that 

 ( )11
w w^^ WÇ , because ( )1 1

w w^ ^WÇ Í  

 ( )1
w^ ^WÇ ^ W , because ( )1

w^WÇ Í W   

 
1

w ^^ W , because 
1

w Í W  

ˆ
We

{ }: pXW = Îb b 

1

ˆ
we

{ }1 1 1 1
: pXw = Îb b 
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( ) 2
2 2

2

2
2

2

2

1ˆ ˆˆ ˆ, log
2 2

1 1ˆlog
2 2

1 ˆlog
2 2

n
X

n
n

n

n n

n

s s
s

s
s

= - - -

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
æ ö÷ç ÷= - - -ç ÷ç ÷çè ø

Y

Y Y

Y Y

b b

 

And the log-likelihood ratio statistic for 
1

w  is 

( ) ( ) ( ){ }

( )

1

1

1

2 2

1 1

22

2 2

ˆ ˆˆ ˆ2 , ,

1 1ˆ ˆ2 log log
2 2 2 2

log

W

n n n n

n n

n

w

w

w

w s sW

W

W

= -

ì üæ ö æ öï ï÷ ÷ï ïç ç÷ ÷= - - - + - +ç çí ý÷ ÷ç ç÷ ÷ï ïç çè ø è øï ïî þ
=

Y Y Y Y

b b

e e

 

 

By looking at the diagram above and using Pythagoras’ Theorem14 we get 

11

1 1

2
2 2

2
2 2

ˆ ˆ

ˆ ˆ
w

ww

w

W W

W W

= + -

- = -

Y Y

Y Y

e e

e e
 

This allows us to write 

11

2
2

2 2

ˆ ˆ
1

ww W

W W

-
= -

Y Ye

e e
 

Now, by the extension of Cochran’s Theorem15: 

                                                 
14 And the fact that T

W
e  and ˆ ˆ

wW
-Y Y  are perpendicular, because 

( ) ( ) ( ) ( )( )
( ) ( )

1

1

1

1

1

1 1

ˆ ˆ ˆ ˆ ˆT
T T

T T

I H H H

H H H H H H H H

w

w

w w

w w w

W W W W W W

W W W W

- = - - = - -

= - - + = - =

Y Y Y Y Y Y Y Y

Y Y Y Y Y 0

e
 

In the last step, we use the fact that 
1 1 11

HH H Hw w ww
W

Î W  =ÍY Y Y . 

15 First note that ( )2~ ,N X IsY b . Consider that 

( ) ( )

( ) ( )

1

1

1

1

1

1

22

2
2

22

2
ˆ ˆ

T T T

H H H I H

H

H H H I H

w w

w

w w

wW

W

W

W

W

W

-

= + - + -

= +

= + -

+

- +

Y Y Y Y

Y

Y Y Y Y Y

Y Y

Y

e  

Note that: 

 ( ) ( )
1 1

I H H H I Hw wW W
= + - + -  

 ( )1 1
dim pw =  and ( )dim pW =  , so ( )dim n p^ = -W   and ( )1 1

dim p pw^W = -Ç  . 

Therefore, 
1 1

rank( )H pw = , 
1 1

rank( )H H p pwW
- = -  and rank( )I H n p

W
- = -  . 

We can therefore apply the extension to Cochran’s Theorem to find the second two terms in 

the expansion above. The relevant non-centrality parameters d  are (note that X Î Wb ): 

( ) ( )2

2 0T T T TX I H X X X X
e

s d
W

W
= - - =b b = b b b  
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 2 2 2~
n p

s c -We   

 
2

11 1

2 2
2 2 1ˆ ˆ ~ ( )

p p
I H Xww s

s c bW -

æ ö÷ç- - ÷ç ÷çè ø
Y Y  . 

Therefore 

( )
11 1 1

2
1 1

2
2 21 1

2
1

,2 21 1

ˆ ˆ
~ ( )

p p p p

p p n p

n p n p

F F I H X
w

ws

w
b

W W

W W

- -

- -

- -

- - æ ö÷ç= = - ÷ç ÷çè ø

Y Y e e

e e
 

 
 

 

Under 
1

w , Xb  lies in 
1

w  already and so 
1

( ) ( ) 0I H X X Xw b b b- = - =  and so 

we expect a standard F-distribution. 
 

Intuitively, the F statistic is as follows 

 
Under W , this will be large, because all the components of b  are important; 

indeed, we get a non-central F distribution, which is stochastically increasing 

in the non-centrality parameter. Thus, we reject w1 for large values of F. 
 

The data used to carry out F tests is often summarised in a table. Consider 

the following nested models: 

1 2

1 1 1 2 1

1 1 2 2 1 2

: [ie: 0] 1

: [ie: 0] 1

: 1

X p

X X p p

w m
w m

m e

= = =
= + + = +

W = + + + + +

Y 1

Y 1

Y 1

b b
b e b
b b

 

Our table is then 

Source 
Degrees of 

freedom 
Sum of squares 

Mean sum of 

squares 
F-value 

Due to 
1

b  

[ie: 
1

w w ] 
p1 

1 1

2 2
|

SS m w w= -b e e  
1 | 1

/S pmb  | 11

2
1 2

/

/( 1)

SS p

n p p

m

W - - -

b

e
 

Due to 
2

b  

[ie: 
1

w  W ] 
p2 

2 1 1

2 2
| ,

SS m w W= -b b e e  
2 1| , 2

/S pmb b  | , 22 1

2
1 2

/

/( 1)

SS p

n p p

m

W - - -

b b

e
 

Residual 

[in W  anyway] 
n – p1 – p2 – 1 2

W
e  

2

1 2 1n p p
W

- - -

e
  

Total n – 1 ( )22

i
Y Yw = -åe    

                                                                                                                                            

( ) ( ) ( )2
1 1 1

1

2

ˆ ˆ

T T T TX H H X X I H X I H X
w

w w ws d
W-

W
= - = - = -

Y Y
b b b b b  

Error per extra degree of 

freedom added by going 

from w1  W 

Error per degree of freedom 

present in W anyway 

( )
11

2 21

21

p p

n p

F
w

-

W-

W

-
=

e e

e
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Note that the expected value of each of the F values in the table above is 

( )
1 2

1 2

1

1 2

n p p

n p p

- - -

- - - -
 

 

What we’re effectively doing with this table is 

 Taking the total variation in Y, given by ( )22

i
Y Yw = -åe  

 Seeing how much of it remains unexplained even in our full model 2

W
e  

 Seeing how much we “lose out” each time we reduce the size of our 

model. 

[Note, of course, that unless only factor is present, each of these F values will 

be different to the F value testing the drop in variance from w  W ]. 

 

As we mentioned above, even though b  partitions into 
1

b  and 
2

b , it is not 

always the case that b̂  partitions into 
1

b̂  and 
2

b̂ . This adds extra 

complications when calculating sum-of-squares, in that 
2 1 2|

SS SS=b b b . 
 

To investigate, consider the following models 

1 1 1

2 2 2

:

:

:

:

X

X

X

w
w e

e

w
= +
=

W +

=

+
=

Y

Y

Y

Y

b

e
b e

b

  ( ) 1

1 2
2

X X X
æ ö÷ç ÷ç= = ÷ç ÷ç ÷÷çè ø

b
b

b
 

We say that the models are orthogonal if 
1 2

0TX X = . 
 

Let’s first consider the MLEs ˆ
i

b . If the models are orthogonal, then 

( ) ( )
1 1

1
1 1 1 1 1

1 2
2 2 2 2 2

1

1 1 1 1
1

22 2 2

0ˆ
0

ˆ( ) 0
ˆ0 ( )

T T T T

T T
T T T T

T T

T T

X X X X X
X X X X X

X X X X X

X X X

X X X

- -
-

-

-

æ öæ ö æ ö æ ö æ ö÷ç ÷ ÷ ÷ ÷ç ç ç ç÷÷ ÷ ÷ ÷çç ç ç ç= = =÷÷ ÷ ÷ ÷çç ç ç ç÷÷ ÷ ÷ ÷çç ç ç ç÷÷ ÷ ÷ ÷ç ç ç ç÷çè ø è ø è ø è øè ø
æ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç= =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ çç ç è øè øè ø

Y Y Y

Y

b

b
b ÷

 

Thus, the coefficients partition neatly if and only if the models are orthogonal. 

 

Next, consider that 



Stat Theory & Applied Stats  Page 24 of 79 

© Daniel Guetta, 2010 

Based on lectures by Richard Samworth and Susan Pitts, Michaelmas 2009 

( ) ( )
( )

( )

2 1 1

2 2

2 2

|

1

1
2 2

2

2

T T

T

T T

T

SS

I H I H

H H

SS

I H

H

w

w w

W
= -

= - - -

= -

= -

= - -

=

Y Y Y Y

Y Y

Y Y Y Y

Y Y

b b

b

e e

e e
 

If the models are orthogonal, then by the calculation above 

( ) ( )
1

1
1 1 1

11 2 1 2
2 2 2

( ) 0

0 ( )

T T

T T
T T

X X X
H X X X X X X H H

X X X

-
-

-

æ öæ ö÷ ÷ç ç÷ ÷ç ç= = = +÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè øè ø
 

So the above becomes 

2 1 2| 2
TSS H SS= =Y Yb b b  

Thus, the order in which parameters are added to a model doesn’t matter if 

and only if the models are orthogonal. 

 

Coefficient of Determination 

Consider the two models 

:

: X

w m
m e

=

W = + +

Y 1

Y 1 b
 

Clearly, 

 
2 22

total
ˆ Y SSw w= - = - =Y Y Y 1e  is the total variability in the 

sample. 

 
2

2

error
ˆ SSW W= - =Y Ye  is the variability not explained by W . 

 
2 2

regression
ˆ ˆ ˆY SSwW W- = - =Y 1 Y Y  is the variability that is explained 

by W . 

We know, however, from the previous section that 
2

2 2ˆ ˆ
wwW W- = -Y Y e e , and 

this implies that16 the total variability can be split as follows: 

total (Explained by) regression (Explained by) error
SS SS SS= +  

                                                 
16  Reminder: because ( ) ( ) ( )

2 22

total
ˆ ˆ ˆ ˆ ˆ ˆSS w w wW W W W

= - = - + - = - +Y Y Y Y Y Y Y Y e , the 

first term squared is SSregression, and see previous footnote for proof ( )ˆ ˆ 0T

wW W
- =Y Ye . 
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The coefficient of determination, R2 is given by the ratio between the error 

explained by regression and the total error: 

regression2

total

SS
R

SS
=  

It gives us an idea of how well our model explains the variability in the Y. 

 

ANOVA 

ANOVA is a model for the analysis of categorical data, in which our 

observation depends on one or more discrete factors. 

 

We first begin with a simple example in which one factor is involved. If Yij is 

the jth observation at level i of the factor, our model is 

( )2NID 0,
ij i ij ij

Y m a e e s= + + =  

This model can be expressed in least squares form. Consider the example in 

which the factor can take 3 values, and each group contains 2 observations: 

( )1 2 3

1 1

1 1

1 1

1 1

1 1

1 1

T

X

m a a a=
æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç= ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

b

 

The easiest way to find the MLE is to use the equation T TX X X= Yb  

directly. So in the case above, we get 

regression
SS

total
SS

Y

error
SS
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1 1

2 2

3 3

10 2 2 2

2 2

2 2

2 2

Y

Y

Y

Y
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This model is over-defined, because we can add a fixed amount to m  and 

remove that amount from every a . We therefore need to impose an additional 

constraint on the parameterisation. Two common choices are: 

 Sum-to-zero constraint: 0
i

a =å . The MLE is then 

ˆ
î i

Y Y Ym a·· · ··= = -  

Using these constraints, every score is compared to the overall mean. 

 Corner-point constraint: 
1

0a = . The MLE is then 

1 1
ˆ

î i
Y Y Ym a

· · ·
= = -  

Using these constraints, every score is compared to the mean of group 1. 

(Where the Y  imply an average of Y over ·  indices) 

 

In two-way ANOVA, two factors are involved. If Yijk is the kth observation at 

level i of factor A and level j of factor B, we can fit two models: 

 Model with no interaction between factors 

 
ijk i j ijk

Y m a b e= + + +  (*) 

 Model with interaction between factors 

 
ijk i j ij ijk

Y m a b g e= + + + +  (#) 

The corner point constraints for this model are 
1 1 1 1

0
j i

a b g g= = = = . 

In the second model, the effect of changing factor A depends on the precise 

value of factor B. 

 

This can also be extended to models mixing “factor” and “non-factor” in the 

same model. An example might be the weight W of a child depending on their 

age A (non-factor) and sex S (factor). Two possible models can then be fit: 

 Model with no interaction 

{ } M
M,F , 0

ij i ij ij
W A i am a b e Î =é ù= + + + ê úë û  

 Model with interaction 

( ) { } M M
M,F , 0

ij i i ij ij
W A ia g e a gm b é ù= + + + + ê úë Î = û=  

 



 

 

 

{Proof of Cochran’s Theorem} 

 

I have been asked to remove all notes from 

the Part III Statistical Theory class from this 

website. Please email me if you have any 

questions. 
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Computer Code 

Carrying out regression 

 Regressing one variable on another: linearModelName <- 
lm(yVariable~xVariable) 

 To carry out the regression on two covariates, use linearModelName 
<- lm(yVariable~firstCovariate+secondCovariate) 

 To fit orthogonal polynomials such as 
0 0

P a= , 
1 1 1

P a b x= + , 
2

2 2 2 2
P a b x c x= + + , etc…, use 

linearModelName <- lm(yVariable~Poly(Covariate,2)) 

 

Interpreting a regression 

 Selected components of the variable linearModelName 
o coefficients 
o residuals 
o fitted.values 

Each of those can be extracted using the 

linearModelName$coefficients, for example. 

 Seeing a summary of the linear model: summary(linearModelName). 

o The “residual standard error” given in the output is s. 

o Remember that only |t| counts; the sign matters not. 

Add cor=F as an argument to ommitt correlation of coefficients. 

 deviance(linearModelName) gives the residual sum of squares. It 

can be used to carry out an F test directly. 

 Carrying out successive F-tests on nested models in which each term in 

the regression is added sequentially: anova(linearModelName) 

o The last F statistic tested in the output tests the null model 

i
m e= +Y 1  against the full model. 

 

Model selection (see later for theory) 

 Backwards elimination 

o Fit successive models, find t values using summary removing 

the covariate with lowest |t| each time. 

o library(MASS) followed by dropterm(linearModelName, 

test=”F”) gives the effect of dropping each variable in turn, 

including F values. These, however, are just the square of the t 

values given by summary. 
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 Forward selection 

o library(MASS) followed by addterm(linearModelName, 

covariate1+covariate2) gives the effect of adding each 

variable in turn to linearModelName. Choose the one with 

the largest reduction in RSS each time. 

 Best subset regression 

o library(MASS) followed by stepAIC(linearModel) 

successively removes the covariate that decreases the AIC the 

most, until there is no way to reduce the AIC further. 

o library(MASS) followed by 
stepAIC(NulllinearModelName, 

list(upper=~1+Covt1+Covt2+Covt3 
lower=~1), 

direction=”forward”) 

starts with an empty model and successively adds the covariate 

that increases the AIC least. 
 

Omitting the “direction” causes the program to go stepwise – 

at each step, it checks whether adding back a covariate that 

was previously removed could decrease the AIC 

 

Diagnostic plots 

 plot(linearModelName, ask=T) lists and shows all possible plots. 

 res <- linearModelName$residuals followed by qqnorm(res) 

and qqline(res) gives a Q-Q plot. 

 library(MASS) followed by boxcox(linearModel) gives a Box-

Cox plot. 

 

Categorical data – single factor 

 Best illustrated by example 

 
Followed by the command Treat <- factor(treat) 

 A box-and-whisker plot of the data can be obtained using 
plot(factorName, resultName) 

Control Treat A Treat B 

1 2 3 

4 5 6 

7 8 9 

Should be 

input as two 

vectors 

Result  = 1 2 3 4 5 6 7 8 9 
 
treat  = 1 2 3 1 2 3 1 2 3 
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 To specify the ANOVA constraint, use 

o Corner-point constraints: options(contrasts = 
c(“contr.treatment”,”contr.poly”)) 

o Sum-to-zero constraints: options(contrasts = 
c(“contr.sum”,”contr.poly”)) 

 The linear model is then fitted using linearModelName <- 

lm(Result~Factor). 

 Alternatively, linearModelName <- aov(Result~Factor) will 

also fit the model, but then the summary needs to be produced using 

summary.lm(linearModelName). 

 Note: 

o tapply(Result,Factor,mean) will return a table with the 

mean of each group. Alternatively, if an aov-style model was 

fitted, model.tables(LinearModelName,type=”means”, 

se=T) will automatically calculate means for every factor in the 

model (and the standard errors that appear in summary). 
o tapply(Result,Factor,function(x) sqrt(var(x)/ 

length(x))) will return a table with the standard error of 

each group. 

 

Categorical data – multiple factors 

 Consider running 
var1 <- c(1,2); var2 <- 1:5; var3 <- 1:4 
grid <- expand.grid(var1,var2,var3) 

this creates a table with every possible permutation of the variables, in 

that order. We can then apply 
Var1 <- factor(grid[,1]) 
Var2 <- factor(grid[,2]) 

 To fit a box-and-whisker diagram involving two factors 
ourData <- data.frame(Var1, Var2, Observations) 
plot.design(ourData) 

 To create an interaction plot 
interaction.plot(Var1,Var2,Observations) 

 When fitting more than one factor 

o No interaction: linearModelName <- 
lm(Result~Factor1+Factor2) 

o Interaction: linearModelName <- 
lm(Result~Factor1*Factor2) 



 

 

 

{Likelihood Theory} 

 

I have been asked to remove all notes from 

the Part III Statistical Theory class from this 

website. Please email me if you have any 

questions. 
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Condition (7) allows us to write 

( )0 0

ˆ0 ( )

ˆ( ) ( ) ( )
n

n

n A

T
n n A

U

U j

q

q q q q

=

= - -


 

 

Where 
n
q  lies on the line segment between 

0
q  and ˆ

n
q : 

( ){ }0
ˆ1 : 0,1
nn

t t tq qq é ùÎ + - Î ê úë û
  

Now, by the triangle rule: 

(1) (1)

0

(1) (1)

0

(1) (1)

0 0

(1)

(1) (1)

0

(1)

0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )s ( )

( ) ( )

p

( )

u

n n n

n n

n

n n

c
n

n A n A n A

n A A

A

n n

n A A

A

j i j i

i i

i i

j i

i i

i

q

q q q q

q q

q q

q q

q q

q

ÎQ

- -

+ -

+ -

-

+ -

+

£
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Generalised Linear Models 

 Consider a family of distributions with respect to a s -finite measure of 

the form22 

( ) ( ) ( ){ }2 2

2

1
; , , exp ( ) ( )f y a y y km s s q m q m

s

é ù
ê ú= -ê ú
ë û

 

( )

1

2 0,

Ey

m

s

Î Í
Î M Í

Î F Í ¥


  

Where ( )2,a ys  is a known positive function. Such a family is called an 

exponential dispersion family and 2s  is called the dispersion parameter. 

 If y is of exponential dispersion family form, then its moment generating 

function is 

( ) ( ){ }
( ) ( ){ }
( ) ( ) ( ){ }

2

1

2

2

1

2 1

21

2 2 21

( ) , exp ( ) ( )  d ( )

exp ( ) ( )

, exp ( ) ( )  d ( ) 

E

E

M t a y t y y k y

k t k

a y t y k t y

s

s

s

s q m q m m

s q m q m

s s q m s q m m

é ù= ⋅ + -ê úë û
é ù= + -ê úë û

é ù+ ⋅ - +ê úë û

ò

ò

 

                                                 
22 Note: in applied statistics, the distribution is given in the form 

( ) ( )2 2

2

( )
; , exp ,

y k
f y c y

m m
m s s

s

é ù-ê ú= +ê úë û
 

In other words, it assumes ( )q ⋅ = ⋅  and ( ) ( )2 2, exp ( , )a y c ys s= . 
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The integral is 1, because it is the sum over all space of another 

exponential distribution family. Thus 

( ) ( ){ }2

2

1
( ) exp ( ) ( )M t k t ks q m q m

s

é ù
ê ú= + -ê ú
ë û

 

And the cumulant generating function (ie: the logarithm of the mgf) is 

( ) ( ) ( ){ }2 2

2

1
; , ( ) ( )

Y
K t k t km s s q m q m

s
= + -  

 The discussion above allows to us to find 

( ) ( )
( ) ( ) ( )

2

2

1,
2 2

2,

( )

var ( )

y k

y k V
m s

m s

k q m

k s q m s m

¢= =

¢¢= = =


 

The function ( )V m  is called the variance function. (Note: to find it, 

differentiate k with respect to q  - not with respect to m ). 

 A different derivation of these results uses the loglikelihood 

( ) ( ){ }2 2

2

( ) ( )
( ; , ) log ,

y k
y a y

q m q m
m s s

s

-
= +  

Note that 

( ) ( )2

2 2 2

( ) ( )y k kq m q m

q s q s

¢ ¢¢-¶ ¶
= = -

¶ ¶
 

 

It now suffices to use two results derived in the previous section: 

( )

( ) ( )( )

2

( )
0 0

y k

y k q m

s

q m

q

æ ö¢æ ö - ÷ç¶ ÷ ÷ç ç÷ = =÷ç ç÷ ÷ç ç÷ç ÷¶è ø ÷çè ø


¢=

 




 

( ) ( ) ( )

( ) ( )

22 2

2 2 4 4

2

( ) ( ) var

var ( )

k y y y

y k

q q

q m

q q s s s

s q m

æ öì üï ï ÷¢¢ì ü çæ ö -ï ï ÷ï ï¶ ¶ ç÷ï ï ï ïç ÷ç÷ = - = =ç ÷í ý í ý ç÷ ÷ç ÷ï ï ï ïç ç¶ ÷¶è øï ï ï ï ç ÷î þ çï ï è ø


î þ
¢¢=

  
  

 

As above. 

 An exponential dispersion family is completely characterised by 

( )( ), ,V m M F . We may therefore write ( )2~ ED , ( )Y Vm s m  with m Î M  and 

2s Î F  to mean that Y is of exponential family form with mean m  and 

variance 2 ( )Vs m . 

 The linear we have thus far been studying can be specified as follows: 

o Distribution: ( )2~ ,
i i

Y N m s  

o Link function: ( ) T

i i i
Y m ·= = Xb  
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this, however, is only a subset of general linear models (GLMs). A GLM 

is a model for independent responses 
1

,,
n

Y Y  in which 

o Distribution: ( )2~ ED , ( )
i i i i

Y Vm s m , 
i

m Î M , 2 2

i i
as s=  where 2s  is 

an unknown dispersion parameter and 
1

,,
n

a a  are known 

constants. 
 

For example, if ( )1~ bin ,
i

i i in
Y n m , we have 2 1

ini
s = , so we can take 

1
ini

a =  and 2 1s = . 

o Link function: The ith component of the linear predictor T

i i
h

·
= X b  

are related through ( )i i
g m h=  where 

 
i·

X  is a vector of known explanatory variables 

 b  is an unknown vector of regression coefficients 

 g is a strictly increasing twice differentiable function called 

the link function. 

(Note that for the standard linear model, ( )g m m= ). 

 The choice ( ) ( )g m q m=  is called the canonical link function and it 

simplifies calculations in certain cases. 
 

For example, consider the density of ( )1
, ,

n

T
y y=y   

( ) ( ) ( )2 2

2 2
1 1

( )
( ; , ) , exp

nn
i i i

Y i
i i i i

y K
f a y

q m q m
m s s

s s= =

ì üæ öï ïì ü ÷ï ï ï ïçï ï ï ï÷ç= - ÷í ý í ýç ÷çï ï ï ï÷÷çï ï ï ïî þ è øï ïî þ
åy  

However, if we use the canonical link function, ( ) ( )1 1T T

i i i
g x xm b q b- -

· ·= =  

( ) ( )
2 2

2 2
1 1

( ; , ) , exp

T
nn

iT i i
Y i

i i i i

K xx y
f a y

b
m s s b

s s
·

= =

ì üæ öï ïì ü ÷ï ïçï ï ÷ï ï ï ïç ÷= -çí ý í ý÷ç ÷ï ï ï ïç ÷÷ï ï ï ïçî þ è øï ïî þ
åy  

In that case, we see that the vector 

1
2

1 1 1

, ,

T
n n n

ip ii i i i

i i ii ii

x yx y x y

a as
·

= = =

æ öæ ö ÷÷ çç ÷÷ çç = ÷÷ çç ÷÷ çç ÷ ÷çè ø è ø
å å å  

is sufficient for b , for each fixed value of 2s . 

 In general, there is no closed-form expression for the MLE b̂ , but we can 

use a Newton-Raphson type of algorithm (Fisher Scoring) to find a 

sequences converging to b̂ . Moreover, under mild conditions on 
i·X , we 

can apply the result of section 2.2 to deduce that 

( ) ( )(1) 1ˆ 0, ( )d

p
n N ib b b -- ¾¾  
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This result can be used to estimate the standard deviation of components 

of b̂ , or to test hypotheses about b . 

 Alternatively, tests can be based on the deviance, which is closely related 

to the likelihood ratio statistic. 
 

Let 
s

w  be the saturated model with as many parameters as observations. 

This achieves a perfect fit with ( )ˆ s

i i
Y Y= . Let the corresponding 

maximised loglikelihood be ( )

max

s . Let 
sf

w wÌ  be a fitted model, with 

maximised loglikelihood ( ) ( )

max max

f s<  . 
 

The deviance of the fitted model is then given by 

( ) ( )( ) ( )

max max
, 2 s f

f s
D w w f= -   

The scaled deviance is given by 

( ) ( )( ) ( )

max max
, 2 s f

f s
S w w = -   

Good models will have a small scaled deviance. 
 

To compare two models 
21 s

w w wÌ Ì , we consider the drop in deviance: 

( ) ( ) ( ) ( )
2 1

1 2 2

2

2

11

,
if  

,
, , trues

ps s p

D D
S S

w w w w
w w w w

f
c w-

-
= »-  

where dim( )
i i

p w= . 
 

This can be used in two contexts 

o Checking whether it is worth adding an extra term in the model, 

by comparing the drop in deviance to 
2 1

2

p p
c -

. 

o Testing whether a model is a “good fit” – in other words, whether 

it approximates the saturated model correctly. If it does, we 

would expect S for the model to be distributed as 2

n p
c

-
. We are 

effectively using the test above with 
1

our modelw =  and 
2 s

w w= , 

which implies that 
2

( , ) 0
s

S w w = . 
 

When f  is known (for example, Binomial and Poisson), this can be used 

to test whether the drop in deviance is significant. Otherwise, we can use 

F-tests. 

 

GLMs ~ Normal data  

 If ( )2~ ,Y N m s . The density is 
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( ) ( )

( )

2

22

2 2

2 2 22

2
21

2 2 22

1 1
exp

22
1

exp
2 22

1 1
exp exp

22

f y y

y y

y
y

m
sps

m m
s s sps

m m
s sps

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
æ ö÷ç ÷= - + -ç ÷ç ÷÷çè ø
æ ö æ ö÷ ÷ç ç÷ ÷= - -ç ç÷ ÷ç ç÷ ÷ç÷ç è øè ø

 

This is of exponential distribution family form with 

o ( )
2

2

22

1
, exp

22

y
a ys

sps

æ ö÷ç ÷= -ç ÷ç ÷÷çè ø
 

o ( )q m m=  

o 21
2

( )k m m=  

We note that ( ) 1V m = . 

 Now, consider variables ( )2

1
, ~ ,,

n i
YY N m s . The loglikelihood is given by 

( )2 2

2

1
log 2

22

n
ps

s
= - - -Y m  

We then have 

o 
s

w  has fitted values ( )ˆ s

i i
Ym =  

o 
f

w  has fitted values ( ) ˆˆ f T

i i
m

·
= Xb  

The scaled deviance is then 

( ) ( )( ) ( )

max max

2

2

2

2 2

2

, 2

1

RSS

~ if  is true
f

s f

f s

i i i

f f

n p f

S

X

w w

s
e

s s
c w-

= -

æ ö÷ç= - - - - ÷ç ÷è ø

= =

Y Y Y b

 

 

 

GLMs ~ Binomial Data  

 If ( )~ bin ,Z n p . Let Y = Z/n be the proportion of successes. We note 

that ( )Y p= . Now: 

( ) ( )
( )

( ) ( )1

1

log log 1
exp

1/

n nyn ny

ny

p

pn

ny

Y y Z ny

C p p

y p
C

n

-

-

= = =

= -
ì üï ï+ -ï ïï ï= í ýï ïï ïï ïî þ

 
 

This is, once again, of exponential distribution family form, with 

o 2 1 /ns =  
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o pm =  and ( )1 1
( ) log p

p
e

e
pp

q

q
q

- +
 ==  

o ( )( ( )) log 1k p pq = - -  

o ( ) ( )1V p p p= -  

 Now consider variables ( )~ bin ,
i i i

Y n p . 

o The canonical link is given by 

( )1
( ) log i

i

p T

i ip
g p

·-
= = Xb  ( )

1

T
i

T
i

i i

e
p p

e

·

·

= =
+

X

X

b

b
b  

This is known as a logit link function. 
 

Note that it can be written as: 

Odds
T

ie ·= Xb  
and so the interpretation of the model is that an increase in a 

given covariate i will result in the odds being increase by a factor 

of ( )exp
i

b . 

o 2 21

i
i n

s s= , with 2 1s = . 

o The likelihood is given by 

( ) ( )
1

1 i i
i i

i

n n yn y

y i i
i

L C p p
-

=

= -Y  

o The loglikelihood is given by 

( ) ( ) ( ){ }
( ) ( )

( ) ( ){ }
( ) ( )

1

1

1

1 1 1

( ) log log 1 log

log log 1 log
1

( ) log 1 log

log 1 log
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T
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T
i i

i

n
n

i i i i i y
i
n

ni
i i i y
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=
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o As such, the MLE is found using 

1 1

1 1

d
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d 1
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T
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(The equation basically says that the observed value should be 

equal to the expected value, and can be solved using an iterative 

method). 
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o We also note that 

( )
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So 

( ) ( )
2

1

1

1 ( )
n

T

i i i i iT
i

V n p p i
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· ·
=

æ ö¶ ÷ç ÷- = = - =ç ÷ç ÷÷ç ¶ ¶è ø
å X Xb b

b b
  

And so 

( )1ˆ ˆ, ( )
p

N i -»b b b  

o We now look at deviance. Note that 

 For the saturated model 
s

w , we fit ( )ˆ /s

i i i
p Y n= , so 

( ) ( )( )

max
1

log log log i

i

n
ns i i i

i i i y
i i i

Y n Y
Y n Y C

n n=

ì üæ öï ï- ÷ï ïç ÷ç= + - +í ý÷ç ÷ï ï÷çè øï ïî þ
å  

 For the fitted model 
f

w , ( ) ( )
1

ˆ ˆ( ) ˆˆ 1
T T

i if

i i
p p e e· ·

-

= = +X Xb bb  

( ) ( ){ }( )

max
1

ˆ ˆlog ( ) log 1 ( ) log i

i

n
nf

i i i i i y
i

Y p n Y p C
=

é ù é ù= + - - +ê ú ê úë û ë ûå b b  

The deviance (=scaled deviance since 2 1s = ) is given by 

( ) ( )
1

, 2 log log
ˆ ˆ

n
i i i

f s i i i
i i i i i i

Y n Y
D Y n Y

n p n n p
w w

=

ì üæ ö æ öï ï-÷ ÷ï ïç ç÷ ÷ç ç= + -í ý÷ ÷ç ç÷ ÷ï ï÷ ÷ç ç -è ø è øï ïî þ
å  

As usual, we asses the fit by comparing D to 2

n p
c -  where 

dim
f

p w= . If 
f

w  is a bad fit, D will be larger than this. 

o Expanding the logs, we find that that 

( ) ( ) ( ) ( ){ }
( )

22

1

ˆ1ˆ
,

ˆ ˆ1

n
i i i ii i i

f s
i i i i i

n Y n pY n p
D

n p n p
w w

=

ì üï ïï ï- - --ï ïï ï= +í ýï ï-ï ïï ïï ïî þ

å  

This is Pearson’s chi-squared statistic23! 

 Logit is the most commonly used link functions. Other possibilities: 

                                                 
23 It is of the form ( )2

all 2 possibilities
variables for each variable

O E

E

-å å . 
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o Probit link: ( ) ( )1

i i
g p p-= F  where F  denotes the (0,1)N  CDF. 

o Complimentary log-log: ( ) ( )( )log log 1
i i

g p p= - -  

 

GLMs ~ Poisson Data  

 If ( )~ poiY l , then 

( ) { } 1
exp log

!
Y y y

y
l l= = -  

Once again of exponential distribution family form with 

o 2 1s =  
o m l=  and ( ) logq l l=  

o ( ( ))k eqq l l= =  
o ( )V l l=  

 Now consider variables ( )~ Po
i i

Y l . 

o The canonical link is given by 

log( ) T

i
l

·
= Xb   ( )T

i

i i
el l·= =Xb b  

o The likelihood is given by 

( ) ( ){ }

( ) ( )
1

1 1 1

log log !

log !
T

i

n

i i i i
i

n n n
T

i i i
i i i

Y Y

e Y Y

l l

·

=

·
= = =

= - + -

= - + -

å

å å åX

Y

Xbb b




 

o As such, the MLE is found using 

1 1

1 1

0
T

i

T
i

n n

i i i
i i

n n

i i i
i i

e Y

Y e

·

·

· ·
= =

· ·
= =

¶
= - + =

¶

=

å å

å å

X

X

X X

X X

b

b

b


 

o Also 
2

1

( )
T

i

n
T

i iT
i

e i·

· ·
=

¶
- = - =
¶ ¶

å XX X b b
b b


 

and so 

( )1ˆ ˆ, ( )
p

N i -»b b b  

o We now look at deviance. Note that 

 For the saturated model 
s

w , we fit ( )ˆ s

i i
Yl = , so 

( ){ }( )

max
1

log log !
n

s

i i i i
i

Y Y Y Y
=

= - -å  

 For the fitted model 
f

w , 
ˆ( ) ( ) ˆˆ ( )
T

if f

i i
el l ·= = Xbb  
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( ){ }( )

max
1

ˆlog ( ) ( ) log !
n

f

i i i i
i

Y Yl l
=

é ù= - -ê úë ûå b b
 

The deviance (=scaled deviance since 2 1s = ) is given by 

{ } ( ) ( )( )( ) ( )
max max

1 1

ˆ2 2 log
ˆ

n n
s f i

i i i
i ii

Y
D Y Y l

l= =

ì üæ öï ï÷ï ïç ÷ï ïç ÷= - = - -çí ý÷ç ÷ï ïç ÷÷ï ïçè øï ïî þ
å å b

b
   

As usual, we asses the fit by comparing D to 2

n p
c

-  where 

dim
f

p w= . If 
f

w  is a bad fit, D will be larger than this. 

o Expanding the logs using 
2( )

2
( )log( ) s t

t t
s ss t -» - + , we find that 

that 

( )
2

1

ˆ( )

ˆ( )

n
i i

i i

Y O E

E
D

l

l=

- æ ö- ÷ç ÷» =ç ÷ç ÷çè ø
å å

b

b
 

Once again, this is Pearson’s chi-squared statistic! 

 Suppose 
1

,,
n

Y Y  are counts for different “exposures” 
1

,,
n

m m , and 

( )~ Po
i i i i i

Y ml l q=  

where 
i
q  is a rate, and the interest lies in modelling how this rate depends 

on the covariates. Our model is then 

( ) ( ) ( ) ( )
log

log log log log
T

i i

i i i i i
m m

q

l q q

· =

= = +

Xb


 

In this type of situation, ( )log
i

m  is called an offset, and its coefficient is 

forced to be 1. 

 Note that if we fit a model of the kind ( )log
i i

xl a b= + , we are 

effectively saying that an increase of 1 in x results in an increase of expb  

in the mean. 

 

GLMs ~ Contingency Tables  

 Consider an r × c contingency table containing n individuals, where the 

probability of being in cell (i, j) is pij and the number of items in cell (i, j) 

is Yij. Let ( )11 12
, , ,

rc

T
Y Y Y=Y  . Then 

( ) ( ) ,

,

!

!
ijy

ij
i jij

i j

n
p

y
= = 


Y y  

To see, why, consider that 

o n! is the total number of ways of arranging n items ignoring bins. 
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o Each bin can be arranged in yij! ways, so we have ( )!ij
y  repeats. 

o Thus, ( )! !
ij

n y  is the total number of ways of getting a given 

arrangement. 

o ijy

ij
p  is the probability of any one such arrangement. 

So ( )~ Multinomial ,nY p , where ( )11 12
, , ,

rc

T
p p p=p   

 Unfortunately, the GLM framework does not admit a multinomial 

distribution. However, it can be shown that if ( )~ Po
ij ij

Y m  

11

, , ,

| ~ Multinomial , , ,

T

rc
ij

i j i j ij i j ij

Y n n
m m
m m

æ öæ ö ÷æ ö ç ÷ ÷çç÷ç ÷ ÷ç÷ ç=ç ÷ ÷÷ ççç ÷ ÷÷÷ çç ç å å ÷ ÷çè ø è øç ÷è ø
åY   

So we can simply use a Poisson-like GLM, with the sum of all Y 

constrained to be n. 

 

Computer Code 

Generalised Linear Models 

 The error estimates given in summary(glmName) come from the 

asymptotic normality of MLEs. 

 anova(glmName,test=”Chisq”) will return an analysis of the 

deviance for the GLM, with relevant chi-squared values. 

 

Binomial Data 

 Best illustrated by example 

 
The model is then fit by setting pYes <- numYes/numTrials 

followed by 
glmName <- glm(pYes~Covariate,family=binomial,weights=numTrials) 

 To use a probit link function instead, use 
glmName <- glm(pYes~Covariate,family=binomial(link=probit),weights=numTrials) 

 It is worth noting that another way to find these models is 
glmName <- glm(dataTable~Covariate,family=binomial) 

Covariate Num Trials Num “yes” 

1 50 10 

2 51 11 

3 52 10 

Should be 

input as 

three vectors 

Covariate  = 1  2  3 
 

numTrials  = 50 51 52 
 

numYes = 10 11 10 
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where dataTable contains two columns; the first being the 

“successes” and the second being the “fails”. The table can be 

generated using, for example, cbind. 

 For categorical data, every point made previously regarding design 

plots, interaction plots, and fitting applies here as well. 

 Note that if our binomial data is binary (ie: only values are 0 and 1), 

there is no need to specify a weight in the glm function. 

 In a model with only one observation for each combination of factors, 

the fit will be perfect. The maximum loglikelihood of the saturated 

model will therefore be 0. 

 

Poisson Data 

 To fit the original model, use glmName <- 
glm(Observations~Covariates,poisson) 

 If Observations are counts for different amount of exposures, stored in 

Exposures, fit a rate model using glmName <- glm(Observations~ 
offset(log(Exposures)) + Covariates,poisson) 

 To display a different kind of residual, use residuals(glmName, 
type=”pearson”) 

 



 

 

 

{High Dimensional Problem} 

{Multiple Testing} 

 

I have been asked to remove all notes from 

the Part III Statistical Theory class from this 

website. Please email me if you have any 

questions. 
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Non-Parametric Statistics 

 

Two Independent Samples 

 Consider two samples 
1

, ~ II, D 
m X

X X F  and 
1

, ~ II, D 
n Y

Y Y F  

 Assume that 
i i

X e=  and 
j m j

Y e += +D , where the e are IID from the 

same continuous distribution. 

 We are interested in testing 

0 1
: 0 : 0H HD = D>  

 The Wilcoxon rank sum test combines both samples, and assigns a rank 

1
, ,

n
S S  to each of the 

1
,,

n
Y Y . We then reject H0 if 

1

n

ii
T S c

=
= >å  

where c is such that 

( )0
|T c H a> =  

 We can work c out because under H0, each of the m n

n
C+  arrangements of 

in the pooled sample are equally likely and have probability 1/ m n

n
C+ . 

 For large samples, approximations need to be used. 

 

Matched Pairs 

 Consider a set of matched pairs ( ) ( )1 1
,, ,,

n n
X XY Y . 

 The differences are given by 
i i i

Z Y X= - , and we assume 
i i

X eq= + , 

where the e are IID from a continuous distribution symmetric about 0. 

 We are interested in testing 

0 1
: 0 : 0H Hq q= >  

 The Wilcoxon rank sum test assigns a rank Si to each of the 
i

Z  and then 

adds a sign to that rank; positive if Zi is positive, negative otherwise. We 

then reject H0 if 

only positive
signed ranks

i
W S c= >å  

where c is such that 

( )0
|W c H a> =  

 We can work c out because under H0, each of the 2n possible assignments 

of signs to the ranks is equally likely, with probability 1/2n . 
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 For large samples, approximations need to be used. 

 

Computer Code 

 For an unpaired Wilcoxon test on vectors x and y in which we want to 

test whether x < y, use wilcox.test(x,y,alternative=”less”) 

 For a paired Wilcoxon test on vectors x and y, use 

wilcox.test(x,y,paired=T). This function will try to run the test 

directly and will otherwise use an approximation and return a warning. 

Adding an extra argument exact=F uses an approximation directly and 

mutes the warning. 

 




