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St John’s College 

Physics Example Classes 
 

CLASS 1 – MECHANICS 

 

 

This document contains the material I’ll be covering in my first examples 

class, covering your michaelmas “mechanics” course. 

 

It consists of two sections: 

 A preliminary blurb on how to generally tackle mechanics problems, 

especially problems that make you wonder whether you’ve picked up 

the IB examples sheet by mistake! 

 A selection of questions, some from past tripos papers. I spent many 

hours making sure they cover every aspect of the course (Also, I never 

pick questions from tripos papers later than 2004, so that you have 

some left to practice by yourselves. If there was a topic that was not 

examined before 2004, made up a new tripos-style question). 

 

You will get infinitely more out of the examples class if you attempt those 

problems before the class. That said, I’m painfully aware of what it’s like to 

be a IA Natsci, and you’re more than welcome to come even if you haven’t 

looked at the questions before. In case you do choose to look at them, I’ve 

given them arbitrary difficulty ratings (*, ** or ***) to give you an idea… 

[All, however, are at least of tripos standard]. 

 

I will hand out a full set of typed solutions to those who attend the session. 

 

Questions, comments, feedback, suggestions, personals stories or jokes are 

always gratefully accepted, at guetta@cantab.net. 

 

Daniel 
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Section 1 – How to do Mechanics Problems 

 

Usually, difficult mechanics problems are difficult for one of two reasons: 

 It’s difficult to identify what concept/tool you need to use (F = ma, 

conservation laws, etc…) 

 Once you’ve identified the tool, it’s pretty difficult to apply it to the 

problem at hand. 

Both will come with practice, and hopefully this section can act as a reference 

to help you along the way. 

 

The first thing you’ll need to do when you approach a problem is check 

whether you need to split it into lots of smaller problems. For example, you 

might be set a question on a ball that is given an impulse, set rolling and then 

brought to rest by friction. There are actually three parts to this problem: (1) 

ball is set moving (2) ball rolls (3) ball brought to rest. You will need to deal 

with each of these parts using a different method. 

 

Once you’ve done that, look at each part separately, and decide how you will 

deal with that part. Basically, everything you’ve learnt this term can be 

divided into two different approaches – here they are: 

 
 

Here’s a quick summary of the different situations you might encounter with 

each approach (model): 

 

F = ma, 

Newton’s Laws 

Michaelmas Mechanics 

Conserved 

quantities 
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Next comes conserved quantities – the key thing to remember here is that the 

name “conserved quantities” is a bit of a joke, because they’re often not 

conserved! We’re sometimes interested by processes in which these quantities 

change – so much so that we give a special name to these changes1: 

 
 

Often, the force will be constant, and you’ll be able to simply take it out of 

the integral. In that case, work and impulse become 

                                                 
1 Notice the symmetry here, which you might not have noticed in lectures; both work and 

impulse are the integral of force, but with respect to different fundamental quantities. This 

isn’t a coincidence, as you’ll find out in Part II . 

Energy 

Conserved Quantities 

Momentum 

D Energy 

= 

ext
Work  dF x= ò  

D Momentum 

= 

ext
Impulse  dF t= ò

F = ma 

a function of 

t 

a function of 

x or v 

 

Statics 

 

Constant a 

Use standard 

equations 

x = ut + ½at2 

v2 = u2 + 2ax 

v = u + at 

Write 

d

d

v
a v

x
=  

and solve 

Write 
2

2

d

d

x
a

t
=  

and solve 

Check all 

forces and 

moments 

sum to 0 
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( )
( )

ext ext initial final ext

ext ext initial final ext

Work d

Impulse d

F x F x x F x

F t F t t F t

= = - = D

= = - = D
ò
ò

 

 

There’s one last key-point to make, and it’s best illustrated by a mistake 

people often make (in problems slightly more complex than this one) 
 

Question: A force of magnitude F is applied to a 

particle of mass 5 kg, which, as a result, accelerates 

from rest to a speed of 5 m/s in 1 second. Find F. 
 

Answer: Well, OK, so I know that F = 5a, because of 

Newton’s Second Law. So I just need to use F = ma to 

eliminate a and find F! Let’s try it 

/ama FF m ==  

55F
F

F F F
m

a  = = =  

Oh dear! 

 

The key mistake in the answer above is that it doesn’t take into account the 

fact there are two sides to all physical laws (like F = ma). What the answer 

should have done is 

 Find out something about the LHS fom the question (ie: that the force 

is F). 

 Find out something about the RHS from the question (ie: that m = 5 

kg and that a = 5 m/s2) 

And then finally use F = ma to set those two bits equal to each other and 

deduce that 

5 5 25 NF ma= = ´ =  
Laws of physics are not identities. You have to find something about each 

side separately from the question, and then set them equal to each other. The 

answer above only considered the F side and didn’t bother thinking of a! 
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Section 2 – Questions & Solutions 

 

Question 1 – Shorties 

(a) * (Tripos 1994) Why does the front end of a car dip upon braking? 

(b) ** (Tripos 1996) In a poorly maintained train, the thin cavity of a 

double-glazed window is partially filled with rain water. As the train 

decelerates along a horizontal track, a passenger notices that the 

water surface is at an angle of 15o to the horizontal. What is the 

deceleration of the train? 

(c) * (Tripos 2003) A massless ladder of length l rests against a smooth 

wall. The ladder subtended by the ladder and the ground is a . The 

coefficient of static friction between the ground and the ladder is m . 

There is no friction between the ladder and the wall. And 

undergraduate of mass m starts the climb the ladder. Find an 

expression for the maximum vertical height above the ground that the 

undergraduate can reach before the ladder slips. 

(d) ** A hot air balloon of mass M is stationary (with respect to the 

ground) in mid-air. A passenger of mass m climbs out and slides down 

a rope with constant velocity v with respect to the ground. With what 

velocity (magnitude and direction) relative to the ground does the 

balloon move? What happens if the passenger then stops sliding? 

[Harder: is energy conserved while the passenger is sliding? Does that 

make sense? Shouldn’t there be some heat lost to friction with the 

rope?] 

(e) * A stationary block of mass 2m lies on a frictionless table and is 

attached to a spring at its equilibrium position. A block of mass m 

collides into the stationary block with speed v0 and sticks to it 

instantaneously. The blocks continue moving towards the wall, 

compressing the spring. 

 

0
v

m 2m
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What is the magnitude and direction of the total impulse exerted by 

the spring on the particles from a time just after the collision until the 

time the spring reaches its shortest length? 

 

Solutions: 

(a) At first sight, a pretty difficult question, but it’s really not that bad. 

The key insight here is to realise that this is going to have something 

to do with forces, and so a diagram of the forces on the car as it 

breaks is what we’re going to need. Each wheel is going to experience 

a normal force and a friction force, and there’ll also be gravity acting 

on the car: 

 
Now, as the car is braking, it’s decelerating in the x direction, but it’s 

clearly not rotating. As such, the turning moments about the centre of 

mass of the car should sum to 0: 

B B F F
F h N F h N+ + =   

Diving by   and re-arranging, we have that 

( )F B F B

h
N N F F= + +


 

This expression clearly shows us that 
F B

N N> . However, the normal 

forces act on a car through spring suspensions, and this therefore 

means that the spring at the front of the car will have to be more 

compressed than the one at the back, to provide the larger force. Thus, 

the car dips forwards. 

 

(b) This is a very hard question indeed, because it’s hard to see where to 

begin. Clearly, you’re going to need some force diagrams, but the 

force on what? The key insight (which took me a few minute to get) is 

that you just have to consider a little bit of water of mass m at some 

point on the surface, and just deal with that: 

FrontBack

W
F

N
B

N

B
F

F
F



h
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OK, so let’s find the horizontal and vertical forces on this thing 

cos

sin
y

x

N mg ma

N ma

q
q

 - =
 - =

 

OK, so we’ve used our force diagram to deal with one side of the F = 

ma equation. Can we use the problem to deal with the other side? 

Yup! We know ay = 0, because while the train is decelerating, the 

slope stays put (it’s not wobbling up and down as long as the train is 

decelerating constantly), and ax is the amount by which the train is 

decelerating, which is what we want! So: no 

cos

sin
x

N mg

N ma

q
q
=

- =
 

Dividing the bottom equation by the top one: 

sin
tan

cosx
a g g

q
q

q
= - = -  

And we’re done! (Which makes sense, by the way – as o90q  , the 

train is decelerating very fast indeed! And the answer is dimensionally 

consistent.) They key physical insight is that the slope in the water is 

needed to provide the (normal) force that decelerates the water. 

 

(c) This is a bog-standard force/statics question. Let’s imagine the 

undergraduate has climbed a distance x from the bottom of the ladder. 

The forces then look like this: 

 

o15
mg

N

x

y

a
m

mg

F

G
N

W
N
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The situation is static, so we set resultant horizontal forces, vertical 

forces and turning moments equal to 0: 

G

W

N mg

F N

 =
 =

 

Taking turning moments about the point of contact with the ground: 

cos sin
tanWW

mgx
Nmgx

l
N la a

a
 ==  

Let’s grind all of this to obtain an expression for F in terms of a  

tan

mgx
F

l a
=  

Finally, we note that if the ladder is not to slip, then 

G
N mgF m m£ = . Thus 

tan

tan
tan

G

mgx
F N mg

l
mgx

mg
l
x l

m m
a

m
a
m a

= £ =

£

£

 

This is the maximum possible height along the ladder it not to slip. 

Thus, the maximum vertical height is 

tan sinx lm a a£  

 

(d) The first thing you might be tempted to do is consider the forces on 

the balloon and the person as they start sliding down. That would, 

eventually, lead to the answer, but only after lots of blood and tears. 

If you’re lucky, you’ll happen upon the fact that conservation of 

momentum is actually the way to go here. Originally, the momentum 

of the system is 0. There is an external force acting on the system 

(gravity) but it is balanced by the upthrust on the balloon, which 

must be equal (since the balloon is originally at rest). Thus, there is 

no external force acting on the system, and the momentum should 

also be 0 once the person has started sliding down. Thus, if V is the 

velocity of the balloon 

( )mv M m V

mv
V

M m

= -

=
-

 

Thus, the balloon moves upwards at that velocity. 
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Let’s check if energy is conserved – every second, the person drops a 

distance v and the balloon climbs a distance V. Thus, if energy was 

conserved we would expect 

( )
( )

mgv M m gV

mv
mgv M m g

M m
mgv mgv

= -

= -
-

=

 

So energy is indeed conserved. 

 

(e) I included this problem because it demonstrates two key principles of 

problem solving. 
 

The first principle is that it’s crucial to break the problem into its 

constituent parts – this one involves two parts: 

1. The collision 

The collision is clearly inelastic. During the collision, no 

external forces are acting, and so momentum is conserved. If 

we assume the combined blocks are moving at a speed V 

after the collision, we get: 

0

0

3

3

mv mV

v
V

=

=
 

2. The compression of the spring 

To find the impulse, you might be tempted to use 

 dI F t= ò  

Feed in an explicit expression for the force, and then 

integrate. You can do that, and it’ll give you the answer 

(you’ll know how by the end of this term), but you’ll be 

there for a long time. 
 

And here comes the second principle this question illustrate. 

You’ve looked at the RHS of the equation, but have you 

bothered looking at the LHS? There’s actually an incredibly 

easy way of working out the impulse here – it’s just the 

change in momentum! 
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Originally, the block has momentum 3mV, eventually it has 

momentum 0! So: 

0
3I mV mv= =  

The direction is clearly to the left, to stop the blocks. 
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** Question 2  

A horizontal stick of mass m has its left end attached to a pivot on a plane 

inclined at an angle q , while its right end rests on the top of a cylinder also of 

mass m which in turns rests on the plane. The coefficient of friction between 

the cylinder and both the stick and the plane is m  

 

 
 

What is the smallest value of m  (in terms of q ) for which the system doesn’t 

slip anywhere? 

 

Solution: 

 

For starters, it’s pretty clear that this is a statics problems, and that you’re 

going to have to sum forces and turning moments. A good place to start is a 

nice big diagram of the cylinder with all the forces acting on it: 

 

 
These forces must balance horizontally and vertically: 

cos sin

cos sin
s p p

p p s

F F N

N F mg N

q q
q q

 + =
 + = +

 

m

m

q

R

mg

s
N

p
N

s
F

p
F

q
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Turning moments also need to balance about all points. In this case, you can 

immediately see that taking turning moments around the centre of the 

cylinder will lead to a particularly nice result: 

pp s s
F R F R F F ==  

(the normal forces drop out because they are parallel to the line between the 

centre of the cylinder and their point of action). [Note: this does not imply 

that Ns = Np, because N only tells us about the maximum value friction can 

reach]. 

 

Using this equation, we can eliminate one of the frictions from the equations 

above (we’ll denote Fp = Fs = F) and get 

( )1 cos sin

cos sin
p

p s

F N

N F mg N

q q
q q
+ =
+ = +

 

 

At this point, we take stock of what we have and we look back at the 

question. We want to find the minimum value of m . Clearly, this will have 

something to do with the fact that at each surface F Nm£ . In other words 

s

p

N

F N

F m
m

£
£

 

So if we could only express F in terms of Ns and Np only, we might be done. 

Let’s try it: 

Expressing  in terms of 
p

F N  

Here, our work’s already done for us – we just use the first equation 

sin

1 cosp
F N

q
q

=
+

 

And we know that 

sin

1 cos
sin

1 cos

p p
F N Nm

q
q

q
m

q

£=
+

£
+

 

So this is our first constraint for m . 

 

Expressing  in terms of 
s

F N  

Here, we need to do some fiddling. From the first equation, we have 
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1 cos

sinp
N F

q
q

+
=  

Putting that into the second equation, we get 

1 cos
cos sin

sin s
F F mg N

q
q q

q
+

+ = +  

Time for a bit of hardcore re-arranging: 
2cos cos

sin
sin s

F mg N
q q

q
q

æ ö+ ÷ç ÷+ = +ç ÷ç ÷÷çè ø
 

You might not be quite sure what to do here, but it’s always a good idea to 

try and put everything in one fraction – you might get lucky: 

( )

2 2cos cos sin

sin

1 cos

sin
sin

1 cos

s

s

s

F mg N

F mg N

F mg N

q q q
q
q

q
q
q

æ ö+ + ÷ç ÷ = +ç ÷ç ÷÷çè ø
æ ö+ ÷ç ÷ = +ç ÷ç ÷çè ø

= +
+

 

And we know that 

( )sin

1 cos ss
mg N N

q
q

m£+
+

 

At this point, however, we’re stuck, because the Ns doesn’t cancel as nicely as 

it did in the previous part… 

 

Hum… What do to do? When you reach a point like this in a problem, it’s 

always worth doing two things: 

 Establishing a “wish-list” – in this case, I’d really, really like to find a 

way to express Ns in terms of mg – because then I could replace mg by 

something to do with Ns, and hopefully the above will cancel better. 

 Go back to the problem, and see if there’s any extra physical 

information you’ve missed out – in this case, if you’re lucky, you’ll 

notice that we did all the equilibrium stuff for the cylinder, but not for 

the stick! 

 

It seems, therefore, that it’s worth doing the equilibrium thing for the stick: 
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You could start doing forces, etc…, but you can already see the forces at the 

hinge are going to be a royal pain in the backside. Is there a way we can avoid 

them? Indeed there is – take turning moments around the hinge (I’ll denote 

the length of the stick by  )! 

2
2

s s
m mg Ng N=  =

   

We have mg in terms of Ns, which is what was on our wishlist! 

 

So let’s go back to our inequality: 

( )sin

1 cos
3 sin

1 cos
3 sin

1 cos

s

s

s

s

mg N

N

N

N

q
q

q
q
q

m

m
q

m

£

£

+

+

+
£

+

 

So we have our second inequality! 

 

Let’s summarize the two inequalities we got: 

sin

1 cos
m

q
q+
£   

3 sin

1 cos
m

q
q+
£  

Clearly, the second one is more stringent, because the LHS is multiplied by 3. 

So our answer is 

3 sin

1 cos
m

q
q+
£  

 

 

mg

s
N

Hinge

forces
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* Question 3 

When you study orbits in IB, you’ll come across the (very remarkable) fact 

that objects orbiting a planet of mass M at a radius r can be modeled as 

particles moving in a straight line under the effect of the following potential 
2

2
( )

2

L GMm
U r

rmr
= -  

Where L, m, G and M are constants2. 

Find the equilibrium points of the system above. Are they stable or unstable? 

 

(Harder and completely optional: in terms of the original orbit problem, what 

does an equilibrium point mean?) 

 

Solution: 

This is a bog-standard equilibrium problem. Differentiate and set to 0: 
2

3 2

2

2

2

d
0

d

L GMm
U

r mr r
L

GMmr
m

L
r

GMm

= - + =

=

=

 

To classify the equilibrium, we could differentiate again and feed in, but we 

could also be clever and note that 

 As 0r  , U  +¥ , because 1/r2 is bigger than 1/r when r is close to 

0. 

 As r  ¥ , 0U   

 There’s only one stationary point between those two 

It is therefore clear that the stationary point is a minimum – if you visualize 

the function, it couldn’t be otherwise. (Well, it could be a point of inflexion…) 

 

[In terms of the original orbit, points of stable r imply circular orbits, because 

r stays constant all the time. When you study orbits next term, try feed in 

L mrv=  into 2 2/r L GMm=  and see why it makes sense!] 

 

                                                 
2 For future reference: L is the angular momentum of the orbiting body, which you’ll learn 

about next term, m is the mass of the orbiting body and M is the mass of the planet. 
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** Question 4 

A block of mass m is placed on a smooth plane inclined at an angle q  to the 

horizontal, and is pushed down along the plane at a very high speed v0. Under 

those conditions, the block is subject to air resistance of magnitude F = bv2 

parallel to its direction of motion but in the opposite direction (ie: resisting 

the motion). 

 

Find the terminal velocity of the block, and the velocity of the block after it 

has traveled a distance x from its starting point. 

 

You might find the following integral useful: 

2

2

1
 d ln

2

x
x A Bx

BA Bx
= - -

-ò  

If you want to try to prove it, just substitute u = A – Bx2. 

 

Solution: 

This is an F = ma problem. Let’s check out the forces acting on the block 

while it’s falling. Since the block is moving directly down the plane, the 

friction will be acting directly opposite that: 

 
Using F = ma parallel to the plane, and taking downwards as positive, we get 

2

2

sin

sin

mg bv ma

b
a g v

m

q

q

- =

= -
 

The terminal velocity is reached when the block is no longer accelerating; 

when a = 0. Thus: 

2

terminal terminal

sin
sin

b mg
g v v

m b

q
q = =  

 

To find v in terms of x, we follow the tips in the introductory section of this 

handout, and we write d
d
v
x

a v= . We then get: 

q

N

mg

2bv
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2d
sin

d

v b
v g v

x m
q= -  

We need to separate variables: 

2

d
1

d
sin

v v

b x
g v

m
q

=
-

 

Finally, we can integrate with respect to x 

0

2

0
2

d
d 1 d

d
sin

 d 1 d

sin

V X

v

v v
x x

b x
g v

m
v

v x
b

g v
m

q

q

=
-

=
-

ò ò

ò ò
 

(Notice the limits – see the question on Jack and the cart for an explanation). 

Using the tip in the question, we can do the integral on the LHS: 

0

2

2 2

0

2
0
2

ln sin
2

2
ln sin ln sin

sin 2
ln

sin

V

v

m b
g v X

b m

b b bX
g v g V

m m m

mg bv bX

mmg bV

q

q q

q

q

é ù
ê ú- - =ê úê úë û

é ù
ê ú- - - =ê úê úë û

-
=

-

 

And so 

( )
( )

2
2 /0

2

2 2 2 /

0

2 2 /

0

sin

sin
sin sin

sin sin

bX m

bX m

bX m

mg bv
e

mg bV
mg bV mg bv e

mg mg bv e
V

b

q

q
q q

q q

-

-

-
=

-
- = -

- -
=

 

It is interesting (and reassuring) that as X  ¥ , we get 

sinmg
V

b

q
  

Which is the terminal velocity, and that at X = 0, we get 

( )2

0

0

sin sinmg mg bv
V v

b

q q- -
= =  

Which is indeed the starting velocity. 
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*** Question 5 

A block of mass m is held motionless on a frictionless plane of mass M and 

angle of inclination q . The plane rests on a frictionless horizontal surface. 

When the block is released, the block will start to move down the plane, but 

the plane will also move in the opposite direction, because it’s not fixed! 

Calculate the horizontal acceleration of the plane: 

 
 

Solution: 

This problem is rock solid! But if you follow the simple steps of dynamics, 

then it’s very simple. It gave it to you to show you an example of a problem 

where the old A-Level way of doing things simply doesn’t work, and you need 

the more rigorous and systematic framework of IA. 

 

The question asks us for acceleration. There are four accelerations involved in 

this problem: 

 ax and ay, the horizontal and vertical accelerations of the block. 

 Ax, the horizontal acceleration of the plane, which we want to find 

 Ay, the vertical acceleration of the plane, which is 0 (since the plane 

doesn’t move up or down). 

It’s pretty clear we’ll have to use F = ma, and to do that, we’ll need free-body 

diagrams for the block and plane: 

 
I’ve chosen to ignore the weight of the plane and the normal force of the table 

on the plane, because they clearly cancel out (since Ay = 0). Applying F = ma 

these bodies, we get: 

q

x

y

N

N mg

q

q

m

M
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sin

cos

sin

x

y

x

N MA

mg N ma

N ma

q
q

q

=
- =

- =
 

At this point, the way forward isn’t so clear. A very useful method in this 

kind of situation is to count the number of unknowns and the number of 

equations: 

 4 unknowns (N, Ax, ay and ax). The other variables don’t count because 

they’re allowed to appear in our final answer. 

 3 equations 

Clearly, therefore, we’re missing one equations – because to solve for n 

unknowns, we need n equations. 

 

So let’s go back to the problem – is there any physical aspect that we haven’t 

modeled yet? The answer is yes – we haven’t modeled the fact that the block 

needs to stay in contact with the plane at all times. How can we model that 

as an equation? Have a look at the diagram below: 

 
Clearly, for the block to stay in contact, we need 

( )
tan

tan

y

X x
X x y

q

q

=
-

- =
 

Differentiating this twice with respect to time, we get 

( )tanx x y
A a aq- =  

So this is our last equation! 

 

Let’s summarize our equations so far: 

qq

X

x

y

X x-

x

y
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( )

sin (1)

cos (2)

sin (3)

tan (4)

x

y

x

x x y

N MA

mg N ma

N ma

A a a

q
q

q

q

=
- =

- =

- =

 

We “simply” need to solve for Ax. Here are the boring details: 

 Use (3) to eliminate N: 

sin
x

ma
N

q
= -  

Which gives 

( )

(1)

(2)
tan

tan (4)

x x

x
y

x x y

ma MA

a
g a

A a a
q

q

- =

+ =

- =

 

 Use (4) to eliminate ay, which gives 

( )

(1)

tan (2)
tan

x x

x
x x

ma MA

a
g A a q

q

- =

+ = -
 

 Use (2) to eliminate ax. This requires some manipulation! 

( )

( )
2 2

2 2

2 2

2 2 2

2

tan
tan

tan tan tan

1 tan tan tan

sec tan tan

tan cos tan cos

sin sin cos

x
x x

x x x

x x

x x

x x

x x

a
g A a

g a A a

a A g

a A g

a A g

a A g

q
q

q q q

q q q

q q q

q q q q

q q q

+ = -

+ = -

+ = -

= -

= -

= -

 

This finally gives 

( )
( )

2

2

2

sin sin cos

sin cos sin

sin cos

sin

x x

x

x

m A g MA

mg M m A

mg
A

M m

q q q

q q q

q q
q

- - =

= +

=
+
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*** Question 6 (loosely based on Tripos 1995) 

A crate of mass m is dropped vertically onto a rough conveyor belt that is 

moving at a speed v. A frictionless motor maintains the belt’s constant speed 

through a frictionless mechanism. During the period in which the crate is 

being accelerated, find the work done by the motor which drives the belt. 
 

Now consider a similar belt moving at a speed V on which mass is 

continuously dropped at a rate M unit mass per unit time. What is the power 

required to drive the motor. (This is the easier part of the question – you 

might want to do it first). 
 

Compare your two answers. Isn’t that interesting! Make sure you understand 

why this is the case. 

 

Solution: 

The first thought that might go through your head is “well, the block’s kinetic 

energy goes from 0 to 21
2
mv , and so the work done by the belt is just 21

2
mv ! 

You’d then look at the question, see the three stars next to it, and realize that 

maybe it’s not that simple! 

 

The problem with that simplistic reasoning is that energy is also dissipated as 

heat, as the crate slides over the belt before it is accelerated to a speed v. This 

means the work done by the motor is in fact greater. 

 

I’ll show you two methods to find the answer to this question. The first is 

methodical, the second is clever 

 

First method – in the ground frame 

You need to find the work done by the belt. It seems sensible, therefore, to 

find the total force the belt has to exert. This is just Ff, the force due to 

friction. We can therefore work out the work using 

Work Distance
f

F= ´  

The distance over which the force acts is the distance the belt moves while 

the crate accelerates. We don’t know what that is, but is there any way we 
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can work it out? Indeed there is! The force is constant, so kinematics seems 

like a good idea. 

 

If you guys, however, were thinking of finding out the distance the block 

travels, by assuming 

0
/ 0 ?

f f
a F m v v v x= = = =  

And then using 2 2

0
2

f
v v ax= +  to get 

2

2
f

mv
x

F
=  

You’d be WRONG!! 

 

Why? Simply because in this case, we want the work done by the belt, and 

so we need the distance the belt travels. Since the belt always travels at v, 

whereas the block does not, the calculations above are bound to go screwy, 

because the belt doesn’t travel the same distance as the block. 

 

So, what do we do? After a few minutes of thought, you’ll probably realize 

that you want to find the time the block takes to accelerate from 0 to v, 

and then simply multiply that by v to find the total distance traveled by 

the belt. To find the time, we use kinetics: 

0
/ 0 ?

f f
a F m v v v t= = = =  

Using
0f

v v at= + , we get 

f

mv
t

F
=  

And so 
2

Distance travelled by belt
f f

mv mv
v

F F
= =  

And so 
2

2

Work

Work

f
f

mv
F

F

mv

=

=

 

Interestingly, this is exactly double what we would have naively expected. 

The second method makes this transparent… 
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Second method – in the belt’s frame 

This method is more conceptually difficult, but algebraically much easier. 

The key insight is to note that the motor is doing two kinds of work here 

1. It is accelerating the block, and giving it kinetic energy 

2. It is dissipating energy to friction, as the block slips. 

We can work out the amount of energy involved in each case 

1. In the ground frame, the block starts at rest and eventually moves at 

speed v. The kinetic energy gained is 21
2
mv . 

2. In the belt’s frame, the block originally has energy v and then slows 

down to rest, with all the original energy dissipated to friction. In 

total, the energy lost to friction is 21
2
mv . 

The total work down by the belt is then 
2 2 21 1

2 2
W mv mv mv= + =  

Precisely as above 

 

Now let’s do the continuous case. Surprisingly, it’s much easier. We’ll use the 

same strategy 

Power Force Velocity= ´  

In this case, in an interval tD , a mass M tD  drops on the belt, and so the 

belt has to provide a momentum MV tD . We know, however, that 

d / dF p t= , and so F MV= . Therefore 

2Power MV=  

 

It is interesting that the result is precisely as above, simply because the 

second example is equivalent to dropping one crate of mass m onto the belt 

per second. Thus, the work done per second will obviously be equal to what 

we found above. 
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** Question 7 

 
A block of mass M is attached to one end of a light rod of length L which is 

freely pivoted at the other end. A bullet of mass m < M is shot into the block 

at a speed v and becomes embedded in the block. Assume that the bullet was 

moving so fast, and that the block is so hard, that the bullet becomes 

embedded instantly, even before the block starts moving. Calculate: 

 The angle q  to the vertical to which the block rises before it comes to 

rest. 

 Given that the force exerted by the wood on the bullet is F, find the 

distance   traveled by the bullet inside the block before it stops. 

 

Solution: 

This is one of those problems in which the key is to realize that there are two 

parts to the problem. 

1. Inelastic collision of the block and the bullet [momentum conserved] 

Let V be the final speed of the block/bullet and conserve momentum: 

( )mv M m V

mv
V

M m

= +

=
+

 

2. The block rises [energy conserved] 

As the block rises, it gains potential energy and loses kinetic energy. 

No work is done on the system, so the gain in GPE and the loss in 

KE are equal: 

Before collision After collision 



L

Lq

M
m

v
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( ) ( )

( )

( )

( )

2

2 2

2

2

1
cos

2

cos
2

cos 1
2

arccos 1
2

M m V mg L L

m v
L L

mg M m

mv

gL M m

mv

gL M m

q

q

q

q

+ = -

= -
+

= -
+

ì üï ïï ïï ï= -í ýï ï+ï ïï ïî þ

 

 

To find how far the bullet gets embedded, we assume that all the energy lost 

in the inelastic collision is dissipated by the force F that resists the bullet as it 

digs itself into the block. As such 

( )

( )
( )
( )

( )

2 2

2 2 2

2 2 2

2

Work done by KE lost

1 1

2 2

2 2

1

2

2

F

F mv M m V

mv m v
F

M m

mv M m m v

F M m

Mmv

F M m

=

= - +

= -
+

æ ö+ - ÷ç ÷ç= ÷ç ÷ç ÷+ ÷çè ø

=
+








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* Question 8 

 
A child is sitting in a chair connected to a rope that passes over a frictionless 

pulley. The child pulls on the loose end of the rope with a force of 250 N. The 

child’s weight is 320 N and the chair weighs 160 N. The child is accelerating. 

Find the force that the seat of the chair exerts on the child. 

 

Answer: 80 N 

 

Solution: 

Let’s draw some free-body diagrams: 
 

 
(Note that the rope tension is the same in both parts of the rope because the 

pulley is perfect). 

 

Seat 

Weight 

Child’s 

contact 

force 

Rope 

tension 

Child 

Seat’s 

contact 

force 

Weight 

Rope 

tension 

250 N250 N
N

N

320 N

160 N
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The child always stays in contact with the seat, so the child and seat must be 

accelerating at the same rate. Thus, the resultant force on each body must be 

the same. Taking upwards as positive, we get: 

250 160 250 320

160 2

80  N

N N

N

N

- - = - +
=

=
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** Question 9 

Jack sits on a cart loaded with stones and free to slide on a frictionless road. 

The total mass of Jack, the cart and the stones is m0. Jack propels the cart by 

throwing stones out of the back of the cart at a constant speed u relative to 

the cart, and at a constant rate m  (mass per unit time). Jill helps along by 

pushing the cart with a constant force F. What is the speed of the cart at a 

time t after Jack and Jill have started pushing it? 

 

Solution: 

This is clearly a case of lots of collisions happening continuously in time. Let’s 

consider the collision that occurs during the time interval tD . Before we do 

that, two preliminary points: 

 In those problems, the following rule of thumb will rarely fail you: 

Whenever the velocity of the ejected material is given 

with respect to the rocket/cart/etc… 

Then 

It (almost) always makes the algebra easier to deal 

with the situation in the rest frame of the 

rocket/cart/etc… at the start of the interval. 

So instead of having the cart go from v to v v+D , we’ll have it go 

from 0  to vD . 

 It is CRUCIAL  to carefully consider what dm represents here3. m is 

the mass of the cart. And so dm has to be the increase in mass of the 

cart. This means that 

You should always make the mass of the cart 

go from m before the interval to m + dm 

after the interval. If the mass of the cart is 

actually decreasing, dm will end up negative; 

that’s OK! 

                                                 
3  How to deal with the sign of dm is one of those very few points which none of my 

supervisors could clarify for me when I was in IA. It took me three years to finally figure it 

out, and it only happened as I was preparing to lecture the topic in MIT… Teaching really is 

the best way to learn something properly! 
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If you choose some other convention (for example, in this case, where 

the rocket is losing mass, you might be tempted to make it go from  

m + dm  m) you’ll end up getting the signs dreadfully messed up 

 

So, after that lengthy introduction, let’s do our drawing: 

 
[Notice how the cart goes from m to m + Dm. That’s OK – the ejected item 

just needs to have mass –Dm to conserve mass, and Dm will end up being 

negative]. 

 

Clearly, momentum isn’t conserved – but we know the impulse, and so we can 

write (ignoring the product of infinitesimal quantities): 

( ) ( )
Impulse Momentum

0F t m m v m u

F t m v u m

= D

D = +D D - -D -
D = D + D

 

 

Committing the mathematical blasphemy of changing our small quantities to 

infinitesimal ones and dividing by dt, we get 

d d

d d

v m
F m u

t t
= +  

We want v in terms of t, so we need to get rid of any appearances of m in this 

equation. We do that by noting that: 

 d / dm t m= -  (remember, m is the mass of the cart, so the derivative 

is negative, because it’s decreasing). 

 
0

m m tm= -  

We then get 

( )0

d

d

v
F m t u

t
m m= - -  

Let’s get the derivative by itself: 

0

d

d

v F u

t m t

m
m

+
=

-
 

Now, we simply need to integrate with respect to time: 

tD

Impulse

F tD

m m+Dm

vD

m-D

u
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0

0

d
d  d

d

d  d

v F u
t t

t m t
F u

v t
m t

m
m
m
m

+
=

-
+

=
-

ò ò

ò ò
 

How do we choose the limits on our integral? Use the following simple rule: 

 
In this case, we’re considering motion from the cart at rest at a time 0 (v = 0 

and t = 0), to the cart moving at a speed v at a time t. So: 

( )

( )

0 0
0

0

0

0 0

0 0

0

d  d

1
ln

1 1
ln ln

ln 0

v t

t

F u
v t

m t

v F u m t

v F u m t m

t
mu

m

mF
v

t m

m
m

m m
m

m m
m m

m
m m

+
=

-
é ù
ê ú= + - -ê ú
ë û

é ù
ê ú= + - - +ê ú
ë û

æ ö+ ÷ç ÷ç= £÷ç ÷÷ç -è ø
<

ò ò

 

[Do you understand why I’ve removed the absolute signs in the last step, and 

added the constraint on t? Also, what happens when 
0
/t m m= ? The 

equation predicts something terrible will happen, but in practice, what does 

that mean? Is the model actually valid for all 
0
/t m m< ?] 

 

The only other type of question possible here would be to find v in terms of m. 

Make sure you know how to do that. 

 

[Note for the masochists amongst you: there is also a way to find the 

differential equation directly from d / dF p t= . There’ll be a £1 cheque from 

me for anyone who manages it!]  

 

v and t at the end of the 

motion considered 

v and t at the start of the 

motion considered 

d d_ _v t=ò ò
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* Question 10 (Tripos 2004) 

A particle of mass m1 and velocity v makes an elastic, head-on collision with a 

stationary particle of mass m2. Find the velocity of the zero momentum frame 

relative to the laboratory frame. By considering the collision in the zero-

momentum frame, show that in the laboratory frame, the fraction of the 

initial kinetic energy transferred to m2 is given by 

( )
1 2

2

1 2

4m m

m m+
 

 

Three balls of masses m1, m2 and m3 are suspended in a horizontal line by 

light wires and are almost touching. The mass m1 is given a horizontal 

velocity v so that it collides head-on with the mass m2. Find an expression for 

the final kinetic energy of m3 and sketch it as a function of m2. What value of 

m2 results in the maximum energy transfer to the mass m3? 

 

Solution: 

Imagine the zero-momentum frame is moving at a speed V to the right. The 

situation in that frame looks as follows (note that in these problems, where we 

don’t know any of the quantities, it is even more crucial than usual to indicate 

what direction we choose to be positive): 

 
We want the momentum in this frame to be 0. As such 

( )1 2

1 1 2

1

1 2

m v V mV

m v mV mV

m v
V

m m

- =
- =

=
+

 

V

v V- V

1
m

2
m

ve+
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Consider the situation in the ZMF after the collision. It’s pretty clear that the 

particles must both reverse their directions (to keep the momentum 0)4. And 

here comes the nifty trick5; I claim that in the ZMF after the collision the 

particles must have the same speeds as they did before, but juts reversed in 

direction. In other words, I claim that after the collision, the situation is as 

follows: 

 
Why must that be the case? Consider the following argument: 

 To keep the momentum 0, the ratio of the speeds after the collision 

must be the same as they were before the collision. 

 This means that they must either both increase, both decrease or both 

stay the same. 

 However, the first two options are impossible, because that would 

create or destroy energy, and we are told the collision is elastic. 

Thus, the situation must be as we depicted it in the ZMF. 

 

Translating back to the lab frame, we get: 

 
Substituting in our expression for V, we get 

                                                 
4 If, however, you hadn’t realised that, and you’d made the wrong assumption, no problem. It 

just means you would end up with an extra minus sign at the end of your calculation. That 

minus sign in front of one of the velocities would tell you that your assumption was wrong. 
5 For you guys who actually tried to conserve momentum and energy manually, I sympathise 

– I also wasted many hours doing that at some point in my life. Once you’ve done it once, 

though, you’ll never make that mistake again! 

2v V- 2V

1
m

2
m

ve+

V

v V- V

1
m

2
m

ve+
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Finally, let’s find the original kinetic energy and the kinetic energy transferred 

to m2 

2

2

original 1

2

2 1
2

2 1

1
KE

2
21

KE
2m

m v

m
m v

m m

=

æ ö÷ç ÷ç= ÷ç ÷÷ç +è ø

 

The fraction transferred is 

( )

( )

2

2

2 1
2

original 1
1 2

1 2
2

1 2

KE 4
Frac

KE

4
Frac

m m m

m m m

m m

m m

= =
+

=
+

 

As requested. 

 

The next question is reasonably simple given this result. We note that the 

original kinetic energy given to mass m1 is 
2

1
/ 2m u . Thus, the kinetic energy 

transferred to mass m2 is 

( )
2 1 2

1 2

1 2

41

2

m m
m u

m m+
 

And of that, the energy transferred to m3 is 

( ) ( )3

2 1 2 2 3
1 2 2

1 2 2 3

4 41
KE

2m

m m m m
m u

m m m m
=

+ +
 

In terms of sketching this as a function of m2, it helps to re-write it as 

( ) ( )
( )

3

2
2 2 2

1 3 2 2

1 2 2 3
2

2 2 2 2

1 3 2 1 2 2 1 3 2 3

2

2 2 1 3
1 3 1 2 3

2

KE 8

8

8

m

m
u m m

m m m m

u m m m m m m m m m m

m m
u m m m m m

m

-

-

=
+ +

= + + +

æ ö÷ç ÷ç= + + + ÷ç ÷÷çè ø

 

( )2 1

2 1

m m

m m
v

-

+
1

2 1

2m

m m
v

+

1
m

2
m

ve+
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Plotting this seems like a daunting task, so let’s do it step by step: 

 Clearly, it’s positive for all m2 

 As 
2

0m  , 
3

KE 0
m

  (do you understand why I didn’t write “=”)? 

To see why this is true, look at the original expression for 
3

KE
m

. 

 As 
2

m  ¥ , 
3

KE 0
m

  (because the term inside the bracket goes to 

infinity) 

 

So it looks like the graph starts at 0, rises up to a maximum, and then falls 

again down to 0. 

 

Finding the derivative here is not a good idea, because it’s absolutely ghastly. 

You’re much better of realizing that to maximize the entire function, all you 

really want to do is minimize the stuff in the brackets – in other words, you 

want to minimize 

1 3
1 2 3

2

m m
m m m

m
+ + +  

Differentiate and set to 0 

1 3
2

2

2 1 3

1 0
m m

m

m m m

- =

=

 

 

At that point, the function has the value: 

( )

3

3

2

2 2 1 3
,max 1 3 1 3 1 3

1 3

2
2 2

,max 1 3 1 3 1 3

KE 8

KE 8 2

m

m

m m
u m m m m m m

m m

u m m m m m m

-

-

æ ö÷ç ÷ç ÷= + + +ç ÷ç ÷ç ÷çè ø

= + +

 

And the graph looks like: 
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*** Question 11 

A sheet of mass M moves with a speed V (in the direction of its normal) 

through a region of space that contains very light stationary particles of mass 

m M . There are n of these particles per unit volume. All collisions are 

elastic. 

 

What is the drag force per unit area on the sheet? 

 

Solution: 

The first thing we need to do is to consider the collision of the wall with one 

of these stationary molecules. The situation in the lab frame is as follows: 

 
The eagle-eyed amongst you will have noticed that this is exactly the 

situation we had in the previous question. Plagarising liberally, we have that 

the situation in the lab frame after the collision will be: 

 
However, in this question, we have that m M  (in fact, it’d be more 

accurate to say m M  – indeed, given that we’re trying to model air 

resistance, m would be the mass of an oxygen molecule whereas M would be 

the mass of, say, a rocket!) Thus, we can assume 0m » , and get: 

( )M m
M m

V-
+

2M
M m

V
+

M m

ve+

V

M m

ve+
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So effectively, the effect of the collision has been to give the stationary 

particle a “bumph” in momentum of magnitude 2mV. That momentum, of 

course, can’t come from no-where… So we see that as a result of each collision, 

we must supply the plane with extra momentum 2mV to ensure it can remain 

moving at a speed V. 

 

Now, the next stage in this argument is crucial in kinetic theory, which you’ll 

come across in IB (to my great dismay, it looks like it’s been removed from 

IA). If you understand this argument now, it’ll make your life infinitely easier 

when you come across is later. 

 

Consider a time interval tD . In that time, the plane will travel a distance 

V tD , and will therefore “sweep out” a volume AV tD : 

 
The question tells us, though, that there are n of these particles per unit 

volume. This means that in a time tD , as the plane sweeps through AV tD , 

the number of particles it encounters is nAV tD . However, we saw above that 

we need to supply momentum 2mV  for each of these collisions. Thus the 

total momentum that needs to be supplied in the time tD  is 

22mnAV tD  

V» 2V»

M m

ve+

A A

V tD

AV tD
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Where does that momentum come from? Clearly, from a force on the plane. 

Where does that force come from? Well, we know that d / dF p t= , and so 

22F mnAV=  
And of course, this is precisely the drag force we were looking for! So per unit 

area, the drag force is 

22
F

mnV
A

=  

This should convince you that I wasn’t completely and utterly mad when I 

told you, earlier on, that the drag force on a very fast moving block was 

proportional to the velocity of the block squared! This derivation, of course, is 

only valid when the plane is moving much faster than the air particles, 

because we assumed the air particles were at rest… 

 

Just for the sake of giving you some practice with impulse, I just want to 

show you how to solve it slightly differently. We know that 

Impulse Change in momentum=  

We therefore know that over the time tD , the impulse on the plane must be 

22I mnAV t= D  
However, we also know that 

d
d

d
 I F t

I
F

t
 == ò  

It therefore is pretty clear, once again, that 

22F mnAV=  
 

 


