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Simple Harmonic Motion 

 

Simple Harmonic Motion 
 The physical conditions necessary for a system to undergo simple harmonic 

motion is for the force on the system to be proportional to its 

displacement, but in the opposite direction. 

 The differential equations satisfied by systems undergoing SHM is 
2x xw= -  

And the general solution is 

cos sin cos( )x A t B t C tw w w f= + = +  

w  is the angular frequency of the oscillation, and 

2
T

p
w

=  

 Note that: 

o The velocity leads the displacement by /2p . 

o The acceleration leads the displacement by p . 

 

Common Systems 
 For a mass m on a spring with spring constant k 

2 k

m
w =  

Note that w  is the same whether the spring is horizontal or vertical. This 

is because a vertical spring is already extended at t = 0, and this provides 

a constant upwards force to counteract gravity. 

 For small oscillations of a pendulum length l 

2 g

l
w =  

 For a torsional pendulum, in which the wire (torsional fibre) exerts a 

restoring couple of G tq= -  on a bar of moment of inertia I twisted by an 

angle q , 

2

I

t
w =  
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Energy in SHM 
 It can be shown that all systems subject to a parabolic potential also 

undergo simple harmonic motion. Close to a point of stable equilibrium, 

this is true for every potential [cf. Taylor Expansion of the potential]. 

 The average PE and KE of a given system undergoing SHM over a whole 

number of periods or a long period of time is 21
4 ka  (each, where a is the 

amplitude). This can be deduced, for example, by integrating over a period 

and dividing by the period. The total energy is constant and shared out in 

between the two forms, oscillating at a frequency of 2w . 

 Therefore, the average energy of an oscillator is proportional to the square 

of the amplitude of the oscillation. 

 In general, the total energy of a system undergoing SHM is of the form 

2 21 1

2 2
E x xa b= +  

Assuming energy is conserved ( d /d 0E T = ), we end up with 

x x
b
a

= -  

Therefore, we can find w  only from an expression for the total energy. 

 

Superposition of SHMs 
 A consequence of the linearity of SHM is that two or more oscillations can 

be added (superimposed) to form another valid oscillation. 

 For oscillations of the same frequency but of different amplitudes and 

phases, one can build a phasor diagram and use the cosine rule 

2 2 2 2 cosc a b ab C= + -  

to find the length of the resultant vector. 

 For oscillations with different frequencies but the same amplitude, the 

following trigonometric identity helps 

cos cos 2 cos cos
2 2

A B A B
A B

+ -
+ =  

What perspires is that we get an oscillation with angular frequency 1 2

2
w w+ , 

modulated with a frequency 1 2
2

w w- . 
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When the original frequencies are very close, the modulating frequency is 

very slow. We therefore hear “beats”, the frequency of which is 1 2w w-  

(not times ½, because a node occurs twice in every cycle). 

 

Complex Representation of SHM 
 SHM can be represented by a complex number rather than by sin and cos 

terms: 

( )i t i tx ae Aew f w+= =  
Where a is a real number and A is a complex number including phase 

information. 

 Note, when differentiating, that /2ii e p= , so multiplying by i corresponds 

to a phase difference of p . Thus, ( ) ( )2
i ti t

x ai e a e
pw fw fw w

+ ++= = . 

 

Damped SHM 
 Damping usually introduces a force that is proportional to velocity. 

 The equation of motion is then 

2
0

0

2 0

mx bx kx

x x xg w

+ + =

+ + =

 
 

 

The characteristic equation is 

2 2
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+ + = = = -

 -
 -  

The general solution is then 
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There are then three possibilities: 

o Light damping – if 2 2

0
g w<  – in such a case, the exponent is 

complex. We can ensure x stays real by expressing A in complex 

form and letting *B A= . The resulting solution is 

1cos( )tx ae tg w f-= +  

Therefore, the only effects of light damping are 

 Decreasing the frequency of oscillations from 0w  to 2 2
0g w- . 
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 Causing the amplitude to decay. The decay time is defined to 

be the time taken for the amplitude to decay by a factor of e – 

this is equal to 1/ g . 

o Heavy damping – if 2 2
0

g w>  – in such a case, the exponent is real 

and we end up with a linear combination of two falling 

exponentials. The motion is aperiodic – there is no oscillation, and 

the displacement can cross the equilibrium point once at most. 

o Critical damping – if 2 2

0
g w=  – in such a case, the general solution 

is 

( )tx e A Btg-= +  

there is at most one turning point, and the curve crosses the 

equilibrium point once at most. Given the same starting conditions 

and 0w , a critically damped oscillator settles down in the shortest 

possible time. This is often used in systems such as galvanometers 

or other measuring instruments that need to quickly settle down, or 

in car suspensions. 

 The energy decay in light damping can be studied in more detail 

o The total energy at any given instant, as we saw, is 

2 21 1

2 2
E mx kx= +  

Therefore 

( )
d

d

E
x mx kx

t
= +   

Given that the equation for damped SHM is 2
02 0x x xg w+ + =   and 

that 2
0 /k mw =  this becomes 

2d

d

E
m x

t
g= -   

(You can check, using Power = Force × Velocity that this is indeed 

the rate of doing work against the frictional force.) 

o The amplitude of the nth and (n + 1)th maxima are 
t

na ae g-=           1( ) ( [2 / ])
1

t T t
na ae aeg g p w- + - +
+ = =  

Therefore, the decay in amplitude per cycle is 

12 /1n

n

a
e e

a
pg w- -D+ = =  

Where D  is the logarithmic decrement, defined by 
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( )1

1

2
ln n

n

a
a

pg
w+

D º =  

o Since the energy is proportional to the square of the amplitude, the 

energy decays by 2e- D  per cycle. 

o We define the quality factor, Q of an oscillator as 

0

2
Q

w
g

=  

A larger Q means a smaller g  and therefore a better (less damped) 

oscillator. 

o For very light damping, 2 2
0g w , so 2 2 2 2

1 0 0w w g w= - » . Under 

these circumstances, we note that 

1 0

2 2
Q

Q

pg pg p p
w w

D = » =  »
D

 

Therefore, the larger Q and the smaller D , the weaker the damping 

and the better the oscillation. 

o We know that the energy decays by 2e- D  per cycle. Therefore, after 

N cycles, the energy has decayed by 2Ne- D . Thus, we can find the 

number of cycles after which the energy has decayed by e–1, 
2 1

2 1

1

2 2

Ne e

N

Q
N

p

- D -=

- D = -

= »
D

 

This means that 2Q Np»  – in other words, another interpretations 

of Q is the number of radians through which the damped system 

oscillates as its energy drops by a factor of e. As expected, large Q 

means good quality and slow decay. 

 

Tips and Tricks 
 Take the origin at the equilibrium position when doing things from first 

principles – it eliminates g from the equations. 

 Remember that the actual formula for the k of a spring is 0/k ll= . 

Therefore, if the length of a spring is halved, its k doubles. 

 


