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PHYSICS 

Answer two questions – you are advised to spend 

roughly 30 minutes on each question 

 

Question 1 Discuss the quality factor Q in damped oscillating systems; briefly 

explain how Q relates to relevant physical constants, and suggest how Q 

may be measured in two different ways. [4] 

An antique clock keeps time by means of a torsional oscillator: the 

torsional bob has moment of inertia 5 25.9 10  kg mI -= ´  and is 

suspended from a thin wire which provides a restoring force when the 

bob is rotated away from its equilibrium orientation. The system is very 

lightly damped. A free (undriven) oscillation of the rotation bob vs. time 

is shown in the graph below 

 
Estimate angular frequency of the oscillation and the restoring torque 

per unit angular displacement (torsional spring constant) of the wire. [4] 

Estimate the quality factor of this oscillation. Briefly suggest why the 

quality factor might be a good measure of how accurate you might expect 

the clock to be when the mechanism is driven at its resonant frequency. [3] 

Explain whether you would expect the clock to run fast or slow 

when it is placed at the centre of a light turntable which is free to rotate 

on a frictionless bearing. What additional piece(s) of information would 

you require to calculate how much faster or slower? [4] 
 

Newton's second law for a rotating body is  where  is the torque on the

body,  is the body's moment of inertia and  is the body's angular acceleration

A torsional spring (wire) exerts a torque 
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displacement of the body from equilibrium, and  is the torsional spring constant of the wire 
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Solution 1 The quality factor is a measure of how fast oscillations decay in a 

damped oscillator. A general damped oscillator has the following equation 

of motion 

0mx bx kx+ + =   

This can be re-written as 
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The quality factor is defined as 
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Two ways in which the Q-factor can be measured experimentally are 

 By noting that the decay in amplitude per cycle of an oscillation is 

given by 12 /e pg w- , where 
1

w  is the frequency of the damped system. 

When the oscillations are very lightly damped, 
10

w w» , where 
0

w  

is the frequency of the un-damped system, and so the decay in 

amplitude per cycle of an oscillation is 02 / /Qe epg w p- -= . 
 

We can therefore observe the damped oscillator decay over time 

and use information about how fast it decays to work out Q. [1] 

 By noting that Q is the ratio of the resonant frequency to the 

bandwidth of the oscillation, 
0
/Q w w= D .  

 

We can therefore force the oscillator at a range of frequencies and 

use the amplitude responses obtained to work out the resonant 

frequency and the bandwidth. This can be used to find Q. [1] 

 

To find the angular frequency, we note from the graph that in the first 

600 seconds, the system undergoes 50 oscillations. Therefore, the period is 

given by 

600
12 s

50
T = =  

We then have that 

 12
0.52 s

T

p
w -= =  [1] 

Now, imagine that the system has torsional spring constant k . This 

means that when the bob is rotated an amount q  from equilibrium, the 

restoring torque is kq . Since the system is very lightly damped, the 

equation of motion is approximately 
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This is the equation for simple harmonic motion with angular frequency 

 / Iw k»  [2] 

The question gives us I and we found w , so we can work out k : 

 2 5 11.62 10  N m radIk w - -= ´»  [1] 

 

To find the quality factor, we note that in 1200 seconds = 100 

oscillations, the amplitude decays from 0.6 to 0.2. Since the amplitude 

decays by /Qe p-  per cycle, this implies that 
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The question of accuracy is a difficult one, and can be approached from 

one of two angles. Either the following arguments would have got the 

mark: [1[ 

 Presumably, the driving mechanism somehow disturbs the bob’s 

oscillation and therefore the accuracy of the clock. The larger Q, 

the slower the energy decay and the less often the driving 

mechanism will need to come into play. Therefore, the larger Q 

the less disturbed the oscillations, and the more accurate the clock. 

 The larger the bandwidth of the oscillations the more likely it is 

for the pendulum to be driven slightly faster or slower than 
0

w , 

resulting in inaccurate time keeping. The larger Q the smaller the 

bandwidth, and the more accurate the clock. 

 

Putting the clock on a frictionless turntable amounts to putting the clock 

in outer space – the outer casing can now also rotate. By analogy to a 

linear system, the original system is equivalent to having two masses on 

either end of a spring with one mass fixed. Putting the clock in outer 

space is equivalent to releasing the second mass [1]. In the linear system, 

we know that the effect of releasing the second mass is to replace the 

mass of the system by the reduced mass 
1 2 1 2

/ ( )m m m mm = + . A quick 
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calculation shows that this is less than either the masses m1 and m2 [1]. 

By analogy, the net effect of putting the clock on the turntable is to 

reduce I, which translates to an increase in w  (since 2 / Iw k= ). An 

increase in w  implies a decrease in T, which means that each oscillation 

will take less time. The clock will therefore run fast [1]. Once again by 

analogy, the quantity we would need to find the “reduced moment of 

inertia” is the moment of inertia of the outer casing [1]. 
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Question 2 State how the forces on a body affect both its linear and rotational 

motion, and give the conditions for a body to be in equilibrium. [3] 

A uniform rectangular block of mass m, width w and height h, which 

has small ridges on two of its bottom edges, as shown, is placed on a 

rough plane inclined at an angle q  to the horizontal. 

 
The forces acting on the block are its weight, the normal reaction 

forces RL and RR and the frictional forces FL and FR at the left and right 

ridges respectively, as shown. The coefficient of static friction between 

each of the ridges and the inclined plane is m , and the masses and 

thicknesses of the ridges are negligible. How are the forces acting on the 

block related when the block is in equilibrium? [3] 

Show that, as q  is increased, 

(a) either the block will slide when tanq m>  [Hint: consider the 

total frictional force and total reaction force on the block] 

(b) or the block will tip over when tan /w hq >  [4] 

A point-like piece of ice of mass M is released from rest on the plane 

at a distance d from the block, slides freely on the surface, collides with 

the block and comes to rest as a result. The collision is observed to last 

0.5 seconds (in other words, the ice touches the block, squishes, and then 

comes to rest, and the whole process takes 0.5 seconds from the time the 

ice first touches the block to the time the ice comes to rest). The 

coefficient of friction between the ice and the surface is 0. 

 
Given that the block does not slide as a result of the collision, show 

that [Hint: once again, consider the total frictional force on the block] 
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Solution 2 Let the forces on the body be denoted by Fi and the position vector of 

the point at which they act be xi (with respect to the centre of mass of 

the body). Then the linear and rotational accelerations of the body are 

given by 

 (Linear) 
1

im
= åa F  (linear) [1] 

 (Rotational) 
1

i iI
= ´åx Fa , where I is the moment of inertia of 

the body about its centre of mass [1] 

For a body to be in equilibrium (both linear and rotational), we require 

 0 0
i i i
= ´ =å åF x F  [1] 

 

When the block is in equilibrium, the following must be true: 

 Forces parallel to the plane must balance 

 sin
L R

F F mg q+ =  (1) [1] 

 Forces perpendicular to the plane must balance 

 cos
L R

R R mg q+ =  (2) [1] 

 Turning moments with respect to the centre of the block must 

balance 

 
2 2 2 2L L R R

h w h w
F R F R+ + =  

 ( )L R L R
F F h R w R w+ + =  (3) [1] 

 

As the plane gets steeper, F will need to increase at both ridges to keep 

the block stationary. The block will slip if we ever have  

 ( ) ( )LL RR
F RF Rm ++ >  [1] 

Using (1) and (2), we get 

c ssin omm gg m qq >  

 tanq m>  [1] 

 

As the plane gets steeper, RL decreases. The block tips when 0
L

R < . [1] 
 

Let’s use our three equations to find expressions for RL. First use (1) and 

(3) to eliminate F: 

L

cos (2)

sin (3)
L R

R
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mgh R w R w

q
q

+ =
+ =

 

Then use (2) to eliminate RR 
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So the block tips when 

L

co
0

s sin

2

mgw mgh
R

w

q q-
= <  

 tan
w

h
q >  [1] 

 

From the time the piece of ice is released to the time it collides with the 

block, it loses potential energy 

sinMgh Mgd q=  

This is equal to the kinetic energy gained by the ice. The velocity of the 

ice immediately before the collision is therefore 

 2 sinv gd q=  [1] 

The ice is brought to rest by the collision. The change in momentum of 

the ice during the collision is therefore 2 sinMv M gd q= . This is equal 

to the impulse exerted by the block on the ice. By Newton’s Third Law, 

this is equal to the impulse exerted by the ice on the block 

 Impulse 2 sinM gd q=  [1] 

The collision lasts 0.5 seconds. Assuming that the force exerted by the ice 

on the block (and vice versa) involved is constant throughout, we have 

Impulse  d 0.5 2 sint M gd q= = ´ =ò    

 8 sinM gd q=  [1] 

The maximum combined force of friction that can be provided by the 

front and back ridges of the block is ( )max
2

L R
F R Rm= + . For the block 

to remain stationary after the collision, we require 

 
max

sin 2mg Fq + <  [1] 

( )sin 8 sin
L R

mg M gd R Rq q m+ < +  

Using equation (2) above, this becomes 

sin 8 sin cosmg M gd mgq q m q+ <  
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Question 3 Define the term impedance as it relates to AC circuits and derive the 

expressions for the complex impedances of a capacitor and an inductor, 

C
1/ ( )Z i Cw=  and 

L
Z i Lw=  respectively. [5] 

In the circuit below, the voltage 
1

( ) Re{ }i t

i
V t V e w=  produces a 

current ( )

1
( ) Re{ }i tI t I e w f+= . Determine 

1
I  and f . [5] 

 
The output voltage across the inductor is ( )

0 2
( ) Re{ }i tV t V e w q+= . 

Determine V2 and q  in terms of V1, R, C, L and w . Sketch graphs 

showing the dependence of V2 and q  on w . Indicate on your graph 

calculated values of V2 and q  at 0w = , ( ) 1/2
LCw

-
=  and the 

asymptotic values as w  ¥ . [5] 
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Solution 3 Impedance describes a measure of opposition to alternative current (AC). 

Impedance extends the concept of resistant to AC circuits, describing not 

only the relative amplitudes of the voltage and current, but also the 

relative phases. 
 

Mathematically, we define the impedance Z as the voltage-current ratio 

when the voltage is a single complex exponential at a particular 

frequency w : 

 
0

( )
( )

( )
i tV t

Z V t V e
I t

w= =  [1] 

 

Consider a capacitor driven so that the potential difference between its 

two ends is 
0

( ) i tV t V e w= . We know that the charge stored in a capacitor 

of capacitance C  is related to the potential difference across its ends by 

the expression q = CV. The current through the capacitor is therefore 

given by 

0

d d

d d
i tq V

I C CV i e
t t

ww= = =  

The impedance is therefore given by 

 0

0

( ) 1

( )

i t

i t

V eV t
Z

I t i CCV i e

w

w ww
= = =  [2] 

 

Consider a capacitor driven so that the potential difference between its 

two ends is 
0

( ) i tV t V e w= . We know that the voltage across and current 

through an inductor are related by (d / d )V L I t= . Therefore 

0

0

0

d

d

( )  d

( )

i t

i t

i t

I
L V e

t
V

I t e t
L

V
I t e

i L

w

w

w

w

=

=

=

ò  

The impedance is therefore given by 

 0

0

( )

( ) ( / [ ])

i t

i t

V eV t
Z i L

I t V i L e

w

w
w

w
= = =  [2] 

 

Impedances in series add. Therefore, the total impedance of the circuit in 

the question is 

 
tot

1
Z R i L

i C
w

w
= + +  [1] 
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tot
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é ùæ ö æ ö÷ ÷ç çê ú÷ ÷= + - -ç ç÷ ÷ê úç ç÷ ÷ç çè ø è øê úë û
 [1] 

The current is given by 

 1
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I
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w

= =  [1] 
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Therefore, we have 

 1
1 2

2 1

V
I

R L
C

w
w

=
æ ö÷ç ÷+ -ç ÷ç ÷çè ø

 [1] 

 
1

arctan
L

R RC

w
f

w

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
 [1] 

 

Since the circuit is in series, the current through the inductor is I(t) as 

above. We then have 

0 inductor
( ) ( /2)

0 1

( ) ( )

( ) i t i

V t I t Z

V t I Le ew f pw +

=

=
 

And so 

1
2 2

2 1

1
arctan

2

V L
V

R L
C

L

R RC

w

w
w

p w
q

w

=
æ ö÷ç ÷+ -ç ÷ç ÷çè ø
æ ö÷ç ÷= - -ç ÷ç ÷çè ø

 

Let’s first find the value of these at the three values of w  specified: 

 0w =  1/ LCw =  w  ¥   

V2 0 1V L
R C

 V1 [1] 

q  p  / 2p  0 [1] 
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The graphs look as follows: 

  [2] 

 

  [1] 

 

It is interesting (though not necessary to get the marks) to realise what is 

going on at each of the special values of w  above: 

 At 0w = , the inductor simply acts as a piece of wire (very low 

impedance), and the capacitor almost acts as a short (very high 

impedance). Therefore: 

o All the potential difference is dropped across the capacitor, 

and so no potential drops across the inductor. It makes 

sense for the potential difference across the inductor to be 0. 

o The behaviour in the circuit is dominated by the capacitor, 

so current in the circuit leads Vi by / 2p . Across the 

inductor, however the current lags behind V0 by / 2p . 

Thus, Vi lags V0 by 
2 2
p p p+ = . 
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 At 1/ LCw = , the inductor and capacitor both have the same 

impedance. 

o The current is in phase with Vi because the leading effect of 

the capacitor and the lagging effect of the inductor cancel 

each other out exactly at resonance. However, across the 

inductor, the current still lags behind V0 by / 2p . Thus, Vi 

lags V0 by / 2p . 

o (The value of V2 here is slightly more complicated, so I 

won’t spend half a page doing it). 

 As w  ¥ , the capacitor simply acts as a piece of wire (very low 

impedance) but the inductor almost acts as a short (very high 

impedance): 

o All the potential V1 across the circuit is dropped across the 

inductor. 

o The behaviour in the circuit is dominated by the inductor, 

so current in the circuit lags Vi by / 2p . Across the 

inductor, the current also lags behind V0 by / 2p . These 

two therefore cancel, and Vi is in phase with V0. 


