
Operations Research Notes Page 1 of 77

 © Daniel Guetta, 2009/2010

Mathematics of Operations

Research

Part III Course, Michaelmas 2009

Revision Notes

Daniel Guetta

guetta@cantab.net

Operations Research Notes Page 2 of 77

 © Daniel Guetta, 2009/2010

Linear Programming

Lagrangian Methods

 Let P(b) denote the optimization problem

Minimize ()f x subject to () , XÎ=h x b x

We say that x is feasible if { }() : ()X b xx X h x bÎ = Î = . We define the

Lagrangian as

() () (), ()TL f x= - -x h x bl l

l is called a Lagrangian multiplier and typically

o nX Í

o , mÎb l

o : n mh
The following theorem concerns such problems:

Theorem (Lagrangian Sufficiency Theorem – LST): If

()XÎx b (ie: x is feasible for P(b)) and there exists l

such that

() ()inf , ,
X
L L

Î
=

x
x xl l

Then x is optimal for P(b).

Proof: For all l and feasible x (ie: ()X XÎ b), we

have

()(,) () () ()TL f f= - - =x x h x b xl l

By assumption

(,) (,) L XL £ " Îxx xll

If we restrict our attention to ()X XÎ Íx b , the only

possible x that can solve our problem, we find that

(,) () ((,)) ()f L f xL X£ = "= Îx x x x bll

Thus, x is optimal for P(b)

This leads to a method for solving such optimisation problems

o Minimize (),L x l subject to XÎx . The answer *()x l will, of

course, depend on l .

o Find a * mÎl such that ()* *x l is feasible.

Operations Research Notes Page 3 of 77

 © Daniel Guetta, 2009/2010

This method effectively involves relaxing the constraint but associating a

penalty to deviations from the constraint. For some value of the penalty,

the maximum will be just right.

Note, however, that the converse of the theorem above is not true, and so

this method might not always work.

 We define

()
Solution value to () () inf ()

() inf (,)
X

X

P b f

g L

f
Î

Î

= =

=
x b

x

b x

xl l

It turns out that

Theorem (Weak Duality): (()) gf ³b l , , m" Îbl

Proof: First, we have that if ()XÎx b , then

(,) ()L f=x xl for all l , so

() ()
() inf () inf (,)

X X
f Lf

Î Î
= =

x b x b
b x x l

Clearly,

()
inf (,) inf (,) ()
X X

L L g
Î Î

=³
x b x

x xl l l

Because the first infimum is taken over a smaller set.

This proves the Theorem.

Clearly, therefore, g is a lower bound on the solution value of P(b). It

makes sense to try and make this lower bound as large as possible. In fact,

we define:

Definition (Dual Problem): The dual problem of P(b) is

maximize ()g l subject to YÎl

Where { : () }Y g= >-¥l l

The Primal Problem is simply finding ()f b .

Definition (Strong Lagrangian): We say that P(b) is

Strong Lagrangian if there exists l such that

()() () inf ,
X

g Lf
Î

= =
x

b xl l

In other words, problems for which:

 1. The Lagrangian Sufficiency Theorem applies

 2. The min of the primal = max of the dual

Operations Research Notes Page 4 of 77

 © Daniel Guetta, 2009/2010

Determining whether the LST applies to a given problem reduces to

determining whether the problem is Strong Lagrangian.

 Geometrically, what is ()g l ? We first present the following calculation

()
()
(){ }

()

(

() inf (,)

inf inf () ()

inf)

p)

(

su :

m

m

T

X
T

X

mT

g L

f

f

f

b b

b

Î

ÎÎ

Î

=
é ù= - -ê úë û

= - -

= +

=

Î- £ "

cc

c

x

x

x

x h x b

c c b

c b c c

l

l l

l

l

l

Geometrically, this implies that ()g b= ll is obtained by

o Drawing a graph of ()f c

o Drawing a hyperplane of gradient(s) l under this curve, and

pushing it up as snugly as possible against the curve

o Reading off the intercept of this curve when c = b

It’s therefore clear that the dual problem simply consists of tweaking l

to find the maximum value of bl . The specification that

{ : () }g -¥Î >l l l simply ensures that the resulting hyperplane is not

vertical.

We will only obtain max ()b f= bl (the solution to the problem) if one of

those “snugly fitting hyperplanes” touches the point ()f b of the curve f .

Formally, we require there to be a supporting hyperplane:

Definition (Supporting hyperplane): A supporting

hyperplane (,)ac to f at the point b is of the form

() () ()Ta f= - -c b b cl

Where

(()) maf ³ " Îc cc

In other words, the hyperplane touches the curve snugly

at ()f b and lies below f everywhere else.

And in fact

Theorem: The following are equivalent

 1. There exists a (non-vertical) supporting

hyperplane to ()f c at c = b.

Operations Research Notes Page 5 of 77

 © Daniel Guetta, 2009/2010

 2. The problem is Strong Lagrangian (ie:

max ()b f= bl)

Proof: Suppose 1 is true. This means that there exists

l such that

(())) (T mf f - -³ " Îb cc b cl

This implies that

()

() inf ()

inf inf ()

inf

()

(()

(

)

(,)

)

m

m X

T

T

X

g

hf

L

f f
Î

ÎÎ

Î

é ù£ +ê úë û
é ù= +

-

-ê úë û
=

=

c

x cc

x

b c

b x

b c

x

x

l

l

l

l

However, we know that (())g f£ bl , and so we must

have (())g f= bl and P(b) is Strong Lagrangian.

Conversely, if the problem is Strong Lagrangian, then

there exists l such that

()
(,

() inf (,)

()

()

)

(())

X

T

L

L

X
f

f

f

f

Î

£
" Î

£ - -

=
x

x
x

x h x

b

b

b b

x

l

l

l

We can minimize the RHS over ()XÎx c , and get

()(()) Tff £ - -c c bb l

Thhis is true for all c, and hence

() ()() T mf f- £ "- Îb c c cb l

And therefore f has a non-vertical supporting

hyperplane at b.

This theorem is particularly useful in conjunction with the following:

Theorem (Supporting hyperplane): If f is convex and b

lies in the interior of the set of points where f is finite,

there exists a (non-vertical) supporting hyperplane to f

at b.

Note also the following definitions

Definition (Convexity):

 1. A set S is a convex set if for all [0,1]l Î

Operations Research Notes Page 6 of 77

 © Daniel Guetta, 2009/2010

 ()1, S xx y y Sl lÎ + - Î

 2. A real-valued function f defined over a convex set

S is a convex function if for all ,x y SÎ and

[0,1]l Î

 () ()() 1 () (1)f x f y f x yl d l d+ - ³ + -

Definition (Extreme Point): A point x is an extreme

point of S whenever, for some ,x y SÎ and [0,1]l Î

()1 z zx y x yl l - =+ ==

 The discussion above has made it clear that we are interested in problems

in which f is convex. The following theorem is of use in that respect

Theorem: Consider the problem P(b) defined as

minimize f(x) subject to , ()X hÎ £x x b

If X is a convex set and f and h are convex, then f is

convex.

Proof: Take

1 2
,b b such that f is defined, and

()1 2
1l l= + -b b b for (0,1)l Î .

 xi to be feasible for P(bi) and ()1 2
1l l= + -x x x

Then
1 2
, XÎx x and X convex implies XÎx . Also, h

convex gives

()()
()

()

1 2

1 2

1 2

1

() 1

(

)

1

)

(

h

h h

h l l

l l

l l

+ -

£ + -

£ +

=

-
=

x x

x x

b b

x

b

So x is feasible for P(b). This means that

(()) ff £ xb

If f is convex

() () ()1 2
() 1f ff l l£ + -x xb

This holds for all ()
ii

XÎx b and so taking infimums

() () ()1 2
() 1f lf l f£ + -b bb

So f is indeed convex.

Operations Research Notes Page 7 of 77

 © Daniel Guetta, 2009/2010

Note that the constraint ()h =x b is equivalent to the

two constraints ()h £x b and ()h- £-x b , so f is also

convex under that constraint provided h and –h are

convex.

Linear Programs

 We consider problems of the form

Definition (Linear program):

Problems that involve free variables x can be modified to fit this form by

replacing x with x+ – x–, where x+ and x– are two nonnegative variables.

 These problems can be cast into standard form by the addition of slack

variables z to form the problem

Definition (Linear program in standard form):

{ }minimize 0, 0: ,T A ³= ³-c x x z xb z

 Let’s clearly summarise the variables involved in a standard form LP

Original form

min :
0

T
Aì üï ïï ïí ýï ïï ïî

³

³ þ

x
c x

x

b

Standard form

min :
(,) 0

T
Aì üï ï- =ï ïí ýï ³ ïï ïî þ

x z b
c x

x z

#Variables n ¢ n n m¢= +
#Constraints m m

#Non-neg

constraints n ¢ n n m¢= +

Total

constraints n m¢ + 2n m n m¢ + = +

Geometrically, these two problems are somewhat different

o The original problem defines a polyhedron, over which we need to

find the maximum of a given function. It turns out that

{ }minimize 0: ,T A ³ ³x bx xc

m n´

1n´ 1m´1 n´

Operations Research Notes Page 8 of 77

 © Daniel Guetta, 2009/2010

Theorem: If an LP has a finite optimum, then it occurs

at an extreme point of the feasible set.

Since there are n ¢ variables, we need n ¢ equations to characterise

an extreme point. Thus, we require n ¢ of the inequalities to be

tight, from the n m¢ + in the original problem, and there are

therefore n m n

n n m
C C¢+

¢ -
= extreme points.

Finding extreme points involves choosing which inequalities to

make tight.

o The normal form problem involves a higher dimensional system of

equations, the solutions of which completely cover the polyhedron

in the original problem.

It should be pretty clear here that

 The slack variable zi is 0 only if the corresponding

inequality is active.

 The variable xi is 0 only if the corresponding non-negativity

constraint is active.

So finding the extreme points simply reduces to setting n n m¢ = -

variables to 0. To make our lives easier, we introduce the following

notation

We’re now ready to characterise our extreme points algebraically

Definition (Basic solution):

 • A basic solution to Ax = b is one with at least

n m- zero variables. In other words, one in which

xN = 0.

 • The m non-zero variables xB are called basic and

form the basis. The others are called non-basic.

1m´

m m´

B B N N
A A+ =x x b

()m m n´ -

() 1m n- ´ 1m´

Operations Research Notes Page 9 of 77

 © Daniel Guetta, 2009/2010

 • Such a solution is non-degenerate if exactly n – m

of these variables are 0 (ie: if no component of xB

is 0).

 • If a basic solution satisfies 0 0
B

³ ³x x then it

is called a basic feasible solution.

Theorem: The basic feasible solutions are the extreme

points of the feasible set.

 The idea behind the simplex algorithm is simply to start with a BFS, test

whether it is optimal and move to another one if it isn’t. We make the

following assumptions (if they do not hold, then they will for a small

perturbation of the data)

o The matrix A has linearly independent rows (ie: rank A m=);

otherwise, we have “duplicate constraints”.

o Any m m´ matrix formed from m columns of A is non-singular;

otherwise, we might have some trouble finding one of the BFS.

o All basic solutions have exactly m non-zero variables (ie: the BFS

is non-degenerate).

 Imagine we find ourselves at a BFS x, with 1

B B
A-=x b . How can we check

whether this BFS is optimal, and where do we go if it isn’t?

Imagine moving away from that BFS to a new point jq+x d by

increasing a non-basic variable j. The variables in the basis will then also

have to change to keep the solution feasible. Algebraically, we have

()
0 \

1

{ }j

i

j

B i

i j

d i

d i

N j

B

q q Î

Î

ìï =ïïïï= íïïïïïî

We can find j

B
d by requiring that jq+x d be feasible (and remembering

that x is feasible, so A =x b)

()

1

0

j

j

B B j

j

B

j

B j

A

A A

A

A

q

·

-
·

=

+

-

+ =

=

=

d 0

b

d

d

d A

x

Operations Research Notes Page 10 of 77

 © Daniel Guetta, 2009/2010

Moving along this direction will change the objective function by the

reduced cost T j T j

j j B B
c c= = -c d c d . We can write this as

1T

j j B B j
c c A-

·= -c A

(And note that for j basic, 1T

B B j j
A c-

· =c A and so 0
j

c =)1.

But consider that for any x with Ax = b, we have

()1
B B N N

B B N N

A A

A A-

+ =

= -

x x b

x b x

Therefore

()1

1

Objective function T T T

B B N N
T T

B B N N N N
T

B B N N

A A

A

-

-

= = +

= - +

= +

c x c x c x

c b x c x

c b c x

Now, imagine a BFS X with 0
N
£c for all N, and, by definition,

N
=x 0 .

Moving away from this BFS necessarily implies increasing
N

x (or keeping

it at 0) and therefore decreasing the objective function. Thus
1Objective function T T

B B
A- =£ c b c X

And so X is optimal. In fact

Theorem: A basis matrix AB is said to be optimal if

 1 0
B B

A- = ³b x (Feasibility)

 1

B B
A A-= - ³c c c 0 (Optimality)

(Note that if the BFS is degenerate, it could be optimal but nevertheless

have negative reduced costs. This is because if those negative reduced

costs coincide with a variable in the basis that is 0, we cannot move in

that direction without violating the non-negativity constraints. So the

direction only appears to be improving).

If we find that some of the reduced costs are negative, then we choose the

non-basic variable j with most negative reduced cost (ie: from which we

can gain the most) and make that variable enter the basis. In other words,

we move in the direction jd until one of the previously basic variables

becomes 0 (ie: leaves the basis) – past that point, we would be violating

1 To see why, note that 1

B B
A A I- = , which implies that ()1 j

B B j
A A I-

·
= , where j

i ij
I d= . Thus,

if j BÎ then ()1 1T T T j
B B j B B B B jj
A A A I c- -

· ·
= = =c A c c .

Operations Research Notes Page 11 of 77

 © Daniel Guetta, 2009/2010

non-negativity constraints. If we move a distance jqd , then each variable

i changes by j

i
dq . If it’s positive, then no problem. If it’s negative, then we

require

{ }0 : 0ji
ij

i

j

i i
x d

x
i i d

d
qq q³ £- "+ Î <

This makes it clear that we should choose

() ()1

1

min : 0,

min : 0,
j

i
ij

i

i
B i

B ij

x
d i

d

x
A A i

A A

B

B

q

q
·

-

-
·

ì üï ïï ï= <í ýï ï-ï ïî þ
ì üï ïï ïï ï= >

Î

Îí ýï ïï ïï ïî þ

The variable which ends up determining q will be the one to leave the

basis.

(Note: if every ()1 0j

i ijB
d A A-

·= - > , then q = ¥ , because we can improve

in that direction infinitely without ever violating the non-negativity

constraints. So the problem is unbounded).

 We now need a practical method to carry out simplex. Unfortunately,

carrying out the method above naively leads to a very inefficient

algorithm, because we need to evaluate 1

B
A- at every iteration.

A move efficient method carries this information through each iteration.

We store the information stored at each step in the following tableau:

1

B
A A-

Value of basic

variables

Reduced costs –Objective function

Mathematically, the tableau looks like:

1
B

A A-

 1

B B
A- =b x

1 T T

B B
A A--c c 1T T

B B B B
A-- = -c b c x

We often represent the Tableau by an array a

()ij
a 0i

a

0 j
a

00
a

Operations Research Notes Page 12 of 77

 © Daniel Guetta, 2009/2010

The simplex method then proceeds as follows:

o Begin by choosing a basic feasible solution. This is often easily done

by setting all the slack variables to b and all the “real” variables to

0 (see later for cases where this doesn’t work). In that case,
1

B B
A A I-= = (where some of the entries might be negative,

depending on the type of inequality), and the tableau can easily be

filled in:

Calculate the reduced cost and enter them into the last row. Often,

the objective function coefficients will only include non-basic

variables. In that case, T

B
=c 0 and so =c c and our work is done.

Otherwise, proceed as follows:

 Multiply each row by the corresponding objective function

coefficient (eg: multiply the first row above by
1z

c).

 Subtract each row from the last row.

In terms of our tableau, this looks like:

Finally, work out the objective function value to put into the

bottom right-hand corner.

o Choose a variable to enter the basis Choose a pivot column with

the smallest
0

0
j j

a c= < , or, in case of ties, the one with the

smallest j. This is the nonbasic variable with the most negative

reduced cost.

Termination check: If all 0
j

c > , then there is no

improving direction. Done.

In terms of our tableau:

 x1 x2 zm b

z1 basic a11 b1

zm basic amn bm

 c1 c2

0 0

0 0 0j j ij j
a a a a= -

{ }0 0
Entering basis Pivot column argmin : 0

j j
j

j a a= = = <

Operations Research Notes Page 13 of 77

 © Daniel Guetta, 2009/2010

o Choose a variable to leave the basis by finding q :

() ()1

1
min : 0,i

B i
B

j

j i

x
A A i

A A
Bq -

- ·

·

ì üï ïï ïï ï= >í Î ýï ïï ïï ïî þ

In this case, we know what j is; we’ve already chosen the pivot

column. Since the tableau contains 1

B
A A- , then the pivot column

contains 1

B j
A A-

·
, and we know that the last column contains

B
x . So:

 Divide each item in the last column by the corresponding

item in the pivot column; only when the item in the pivot

column is positive.

 Choose the least one of those – the corresponding variable

will end up leaving the basis, and the corresponding row is

the pivot row.

In terms of our tableau:

Degeneracy check: If there is more than one i that

minimizes the above, then two variables will

simultaneously become 0 and the problem is degenerate

(because more than n constraints will be tight at that

point).

Termination check: If all ()1 0
ij B ij

a A A·
-= < , then the

problem is unbounded, and we can improve along that

direction to infinity. Done.

o Update the tableau (pivot on element aij) by moving along that

direction. Effectively, this involves updating the matrix 1

B
A- to

reflect the fact the basis has now changed. Assume variable j has

entered the basis and variable i has left it. The old and new

matrices look like

? ?

? ?

B i

jB
A

A
· ·

· ·

·

·

é ù
ê úë û
é ù
ê úë û

=

=

A A

A A A

A

 ? BÎ

0Leaving basis Pivot row argmin : 0i
ij

i
ij

a
i a

a

ì üï ïï ïï ï= = = >í ýï ïï ïï ïî þ

Operations Research Notes Page 14 of 77

 © Daniel Guetta, 2009/2010

Now, since 1

B B
A A I- = , we have that ()1 j

B B j
A A I-

·
= , where j

i ij
I d= .

This implies that

1 1 1 ?

B B B j
A A I A I- -

·
é ù= ê úë ûA

Now, imagine we find a matrix Q such that

1 1 1 ?

1 1

B B B j

B B

QA A Q I A I I

QA A

- -
·

- -

é ù= =ê úë û
=

A

So we simply need to find this magical matrix of row operations Q,

apply it to our tableau (which contains 1

B
A-) and we’ll get 1

B
A- .

These row operations are as follows:

 Divide the pivot row by the pivot element (so we get 1 on

the diagonal)

 For each row ia ¹ , subtract
j

aa times the pivot row,

where Aki is the value of the pivot column in that row (so

we get 0 everywhere else).

In terms of our tableau

/ for the pivot row (ie:)

for every other row (ie:)
ij

j i

a a i
a

a a ia
ab

ab
ab a b

a
a

ìï =ï= íï -î ¹ï

It turns out this rule also applies to the last row of the tableau. To

see why, consider that originally, the last row is (the vertical lines

indicate jumping from cell to cell in the tableau)
1| 0 |T T

B B
A A-é ù é ù- ê úê ú ë ûë ûc c b

When we add a multiple of the pivot row, we are adding a linear

combination of |Aé ùê úë ûb . So our result will be of the form

| 0 |T Aé ù é ù- ê úê ú ë ûë ûc T b

where T is some linear transformation. But notice that after these

row operations

 We end up with a 0 in the pivot column, by design.

 We end up with a 0 in every other column k j¹ that stays

in the basis, because (1) the original value there was 0,

being the reduced cost of a basic variable (2) the entry in

the pivot row for that column is also 0, because for any

Operations Research Notes Page 15 of 77

 © Daniel Guetta, 2009/2010

basic variable k, 1 k

B k
A I-

·
=A , but k j¹ , so the entry in

the pivot row is indeed 0.

So we end up with a 0 in every column corresponding to the new

basis. Thus

1

0T

B B
T

B B

A

A-

- =

=

c T

T c

And so we end up with a bottom row of
1| 0 |T T

B B
A-é ù é ù- ê úê ú ë ûë ûc c A b

As required.

 Sometimes, we do not have any obvious basic feasible solution (this often

occurs when we have equality constraints, > something positive or <

something negative, in which case the “obvious” BFS can make the slack

variables negative).

For example, consider the problem

{ }min : , 0T ³=c x Ax b x

The trick here is to

o Multiply the equalities by –1 as needed to make bi positive.

o Introduce a vector of artificial variables y and solve the problem

{ }1
in 0: , , 0m

m
yy + ³ ³+ + =Ax b x yy

Several possibilities

o If the optimal solution has 0¹y , then the original problem was

not feasible.

o If the optimal solution has =y 0 and the method terminates with

a basis matrix AB consisting exclusively of columns of A, then we’re

good – we can simply drop the columns corresponding to artificial

variables and go from there.

o If the optimal solution has =y 0 but some of the artifical variables

are still in the basis, then the original problem has a degenerate

basic feasible solution. We must drive the artificial variables out of

the basis.

To do that, assume that the th basic variable is an artificial

variable (in the basis at 0 level, since y = 0).

Operations Research Notes Page 16 of 77

 © Daniel Guetta, 2009/2010

 Find a column j corresponding to one of the original non-

artificial variables with a non-zero entry in that row – ie:

()1 0
B j

A-
· ¹A

.

 This column is linearly independent from every other

column 1

B k
A A-

·
 where k BÎ , because for these columns,

()1

B k iki
A A d-

· = , and since k < (since is an artificial

variable) every one of these columns have a 0 entry in the

 th row.

 We can therefore make that variable j enter the basis

instead of [note that the pivot element might be

negative].

If, however, every element in the th row of 1

B
A A- [ie: every entry

corresponding to the original non-artificial variables in the tableau]

is 0, then the above method does not work, because it means that

the original matrix A has a rank < m. In other words, the matrix A

has some linearly dependent rows, and some of the constraints in

the original problem are redundant. In that case, we can simply

delete that th row. To see why, consider

 The th row of 1

B
A A- is equal to 0, so 0TA =T , where TT

is the th row of 1

B
A- .

 Since the problem is feasible, we must also have 0T =T b .

 This means that the constraint T TA =T x T b is redundant,

and can be eliminated. Since this constraint is the

information provided in the th row, we can simply delete

that row, and continue from there.

In general, if a variable appears in a single constraint with a

positive coefficient, we can always let that variable be in the initial

basis, and we do not need to associate an artificial variable with

that constraint.

Note that the two methods can be combined into a single one, by

minimizing
T

i
M y+ åc X

Operations Research Notes Page 17 of 77

 © Daniel Guetta, 2009/2010

Where M is a very large number (in fact, we don’t even need to ascribe a

number to M – we can simply leave it as an unknown, and assume it is

bigger than any number in our tableau when we need to make

comparisons).

Duality Theory

 Recall that:

Definition (Linear program in standard form):

{ }minimize 0, 0: ,T A ³= ³-c x x z xb z

The permissible set m nX +Ì is given by

(){ }: , 0, 0
i i

zX x ³ ³= x z

The Lagrangian for the problem is then

() ()
()

(,); T T

T T T T

L A

A

= - - -

= - + +

x z c x x z b

c x z b

l l

l l l

Now, recall that

()
(,)

() inf (,);
X

g L
Î

=
x z

x zl l

In this case, we note that

o L only has a finite minimum in X if both the coefficients of x and z

are positive, so

{ }: 0, 0T TY AÎ = ³ - ³c ll l l

Otherwise, we could simply take x and/or z to infinity and make

the function smaller and smaller as we go.

o This minimum occurs when both the first two terms in L disappear,

so that

()
(,)

() inf (,); T

X
g L

Î
= =

x z
x z bl l l

This motivates the definition of the dual linear program:

Definition (Dual program):

{ }, 0maximize :T TTA £ ³b c ll l

By similar logic, we can construct dual programs for all kinds of primal

constraints and negativity constraints. In fact

Primal Dual

Operations Research Notes Page 18 of 77

 © Daniel Guetta, 2009/2010

minimize Tc x maximize Tbl
T

i i
b

·
³A x 0

i
l ³

T

i i
b

·
£A x 0

i
l £

T

i i
b

·
=A x free

i
l

0
j

x ³
j

T

j
c

·
£Al

0
j

x £
j

T

j
c· ³Al

 free
j

x
j

T

j
c· =Al

 We note also that we can give an interpretation to the l . Since this

optimization problem is convex, we have

()
i

i i

g

b b

f
l

¶ ¶
= =

¶ ¶
l

The variables
i

l are therefore shadow prices or marginal costs – they

indicate by how much our solution f would increase if we increased one

of the constraints bi.

This provides another interpretation of duality. c is the cost of adding 1

to variables in the primal problem. l is the cost of adding 1 to the RHS

of each constraint. These are two ways of accounting for the total cost; we

can either see it as a cost imposed by buying stuff, or a cost imposed by

constraints. Duality requires T T=c x bl ; in other words, it requires the

cost to be the same regardless of the accounting method.

 We can quickly prove the following theorem

Theorem (Strong duality): If a linear programming

problem has an optimal solution, so does its dual, and

the respective optimal costs are equal.

Proof: We can first translate any problem to its

standard form equivalent

{ }minimize 0: ,T A ³=x x b xc

At the optimal solution, the reduced costs must be non-

negative, so
1T T

B B

TA A-- ³c 0c

If we let 1T T

B B
A-= cl , we have TTA £ cl . So l is

feasible for the dual

Operations Research Notes Page 19 of 77

 © Daniel Guetta, 2009/2010

{ }, 0maximize :T TTA £ ³b c ll l

Furthermore 1T T T T

B B B B
A-= = =b c b c x c xl , and so by

weak duality l is also optimal for the dual.

The theorem above provides an interesting insight into what the simplex

algorithm does. We see that the optimality condition 1T T

B B

TA A-- ³c 0c

implies TTA £ cl , which is dual feasibility. So effectively, the primal

simplex algorithm maintains primal feasibility while searching for dual

feasibility.

 The dual simplex method does the opposite – it starts with a dual feasible

solution, and searches for primal feasibility. Let AB be a basis and

consider the corresponding simplex tableau

1
B

A A-

 1

B B
A- =b x

1 T T

B B
A A--c c 1T T

B B B B
A-- = -c b c x

This time, we no longer require 0
B
³x , and so the solution is basic but

might not be feasible. However, we require that 0³c , which means that

he solution is dual feasible. If it so happens that 0
B
³x , then the solution

is also primal feasible with the same cost, and optimal solutions to both

problems have been found. Otherwise:

o We choose a row with () 0
B i

x < ; our pivot row i

o For each negative item ()1 0
k B k i

v A-
·= <A in that row, we calculate

/
k k

c v and let j be the index that minimizes this; our pivot column

{ }| 0

argmin
k

k

k v
k

c
j

v<
=

If every item in this row is non-negative, then we can move in that

direction for ever and keep the dual problem feasible. Thus, the

problem is unbounded.

o We then let the pivot column enter the basis and the pivot row

leave the basis in the usual way. As a result, the 0th row for every k

now reads

j

k k

j

c
c v

v
+

Operations Research Notes Page 20 of 77

 © Daniel Guetta, 2009/2010

We chose j precisely to ensure that none of these values fall below 0.

So the result is still dual feasible.

Furthermore, the cost cell will decrease, which means that the

objective cost of the dual will increase, and the algorirthm will

eventually terminate.

Note that if the pivot column entry in the 0th row is 0, then moving

in that direction does not change the cost; we have degeneracy.

In general, the value of the dual variables can be found in the last row of

the tableau, under the slack variables (the sign will vary depending on the

type of inequality).

 This method is particularly useful in two situations:

o When it’s easy to find a basic solution with 0>c , but not so easy

to find a BFS. For example, if it involves making all the slack

variables negative.

o When we need to add a new constraint T b³xa to an already-

solved simplex. In that case, we create a new slack variable for that

problem, and let it enter the basis. The determine what the new

tableau will look like, we note that:

1T

A
A

é ù
ê ú= ê ú-ê úë û

0

a

0

1
B
TB
B

A
A

é ù
ê ú= ê ú-ê úë ûa

We then have
1

1
1 1

B
TB
B B

A
A

A

-
-

-

é ù
ê ú= ê ú-ê úë û

0

a

And so
1

1
1 1
B

T TB
B B

A A
A A

A A

-
-

-

é ù
ê ú= ê ú-ê úë û

0

a a

And the reduced costs remain the same, with the last reduced cost

equal to 0.

This last method is particular useful for integer linear programming,

where we can apply Gomory’s cutting plane method. Consider a solved

tableau in which, for each basic variable i, we are left with the constraints

0i ij j i
j N

x a x a
Î

+ =å

Since all the variables are positive, we must also have

Operations Research Notes Page 21 of 77

 © Daniel Guetta, 2009/2010

0
N

i ij j i ij j i
j j N

x a x x a x a
Î Î

ê ú +ê úë û £+ =å å

Where
ij

aê ú
ê úë û is the integer just below aij. If, however, xj should be an

integer (ie: if we have an ILP), then the LHS is an integer and can be no

more than the integer right below ai0. We then have

0i ij j i
j N

x a x a
Î

ê ú ê ú+ ê úê ú ë ûë £ûå

This new constraint is called a cutting plane, and can be added to the

problem. Repeatedly applying these cuts eventually provides us with an

integer solution.

 The following important result underlies much of the theory above

Theorem (Complementary slackness): For the LP

problem

{ }minimize 0: ,T A ³ ³x bx xc

x and l are primal and dual optimal respectively if

and only if x is primal feasible, l is dual feasible and

()
()

0

0

T T
ii

j j

A

A

- =

- =

c x

x b

l

l

Proof: Consider the two vectors

()
()

T T
i ii

j j j

= -

= -

v c A x

u Ax b

l

l

Note that

 The form of the dual problem requires the sign of

j
l to be the same as that of -Ax b , so uj > 0.

 Likewise for v; vi > 0.

Furthermore, not that ()T T
i
= -åv c A xl and

()T
j
= -åu Ax bl , so

T T
i j
+ = -å åv u c x bl

And finally, note that if x and l are primal and dual

feasible, then by strong duality

0T T
i j
+ = - =å åv u c x bl

Operations Research Notes Page 22 of 77

 © Daniel Guetta, 2009/2010

But since none of the components can be negative, this

means that every component is 0.

The second of these constraints is automatically satisfied for any optimal

solution of the problem Ax = b. If the problem is not in standard form,

then the constraint simply states that if a constraint is not tight, the

reduced cost for that constraint is 0 (which makes sense; changing the

constraint would do nothing to our optimal solution).

The first constraint is more interesting. It states that

() 0T T
ii

T T
i i i i

A

·

- =

=

c x

c x A x

l

l

If the problem is primal feasible (hence the first constraint)
T T
i i

=c x bl

The LHS is the cost of the primal problem. The RHS is the cost of the

dual. So complimentary slackness effectively states that the cost of the

primal and the dual have to be the same.

This gives us yet another insight into what the simplex method does; it

maintains primal feasibility and complementary slackness, and seeks dual

feasibility. The dual simplex algorithm maintains dual feasibility and

complimentary slackness, seeks primal feasibility.

Integer Linear Programming

 Consider a linear program in which every variable has to be an integer.

The best integer solution is not necessarily the closest to the best non-

integer solution, so rounding won’t always give the best solution. In fact,

the closest integer solution might not even be feasible!

 One possible strategy is to try every solution in the (finite) set of

possibilities and compare them. An efficient way of doing this is using the

branch and bound technique:

Suppose we want to solve the problem

{ }min () s.t. f x x XÎ

We divide this problem into sub-problems, the ith of which is

{ }min () s.t.
i

f x x XÎ . We continue breaking those into sub-problems,

Operations Research Notes Page 23 of 77

 © Daniel Guetta, 2009/2010

until we find out that is easy to solve. We also suppose that for any sub-

problem we can calculate a lower bound () min ()
ix Xi

X f x
Î

£ . The steps are

then:

o Initialise: Set U = ¥ , discard any obviously infeasible solutions

and treat the rest as one subset.

o Branch: Use some branch rule to select one of the remaining

subsets, and break it into two or more subsets. Two common rules

are

 Best bound rule – partition the subset with the lowest

bound, in the hope that this gives the best chance of an

optimal solution and of being able to discard other larger

subsets by the fathom test.

 Newest bound rule – we partition the most recently created

subset, breaking ties with the best bound rule. This has

book-keeping advantages because it doesn’t involve

jumping round the tree so much.

o Bound: For each new subset Y, calculate ()Y

o Fathom step:

 If () UY ³ , delete the subset

 If Y contains no feasible solution, delete the subset

 If Y can be solved to find an optimal solution y YÎ , then

() ()Y f y= . If () UY ³ , we eliminate the subset. If

() UY < , reset ()U Y¬ , store y as the best solution so

far, and re-apply the fathom step to all subsets.

o Stopping rule: if there are no remaining active subsets, stop. The

best solution obtained so far is optimal. Otherwise, return to the

branch step.

An example of that method is the knapsack problem, in which the lower

bound might be obtained by noting that at least one item is needed in the

knapsack.

 Dakin’s Method applies to mixed integer programs (where only some of

the variables are constrained to be integers) as well as pure integer

Operations Research Notes Page 24 of 77

 © Daniel Guetta, 2009/2010

programs. It is a form of branch-and-bound in which we use the linear

programming relaxation as our lower bound.

o Initialise: Set U = ¥ and solve the LP relaxation with the primal

simplex method. If the optimal solution x̂ has ˆ
j

x jÎ " , then stop

– the solution is optimal and feasible.

o Branch: Pick a variable that should be an integer but isn’t.

Partition into two subsets by adding one or another of the

constraints

jj j j
x x xx ê ú é ù£ ³ê ú ê úë û ê ú

Use the newest bound rule for greatest efficiency.

o Bound: Solve the resulting LP relaxation of the problem with the

new constraint to find . This works best using the dual simplex.

o Fathom step: for each sub-problem Y

 If () UY ³ , delete the subset

 If the dual simplex indicate that Y is infeasible

 If Y has an optimal solution with integer values of the

variables and ()Y u< , reset ()U Y¬ and store x as the

incumbent solution.

Complexity

 An instance of an optimization problem is defined by its input data, and

the instance size is the number of bits required to define the instance.

Ignoring the details of the implementation, we might expect the running

time of an algorithm to be proportional to the number of arithmetic

operations involved.

 We define

o ()() ()f n O g n= if there exists a c such that (())cgf n nn £ " .

o ()() ()f n g nW= if there exists a c such that (())cgf n nn ³ " .

o ()() ()f n g nQ= if ()f n is both ()()O g n and ()()g nW .

 Turing proved that the class of things that can be computed is the class of

things that can be computed by a deterministic turing machine (DTM).

When a DTM is given an input x, it runs for a certain number of steps

(its running time) and outputs an answer f(x). There are many Turing

Operations Research Notes Page 25 of 77

 © Daniel Guetta, 2009/2010

Machines that can run a problem; let ()M
T n be the worse running time of

a given DTM over inputs of size x n= . We say f(x) is computable in

polynomial time if there exists a machine that can calculate f(x) within
k

x steps (for some fixed k). The definition is robust because different

DTMs can replicate each other by at most squaring or cubing the number

of operations. In constrast, if () ()2 n

M

cT n = W for all m, then f(x) is said to

be computable in exponential time.

 There are broadly three types of problems

o Optimization; for example “find the shortest tour”

o Evaluation; for example “find the length of the shortest tour”

o Decision; for example “is there a tour with length < L?”

We focus on decision problems, which have less potential complications.

 A decision problem is in if its answer is calculable in polynomial time

(ie: given input x, there exists a DTM can compute an answer in a

number of steps bounded by |x|k).

 A decision problem belongs to if and only if there exists a checking

function (),r x y such that the answer is yes if and only if there exists a y

(called a certificate) such that (), 1r x y = and (),r x y can be calculated in

polynomial time.

For the decision TSP, for example, a certificate might be the order in

which the nodes are visited. It takes O(n) time to check the length of the

path from y.

 stands for nondeterministic polynomial, and an alternative definition

is that it contains problems which can be solved by a nondeterministic

Turing machine, consisting of many DTMS working in parallel, any one of

which can answer “yes” in polynomial time without consulting the others.

For example, for the decision TSP, we could use (n – 1)! machines

checking r(x, y) for a different y.

 Clearly, Í . It is believed that Ì , but this is a major

unsolved problem.

 We say that problem
1

P reproduces
2

P and is no harder than it if

Operations Research Notes Page 26 of 77

 © Daniel Guetta, 2009/2010

o We can make a polynomial time transformation of
1

P into an

instance of
2

P .

o Apply some algorithm to solve an instance of
2

P .

o Make a polynomial time transformation of this solution of
2

P into

a solution of
1

P .

 A problem P is known as -hard if every problem in can be

reduced to it. It is said to be -complete if, in addition, P Î . Thus,

all -complete problems can be reduced to one another and are as

difficult as all problems in .

To show that a new problem is -complete, we must

o Show that it is in

o Find another -complete problem that reduces to it.

 Examples of -complete problems:

o ILPs: LPs were values of variables are restricted to {0, 1}.

o The TSP

o Satisfiability: given a logical expression involving several variables,

can we find an assignment that makes the whole expression true?

o Hamiltonian circuit: given a graph G with n edges is there a set of

edges forming a tour of all vertices (equivalent to a decision TSP

asking “is there a tour with length < n” on a saturated TSP with

edge cost 1 if the edge exists in G and 2 otherwise)

o Subgraph isomorphism: Given two graphs G and G ¢ , is there a

subgraph of G isomorphic to G ¢ ?

o Clique decision problem: given a graph G, does the it contain a

clique of size k (k vertices all pairs of which are connected together)

o Vertex cover decision problem: given a graph G, is there a set of k

vertices such that every edge starts or finishes at one of them?

Operations Research Notes Page 27 of 77

 © Daniel Guetta, 2009/2010

Graphs, Networks & All that Jazz

Terminology

 A graph (),G N= consists of a set of nodes, N, and a set of arcs, .

 In an undirected graph, the arcs are unordered pairs of nodes { },i j Î

and ,i j NÎ . In a directed graph or network the arcs are ordered pairs of

nodes (i, j).

 A walk is an ordered list of nodes
1 t
i i such that { }1,

k k
i i + Î . A walk is

a path if each of the i are distinct. A walk is a cycle if each of the
11 t

i i
-

are distinct and
1 t
i i= . A graph is connected if there is a path connecting

every pair of nodes.

 A network is acyclic if it contains no cycles. A network is a tree if it is

connected and acyclic.

 A network (),N ¢ ¢ is a subnetwork of (),N if NN ¢ Ì and ¢ Ì . A

sub-network (),N ¢ ¢ is a spanning tree if it is a tree and N N¢ = .

The Minimum Cost Flow Problem

 Let

o fij denote the flow of some material along arc (),i j Î

o bi denote the amount of flow that enters the network at node i NÎ .

If bi > 0, the node is a source. If bi < 0, it is a sink.

o mij and Mij denote the minimum and maximum flow possible along

arc (),i j Î . The special case of uncapacitated flows has 0
ij

m =

and
ij

M = ¥ .

o cij be the cost of unit flow on arc (),i j Î

Then the minimum cost flow problem is

() ()

()

{ }(,)

: , : ,

,

m
i

i
m n

n T
A

A A

ij

ij ij
i j

ij ji i
j i j i

j

j

j

j

i i

i N A

m f M i

c f

b

A

f f

j

Î

Î Î

üïïï ìï ïï ïï ïï ïï

ì üï ïï ïí ýï ïï ïî
ï" Î =ý íï ïï ï £ £ï ïï ïïîï£ £ " Î ïïïþ

þ
- =

å
å å

c f

f b

m f M

Where the vector f has dimensions and the matrix A is given by

Operations Research Notes Page 28 of 77

 © Daniel Guetta, 2009/2010

th

th

1 is the start node of arc

1 is the end node of arc

0 otherwise
ik

i k

A i k

ìïïïï= -íïïïïî

Thus, every column has exactly two nonzero entries – a 1 and a –1.

 We now characterise basic solutions

Definition (Spanning tree solution): A spanning tree

solution f to the problem above is one that can be

constructed as follows:

 1. Pick a set T Ì of n – 1 arcs that form a tree

when their direction is ignored.

 2. Partition the rest of the arcs into two disjoint

subsets L and U. Set

(,)

(,)
ij

ij
ij

m i j
f

M i

L

Uj

ìïï= í
Î
Îïïî

 3. Solve the flow equations for the remaining

variables. This can be done by starting at the

leaves of the tree and then working upwards.

Theorem: A flow vector is a spanning tree solution if

and only if it is a basic solution of the minimum cost

flow problem.

 We can also characterise our dual feasibility and complementary slackness

conditions. Consider the Lagrangian for this problem

()

()
(,) :(,) :(,)

(,)

,
ij ij i i ij ji

i j i j i j j j i

ij i j ij i i
i

N

Nj i

L c f b f f

c f b

l

l l l
Î Î Î Î

Î Î

æ ö÷ç ÷ç= - - + - ÷ç ÷÷çè ø
= - + +

å å å å

å å

f l

Minimizing over the allowed f gives the following conditions

0 if

0 if

0 if

ij ij ij

ij ij i j ij ij

ij ij

m f M

c c f m

f M

l l

ìï= < <ïïï= - + > =íïï< =ïïî

We also note that 0
ij

c = for every basic variable (ie: for every arc in T).

We can therefore solve for the l by setting

(,)0
n i j ij

c i j Tl l l- = "= Î

Operations Research Notes Page 29 of 77

 © Daniel Guetta, 2009/2010

In practice, we begin at the root note and set 0l = there and we then

proceed to find l for every other node in the tree.

 The network simplex algorithm then proceeds as follows:

o Initiation: start with a feasible spanning tree solution. A simple

way to do this is as follows:

 If ¹m 0 , replace the problem with the following one

()A¢ = -Af b m

In which =m 0 .

 Reduce the problem to one with neither source nor sink, by

adding a “master source” which feeds all the sources and a

“master sink” which collects from all the sinks and then

joining them to each other.

 The solution =f 0 is then basic for that problem.

o Compute the reduced costs for each arc

ij ij i j
c c l l= - +

o Termination test: If

0 (,)

0 (,)ij

i j L

i U
c

j

³ " Î
£ " Î

ìïïíïïî

Then decreasing the cost would imply pushing the flow past

allowed limits. Thus, the feasible solution is optimal.

o Choose a variable to enter the basis: – in other words, choose an

arc (,)i j TÏ such that

0 (eithe ,)

or 0 (,)

r
ij

ij

i j L

c i j U

c £ Î
³ Î

This arc together with T will form a unique cycle. We’ll be pushing

as much flow as possible round that cycle.

o Update the basis: Push as much flow as possible round that cycle

without exceeding the capacity of any arc.

Effectively, the algorithm looks for negative-cost cycles and pushes as

much flow around them as possible.

 Note that:

o The matrix A contains only entries of +1 or –1. The columns of the

basis matrix AB can be re-ordered so that every element on the

Operations Research Notes Page 30 of 77

 © Daniel Guetta, 2009/2010

diagonal is a +1 or –1. The determinant of the matrix is therefore

+ 1, and by Crammer’s Rule, 1

B
A- has integer entries.

o 1

B
A-=f b , so if b contains integer entries, every basic solution has

integer coordinates.

o 1T

B B
A-= cl , and so provided c contains integer entires, every dual

basic solution has integer coordinates.

So for every network flow problem with integer data, every basic solution

assigns an integer flow to every arc.

Transportation & Assignment Problems

 In a transportation problem, there are m suppliers of a good each with

supply si, and n customers each with demand dj, such that
i j

s då = å

The cost of transport from supplier i to customer j is cij. Our problem is

1 1

1 1

min

0 ,

m n

ij ij
i j

m

ij

n

ij i
ji

ij

j
j f s i

f i

c f

f

j

d

=

=

=

=

ì üï ïï ïí ýï ïï ïî þ

= " = "

³ "

åå

å å

It is a special case of the minimum cost flow problem over a bipartite

graph, in which the nodes divide into two disjoint sets of suppliers (S)

and customers (C) and S CÌ ´ .

Lemma: Every minimum cost flow problem is

equivalent to a transportation problem.

Proof: Transform the problem as described above to

make =m 0 and < ¥M . Then

 For every arc (i, j) in the original problem,

construct a source node with supply Mij.

 For every node, construct a sink node with

demand
:(,) ik ik i k

M b
Î

-å
 (which gives the

absolute maximum that could come out of that

node).

Operations Research Notes Page 31 of 77

 © Daniel Guetta, 2009/2010

 Connect source node (i, j) to the sink nodes i and

j with infinite upper bound of capacity, and with

(,),
0

i j i
c¢ = and

(,),i j j ij
c c¢ = .

There is then a 1-1 correspondence between optimal

flows in the two problems, and the flows have the same

cost.

 The information contained in a transformation contained is often

displayed in a specialised tableau:

Each cell contains the amount of product flowing along that route, and

the small insets contain the cost of flow among that route.

The steps of the algorithm are then:

o Calculate the l , by insisting that for any cell in the basis,

i j ij
cl l- =

(Remember to start with
1

0
s

l =).

o Calculate reduced costs for all empty cells

ij ij i j
c c l l= - +

o Termination: if all reduced costs are positive, we have reached an

optimum.

o Choose a single empty cell to enter the basis (usually the one with

most negative reduced cost).

o Find a cycle through which flow can be pushed. In terms of the

tableau, the requirement for such a cycle is that

 Consecutive cells are in the same column or row (but not

necessarily adjacent).

 No more than two cells per row or column

 Customers

 1 … n Supply

1 s1 1s
l

S
u
p
p
liers

m sm sm
l

Demand d1 … dn

 1c
l … cn

l

Operations Research Notes Page 32 of 77

 © Daniel Guetta, 2009/2010

 Every cell basic, except for the cell entering the basis

We then increment our first cells by q+ , our second by q- , etc…

The value of q is determined by the largest basic cell from which

we need to subtract some flow.

 An assignment problem is a transportation problem in which the sources

(people) all have b = 1, the sinks (tasks) all have b = –1 and the flows are

restricted to be + 1. Replacing the integer constraint with 0 < fij < 1

gives the LP-relaxation of the problem, and it is a feature of the spanning-

tree (simplex) algorithm that the result will also be an integer, and

therefore also solve the integer problem.

Maximum Flow Problems

 Consider a network with a single source and sink node, upper bounds C

on all the arcs, and m = 0. The problem of finding the maximum flow

through this network is

{ }

:(,) :(,)

max

if 1

if

0 otherwise

0

ij ij
j i j j j

ij j

i

i

i

f f i n

f C

d

d
d

Î Î

ìï =ïïï

£

- = - =íïï
î
£

ïï

å å

This problem can be converted to a minimum cost flow problem by

o Adding an arc (n, 1) to the network, with cost –1 and

1 1
0,

n n
m M= = ¥ .

o Setting the cost of all the other arcs in the network to 0 (but

leaving capacities as they are).

o Finding the minimum cost flow through the network

Since the only arc with non-zero cost has negative cost, the algorithm will

circulate as much flow as possible subject to capacity constraints.

 For S NÌ , we define the capacity of the cut , \S N Sé ùê úë û as

()
,

, \
ij

S j Si

C S N S C
Î Ï

= å

Theorem (Max-flow min-cut):

()
: ,1

Max flow Min cut capacity min , \
S nS S

C S N Sd
Î Ï

= =

Operations Research Notes Page 33 of 77

 © Daniel Guetta, 2009/2010

Proof: We first prove that value of any flow <

capacity of any cut. We first define a function that

calculates all the flow from one set to another

()
, :(,)

,
X j Y i

ij
ji

f X Y f
Î Î Î

= å

We then note that if 1 SÎ and n SÏ , any flow is

simply given by the net amount leaving S:

() ()
() () () ()
() ()
()

()

:() (,)

,

:

,

,

, ,

, , \ \ , ,

, \ \ ,

, \

, \

ij ij
i j iS

ij
i S j S

ij
i S j

j j

S

j i

f f

f S N f N S

f S S f S N S f N S S

f S N S

f

C

C

f S S

f S N

S

S

N

S S

S

f N

d
Î Î Î

Î Ï

Î Ï

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
= -

=

£
=

£

+ -

=

=

-

-

å
å

å å å

For the second part of the proof, we develop the Ford-

Fulkerson Algorithm. Suppose fij is optimal, and

recursively define S NÌ as follows:

 Start with 1 SÎ

 If i SÎ and
ij ij
f C< , then j SÎ

 If i SÎ and 0
ji

f > , then j SÎ

 Scan each node newly added to S, until every

node has been scanned (or, for the purposes of

this algorithm, until n has been reached).

So S is simply the set of nodes to which we can increase

flow. If n SÎ , then we have an augmenting path – we

can increase the flow from 1 to n, and we do as much as

we can. Otherwise, , \S N Sé ùê úë û is a cut with 1 SÎ and

n SÏ . But if i SÎ , j SÏ , then we must have
ij ij
f C= ,

0
ji

f = (otherwise, more nodes would have been added

to S by the procedure above). As such

() () (), \ \ , , \f S N S f N S S C S N Sd = - =

Operations Research Notes Page 34 of 77

 © Daniel Guetta, 2009/2010

Thus, the maximum flow is indeed equal to the

minimum cut. We also note that if the capacities and

initial flow are all integers, then each step increases the

flow by an integer amount. Thus, the algorithm will

converge to an integer solution.

 We can recast our maximum-flow problem in dual form:

{ }1
:(,) :(,

1

)

min

0

0 0

n

ij ij
j i j j j i

ij ij n
f C

f

f f

f
Î Î

£ £

-

³

- =å å

The Lagrangian in its usual form (with dual variables
i

l) gives, for

optimality on arc (n, 1):

1 1 1
1 0 1

nn n
c l l l l= - - + = = +

On every other arc, the costs are 0, and

1

0 if 0

0 if
j i ij

j ij ij

f

f C

l l
l l

- > =
- < =

So

1 if

0 if \i N

i S

Si
l

Îìï
= í Î

ï
ïïî

 Critical path analysis – consider a project consisting of a number of jobs,

where job i takes time
i
t to complete. We consider a graph with

o A node for each project

o An arc (i, j) if project i needs to be completed before job j.

o A source node s and a sink node s ¢ , each of 0 duration. The source

node connects to every project, and every project is connected to

the sink node.

Our problem is then

{ }
(,

mi

)

n

i

s s

j i

t t

t t i jt
¢ -

- ³ " Î

With dual

Operations Research Notes Page 35 of 77

 © Daniel Guetta, 2009/2010

(,)

:(,) :(,)

max

1

1

0 otherwi

,

se

0 ()

i ij
i j

ji ij
j j i j i j

ij

f

i s

f

i j

f i s

f

t
Î

Î Î

ì üï ïï ïí ýï ïï ïî þ
ìï =ïïï ¢- = - - =íïïïï

³ Î
î
"

å

å å

This is a minimum cost flow problem with arc costs
i
t- . The path for

which fij = 1 defines the critical path.

Shortest Path Problems

 Consider a network and choose a node n as a root node. Put a demand of

1n - at that node (ie: (1)
n

b n= - -) and a supply of one unit on every

other node. Let the cost of each arc be equal to its length. Solve the

network flow problem. The shortest part from any node i to n is given by

following the arcs of the spanning tree from i to n. If vi is the shortest

distance from i to n these quantities are known as labels. Label-setting

algorithms systematically determine their values in some order. Label-

correcting algorithms find their values through a sequence of iterations.

 Consider the solution above, and suppose the
i

l are the optimal dual

variables associated with the optimal spanning tree solution. On every arc

through which fij > 0, we have

i ij j
cl l= +

Taking 0
n n

vl = = (for the root node) and adding these equalities along

a path from i to n, we conclude that
i i

vl = . Furthermore, as

11
1

n
bb -== = , the dual is

1

1

(ax ,m)
n

ii
i

ji j
c i jl l l

-

=

ì üï ïï ïí ýï ïï ï
+

î þ
£ Îå

It follows that if all the other l are fixed,
i

l satisfies (with 0
n

l =)

{ }
:(,)
min 1, , 1

i ik kk i k
c i nl l

Î
= = -+

Intuitively, this means that if the shortest path from i to n contains node

k, then the path from k to n should also be optimal.

Operations Research Notes Page 36 of 77

 © Daniel Guetta, 2009/2010

The idea is that if we’re looking for a path from i to n, then we should

choose the segment from (i, k) by minimizing over path lengths
ik k

c l+ .

This is known as dynamic programming.

 The Bellman-Ford Algorithm – let ()
i

v t be the length of the shortest path

from i to n which uses at most t arcs. () 0
n

v t = t" and (0)
i

v = ¥ i n" ¹ .

Then the label-correcting Bellman-Ford algorithm is defined by

() { }
:(,)

1 min) 1, ,(1
i ik kk i k

v t c v t ni
Î

+ = -= +

Note that ()1 ()
i i

t tv v£+ , because increasing the number of arcs we allow,

we increase the possible paths. If there are no negative length cycles, there

exists a shortest path which has at most n – 1 arcs. Thus, ()1i i
v n v- = ,

and we cannot reduce the total length. Thus, if () ()1n n- =v v , we have

found an optimal solution.

The algorithm has running time O(mn) since there is a maximum of n

iterations, and each iteration examines each arc once.

We can book-keep the Bellman-Ford algorithm as follows:

t v1(t) v2(t) … vn(t)

0 +¥ +¥ +¥ 0

 0

n 0

t d1 d2 … dn

1 –

n

At every step, update the v using the formula above. The d correspond to

the latest successor of any given node (ie: the node that was used for the

minimization in updated the v).

 Dijkstra’s Algorithm is a lebel-setting algorithm; it can only be applied

when all the arc lengths are positive. To each exposition, we suppose all

arcs are present, setting
ij

c = ¥ where no arc exists.

Theorem: Suppose that 0
ij

c ³ for all i, j. Let n¹ be

such that

Operations Research Notes Page 37 of 77

 © Daniel Guetta, 2009/2010

min
nn ini

c c
¹

=

Then
n

v c= and
k

v v k n£ " ¹ .

Proof: A path from node k to n has a last arc (i, n)

whose length cin is at least
n

c , so
nk

v c³ . For node ,

we also have
n

v c£ , and so
n k

v nc kv £ ¹= " .

Note that the proof relies heavily on the fact no arcs

have negative cost.

The algorithm them simply proceeds as follows:

o Find a node n¹ such that
inn

c c£ for all i n¹ . Set
n

v c= .

o For every node ,i n¹ , set { }min ,
in in i n

c c c c= +

o Remove node from the graph, return to step 1 and apply those

steps to the new graph.

The algorithm has running time O(n2) since there are n iteration, each of

which involves a comparison and update of arc lengths from each node.

 Note that if vi is the shortest path length from node i to node n, then

from Bellman’s equations, we have

ii j j
c vv £ +

This means that the quantities 0
ij ij j i

c c v v= + ³- . We can therefore

construct a new problem in which the arc lengths
ij

c are replaced by
ij

c .

For such a problem, the length of any path from
1
i to

t
i is given by

()
1 1 1 1 1

1 1 1

1 1 1
t

t t t

i i i i i i i i i i
c c v v v v c

t t t t t t t t
t t t

+ + + +

- - -

= = =

= + - = - +å å å

So the shortest path under the new arc lengths are the same as those

under the original (possibly negative) arc lengths. We can now, if we wish,

use Dijkstra’s algorithm.

This transformation is useful when we wish to solve the all-pairs problem

(ie: to find the shortest distance between all pairs of nodes). If we have

negative arc lengths, we can first use the Bellman-Ford algorithm to

obtain vi for a given root node and then apply Dijkstra’s algorithm to

solve the problem with the n – 1 remaining root nodes using the

transformed non-negative costs.

Operations Research Notes Page 38 of 77

 © Daniel Guetta, 2009/2010

Assuming a dense graph, the BF algorithm runs in () ()3O nm O n» and

Dijkstra’s algorithm runs in ()2O n , so this procedure runs in

() () () ()3 2 31O n n O n O n+ - =

Which is much better than the ()4O n which we’d need if we applied the

BF algorithm n times.

 Consider a network (),N with cost cij associated with arc (,)i j Î . The

minimal spanning tree problem is concerned with finding a spanning tree

of least cost through this network. We first prove a theorem:

Theorem: Let U be some proper subset of N. If

()
, \

, argmin
U v N

v
u U

u
u v c

Î Î
=

then there is a minimal cost spanning tree that includes

(u, v) as an arc.

Proof: Assume that T is a spanning tree that does not

contain (u, v). Adding (u, v) to T produces a cycle.

There must therefore be another arc (),u v¢ ¢ such that

, \Nu U v U¢ Î¢ Î , or else there would be no way for the

cycle to “return” to U.

Now, imagine deleting (),u v¢ ¢ and replacing it with

(u, v) to form a new spanning tree T ¢ . By assumption,

uuv v
cc ¢ ¢£ , and so the cost of T ¢ is < the cost of T.

Thus, T ¢ is also a minimal spanning tree, which

contradicts our assumption that no minimal spanning

tree contains (u, v).

Prim’s greedy algorithm constructs a MST as follows:

o Label the nodes { }1,2 ,,N n= and set { }1U =

o For the cheapest arc (u, v) connecting U and N\U.

o Add v to U and repeat until U = N.

Prim’s algorithm can easily be implemented on the matrix representation

of a graph by crossing out rows corresponding to each vertex added to the

spanning tree and choosing the smallest entry in any column

corresponding to an already-added row.

Operations Research Notes Page 39 of 77

 © Daniel Guetta, 2009/2010

The algorithm can be made to run in O(n2) provided that before each step,

we already know the shortest distance between U and any j UÏ [say

min
Uj iUi j

c cÎ=]. It then takes no more than n comparisons to find the best

node to add to our tree. We can then find the shortest distance between

{ }U U v¢ = + and any j in \N U ¢ by evaluating { }min ,
U j vj Uj

c c c¢ = . Thus,

the algorithm requires at most n comparisons, and takes n – 1 steps.

The Travelling Salesman Problem (TSP)

 Given an undirected graph (),G N= consisting of n nodes and m arcs

together with costs cij for each arc { },i j Î , the travelling salesman

problem (TSP) is to find a tour of minimum cost.

 There are three types of algorithms

o Exact algorithms are guaranteed to find an optimal solution but

may take an exponential number of iterations.

o Approximations algorithms have polynomial worse-case time

complexity, supplying a suboptimal solution with a guaranteed

bound on the degree of suboptimality.

o Heuristic algorithms supply suboptimal solutions without any

bound on their quality. They do not guarantee polynomial running

times, but often provide a successful tradeoff between optimality

and speed.

 One exact method is to formulate the problem is an integer linear

program and solve it using branch-and-bound.

Set xij = 1 if { },i j Î is present in the tour, 0 otherwise. Define

{ }{ , }) ,(:i jS i S j Sd Î Î= Ï

For a tour, there must be two arcs incident to every node, so

(){ , } { }

2
i

ij
i j

Nx i
dÎ

= Îå

Furthermore, for any partition of the nodes into subsets S and N\S, there

must be at least two edges connecting S and N\S, and so

{ , } ()

2 s.t. and
ij

i j S

x S N S S N
dÎ

³ " Ì ¹ Æ ¹å

The so-called cutest formulation of the TSP is therefore

Operations Research Notes Page 40 of 77

 © Daniel Guetta, 2009/2010

{ , }

min
ij ij

i j

c x
Î

ì üï ïï ïí ýï ïï ïî þ
å

Subject to the two constraints above and {0,1}
ij

x Î .

Alternatively, the subtour elimination formulation of the TSP replaces the

second constraint above by

{ , }: ,

1 s.t. and
i

i j i j S
j

S S N Nx S S
Î

£ - " Ì ¹ Æ ¹å

This ensures there is no cycle involved less than all n nodes.

In both cases, we have an exponential number of constraints, because

there are 2n – 2 possible subsets of N. It turns out that the LP relaxation

of both problems has the same feasible set.

 There is also a way to formulate this linear program with a polynomial

number of constraints. First, we note that each node in the tour must

have exactly one node preceding it and one node following it. Thus

:(,)

1
ij

j i j

x i
Î

"=å

 (*)

:(,)

1
ij

i i j

x j
Î

"=å

 (*)

These constraints, however, do not ensure that the solutions to not consist

of several sub-tours, each disconnected from each other. To prevent that,

we require that if xij = 1, then tj = ti + 1 (where ti is the position of node i

in the subtour). In fact, it turns out that the following works just as well:

 ()1 1 0, 1,
i ijj
t n x i j jt i³ + - - ³ ³ ¹ (*)

To see why, consider a subtour that does not include node 0 and includes

r nodes. Summing the inequalities above for all xij in this tour gives 0 > r,

and so there can be no such smaller subtour.

The TSP can therefore be formulated as an ILP in n2 + n variables and

()2 1n n n+ - constraints. Namely:

,

min
ij ij

i j

c x
ì üï ïï ïí ýï ïï ïî þ
å

Subject to the three stared constraints above, { }0,1
ij

x Î ,
0

0t = and

{ }0,1, , 1
i

nt Î - .

 Notice that by relaxing the sub-tours constraint, we are left with an

assignment problem, which can efficiently be solved by the network

Operations Research Notes Page 41 of 77

 © Daniel Guetta, 2009/2010

simplex to provide a lower bound on the optimal solution. We need not

worry about integer constraints since the network simplex algorithm will

find an optimal solution.

If the said solution contains all cities, then it is optimal for the original

TSP. Otherwise, we continue with a branch-and-bound using a branching

rule that breaks the problem in two by an additional constraint of the

form xij = 0 (ie: setting
ij

c = ¥) – perhaps by choosing an arc in a

subtour.

This creates a new TSP whose solution will be a subset of the old one,

and solve the corresponding assignment problem to find a lower bound on

that branch.

 We now move on to approximation algorithms

Definition (approximation algorithm): An

approximation algorithm for a minimization problem

with optimal cost Zopt runs in polynomial time and

returns a feasible solution cost cost Zapp such that

() oapp pt
1Z Ze£ +

We consider one such algorithm for 1e = and with costs that satisfy the

triangle inequality:

, ,
jij ik k

c cc i j k£ + "

The algorithm works as follows:

o Suppose M is the cost of the minimal spanning tree (obtained using

Prim’s algorithm). Consider any starting node and traverse the

minimal spanning tree to visit all the nodes. This uses each arc

exactly twice, with cost 2M.

o This can be converted into a tour visiting all the nodes by skipping

any intermediate node that has already been visited. By the

triangle inequality, this will have cost bounded above by 2M.

o Also, every tour contains a spanning tree (since dropping one arc

leaves a spanning tree) and so has cost at least M.

Thus, a straight-forward algorithm based on the MST gives

oapp pt
2 2M ZZ £ £

 Heuristic methods for the TSP include

Operations Research Notes Page 42 of 77

 © Daniel Guetta, 2009/2010

o Nearest neighbour heuristic: start at some city and then visit the

nearest city. Continue until the tour is complete.

The results are usually bad, but can form a good starting point for

local search methods.

o Cheapest insertion heuristic: start with a single node and then, one

by one, add the node whose insertion makes the smallest increase

to the length of the tour.

o Furthest insertion heuristic: insert the node whose minimal

distance to the existing tour node is greatest. The idea is to

determine the overall layout of the tour early on.

o Savings heuristic: rank the arcs in ascending order of cost. Add the

arcs in this order, so long as they do not violate any constraints,

and until all cities have been visited.

 We also consider the concept of a neighbourhood search. Consider the

general problem

{ }min () s.t. c x x XÎ

Suppose that for any point x XÎ we have a set of neighbourhood points

()N x XÌ . The basic approach of local search is

o Select some x XÎ

o Evaluate c(x)

o Pick some ()y N xÎ and evaluate ()c y . If c(y) < c(x), select y as

the new value for x and result to the previous step. If there is no

such y, stop with solution x.

We need to specify N(x) and which ()y N xÎ to choose. We might also

choose the best ()y N xÎ , or the best of a few tries, etc… Note also that

simplex is a local search method which happens to lead to a global

optimum because in linear programming, any local optimum is a local

optimum.

In the TSP, we can define a neighbour to a feasible solution x by

removing any k > 2 arcs from the tour, and replacing them with k new

ones. When k = 2, the method is known as 2OPT. It can be shown that

3OPT gives better results than 2OPT, but going beyond 3 doesn’t gain

Operations Research Notes Page 43 of 77

 © Daniel Guetta, 2009/2010

much. Choosing a greater neighbourhood gives a better solution, but

makes N bigger and therefore results in a slower algorithm.

In practice, we fix the neighbourhood size and repeat the algorithm

starting at different optimal solutions.

 Simulated annealing tries to prevent the algorithm getting stuck at a local

optimum. It allows the algorithm to jump to worse neighbours originally

but slowly becomes more reluctant to allow such jumps.

A jump from x to ()y N xÎ can occur with probability

() ()
min 1,exp

xy

c y c x
p

T

æ öé ù- ÷ç ê ú÷ç= - ÷ç ê ú÷÷çè øë û

where T starts large and decreases at each iteration (a common schedule

for T is to let it decrease with iteration number as () / logT t C t= , with

constant C).

It can be shown that if C is sufficiently large,

()lim () is optimal 1
t

P t
¥

=x

 Finally, genetic algorithms can be used in a wide range of problems, but

they can often get stuck at a minimum. They run as follows:

o Initiate: Create a random initial state (ie: a set of tours).

o Evaluate fitness of each item (eg: the length of the tour)

o Reproduce: those fitter chromosomes are more likely to reproduce.

For example, “greedy crossover” selects the first city of one parent,

then the closest next city in either parents, etc… If both cities have

already been chosen, choose another random one.

o Mutate: randomly swap a pair of cities.

Operations Research Notes Page 44 of 77

 © Daniel Guetta, 2009/2010

Game Theory

Terminology

 A move is either a decision by a player or the outcome of a chance event.

 A game is a sequence of moves, some of whicsh may be simultaneous.

 At the end of each game, each player receives a return (payoff). The

payoff to each player is a real number. If a move has a random outcome,

we use an expected payoff.

 A strategy is a description of the decisions that a player will make at all

possible situations that can arise in the game.

 A game is zero-sum if the sum of the players’ payoffs is always 0.

 A game has perfect information if at every move of the game, all players

know all the moves that have already been made (including random

moves).

Two-Person, Zero-Sum Games

 Introduction

o Players I and II, each with a finite number of pure strategies

(
1

I I
n

 for player I and
1

II II
m

 for player II).

o
ij

e denotes the payoff to player I when player I uses strategy Ii and

player II uses strategy IIj. We also denote
1 2
(,) (,)

ij
e i j e e i j= = -

where e1 and e2 are the payoffs to player I and II.

o The players can play a pure strategy or a mixed strategy. We say

that player I adopts strategy p and player II adopts strategy q if

() ()Player I plays I Player II plays II
i i j j

p q= =

In that case, the payoff to player I is

() ()1
1 1

, ,
n m

T
i ij j

i j

e e pe q e
= =

= = =ååp q p q p q

The normal form representation of the game is simply the matrix ()ij
e .

 Maximin Criterion

o Player II loses what player I wins. So if player I chooses strategy Ii,

player II will play IIj resulting in the minimum gain to I. Player I

Operations Research Notes Page 45 of 77

 © Daniel Guetta, 2009/2010

can therefore guarantee a gain of at least the lower value of the

game

maxmin
L iji j

v e=

If player II choses IIj, then I will chose Ii that maximises eij. So II

can ensure that it will note lose more than the upper value of the

game

minmax
U ijj i

v e=

If vL = vU, then this is the solution of the game.

o In a game with mixed strategies, these become

maxmin (,)M
L P Q

v e
Î Î

=
p q

p q minmax (,)M
U Q P

v e
Î Î

=
q p

p q

(Where P and Q are the set of possible mixed strategies).

Lemma:
UL

v v£

Proof: For ,P Q" Î Îp q

(,) max (,)

min (,) minmax (,)
P

Q Q P

e e

e e
¢Î

Î Î¢Î

¢

¢

£

£
p

q pq

p q p q

p q p q

This holds for all PÎp , so we might as well choose the

p that maximises the LHS:

maxmin (,) minmax (,)
M

P Q Q P
M
UL

v

e e

v
Î Î Î Î¢

¢£

£
q qp p

p q p q

 Further, the minimax theorem states that

Theorem (minimax theorem): In a two-person zero-sum

game where I and II have a finite number of strategies,

()* *

max min (,) minmax (,)

,

M M

P Q QL UP
v e e v v

v e
Î Î Î Î

= = = =

=
p q q p

p q p q

p q

v is called the value of the game and together with the

optimal strategies p* and q* is called the solution to the

game.

We also define

Definition (equilibrium pairs): A set of strategies p* and

q* are equilibrium pairs if for any PÎp and QÎq

Operations Research Notes Page 46 of 77

 © Daniel Guetta, 2009/2010

() () ()* * * *,, ,e ee £ £qq pp p q

Two important theorems:

Lemma: If (),p q and (),¢ ¢p q are equilibrium pairs then

() (), ,e e ¢ ¢=p q p q

Proof: We have that

() () ()
() () ()

, ,,

, , ,

e e

e e

e

e

¢£ £¢

¢ ¢ ¢ ¢£ £

p q

p

p q p q

p q pq q

The result trivially follows

Theorem: A pair of stragies ()* *,p q in a zero-sum game

are an equilibrium pair if and only if ()()* * * *, , ,ep q p q is

a solution to the game.

Proof: If ()* *,p q is an equilibrium pair, then the boxed

statements hold:

Taking the two extremes, these calculations imply that

L

M

U

Mv v£ . But we know that
U

M

L

Mv v£ , and so

()* *,M M

L U
v v e= = p q

As such ()()* * * *, , ,ep q p q is a solution to the game.

Conversely, if ()()* * * *, , ,ep q p q is a solution to the game,

then the boxed statement holds, and for ,P Q" Î Îp q :

()
() ()

() ()
() ()

() ()
()

*

* * *

* * *

*

,

, min ,

min , maxmin ,

maxmi

minmax ,

minmax , max ,

max

n ,

,

Q P

Q P P

P

Q

Q P Q
M
LQ

U

P

M

e

e

v e

e

e

e e

e

e

e

v

Î Î

Î Î Î

Î

Î

Î Î Î

Î Î

£

£

=

£

£

=

q

q

q p

q

q

p

p

q

p

q q

p q

p q p q

p q p q

p q

p q

p q p q

p q

Operations Research Notes Page 47 of 77

 © Daniel Guetta, 2009/2010

Taking the two extremes and the centre, we obtain

() () ()* * * *,, ,e ee £ £qq pp p q

So the points are equilibrium points.

 Dominating strategies

o If, whatever strategy II chooses, Ii will always result in a lesser or

equal payoff than Ij, then Ij dominates Ii. Similarly vice-versa.

o Dominated strategies can be ignored

Lemma: If a dominated strategy is removed from a

game, the solution of the reduced game is a solution of

the original game.

Proof: Suppose I2 dominates I1 and ()* *, ,vp q is a

solution to the reduced game when I1 is removed. It is

obvious that ()*,e v³p q for Q" Îq . It is also obvious

that

 ()*, e v P ¢£ " Îp q p (*)

where P ¢ is the reduced set of mixed strategies, with

1
0p = . We simply need to show that this is also true

for PÎp , where P is the full set of mixed strategies.

To do that, let ()1 2 3
, , , ,

m
p p p p=p . We then have

()

()

* * * *

1 1
1 2 1

*

2

* *

1
1 2 1

,

,

m n

m n m

j i ij j
j

m

i j

T

j j i ij j
j i j

j

e e p e

p q pe q

q pe q

e e

= =

= = =

=

= = +

¢=+£

å åå

å åå

p q p q

p q

Where ()1 2 3
0, , , ,

m
p p p p¢ = +p is a strategy in the

reduced game. We therefore have that

()
()
()

()

*

* *

* *

* *

*

(,) min (,)

min (,) maxmin (,)

maxmin (,) ,

,

, minmax (,)

minmax (,) max (,)

max (,) ,

M M

L

Q

Q P Q

P Q

Q P

Q P P

P

U

e e

e e

e e

v e v

e e

e e

e e

¢

¢ ¢ ¢

¢ ¢

¢ ¢

Î

Î Î Î

Î Î

Î Î

Î Î Î¢

¢Î

¢ ¢

¢=

¢ ¢ ¢

¢ ¢ =

= =

¢ ¢=

¢ ¢ ¢

¢

£

£

=

q

q p q

p q

q p

q p p

p

p q p q

p q p q

p q p q

p q

p q p q

p q p q

p q p q

Operations Research Notes Page 48 of 77

 © Daniel Guetta, 2009/2010

() ()* *,,e e v¢£ £p qp q

Where the last inequality follows from (*). Thus

()*, e v P£ " Îp q p

As required.

o Strategies can also be dominated by mixed strategies, but those are

harder to find.

 Solving two-person zero-sum games

o For 2 × m games, let player I play (),1p p= -p

 Plot the payoff to I against p for all of II’s strategies.

 At I’s optimal strategy, the lowest value of the payoff will

be as high as it can be. This is the lowest intersection of

two of those lines

 One of these lines will have positive gradient, the other

negative gradient. A combination of these two lines

(=strategies) will have 0 gradient. This is the optimal

strategy for II

o For m × n games, we want to find vectors p* and q* such that

()* *,v e= p q and

Consider player II’s game:

 His constraint is ()*,e v£p q , which can be re-written as

*

1

m

ij j
j

ve iq
=

£ "å

 His objective is to make v as small as possible.

His problem is therefore

* *

11

*, 0,i 1m n :
m

j

m

j
j j ji

j

v e q v q q
= =

£ > =
ì üï ïï ïí ýï ïï ïî þ

å å

The problem can be stated more simply by writing * /
j j

Q q v= :

1 1

ma : 1x , 0
m m

j ij j
j j

j
QQ e Q

= =

£
ì üï ïï ïí ýï ïï ïî

³
þ

å å

() ()* *,, v ee £ £ pp q q

Constraint on player II’s

optimal strategy

Constraint on player I’s

optimal strategy

Operations Research Notes Page 49 of 77

 © Daniel Guetta, 2009/2010

We can then find our solution by noting that
1

1m

j
j

Q
v=

=å (this also

automatically incorporates the last constraint).

We can ensure that v > 0 by adding a constant amount c to every

payoff, such that
ij ij

e e c= + . This will not change the equilibrium

pairs (it’s equivalent to II giving I a present c to play the game)

and c can then be removed from the value of the solution to obtain

the value of the original game.

Now, consider the dual problem

1 1

mi : 1n , 0
m n

j i iij
j i

PP Pe
= =

³
ì üï ïï ïí ýï ïï ïî

³
þ

å å

If we interpret * /
i i

P p v= , we can re-write this as

* *

11

*, 0,a 1m x :
n

i

n

i
j i ii

i

v e p v p p
= =

³ > =
ì üï ïï ïí ýï ïï ïî þ

å å

Thus, the primal LP gives II’s solution, whereas the dual LP gives

I’s solution.

o For 2 × 2 games, let (),1p p= -p and (),1q q= -q . The solution

of the game can be found directly from the definition by solving the

equations

() ()
* *

* *

, 0 , 0e e
p q= =

= =

¶ ¶
= =

¶ ¶p p p p
q q q q

p q p q

Two-Person, Non-zero-Sum Games

 Introduction

o In non-zero sum games, we write the outcome as pairs, and the

game is specified by two matrices; ()1
,e p q and ()2

,e p q .

o The players are no longer totally antagonistic to each other – they

might both be happier with one outcome than with another.

 Solution concepts – for non-zero-sum games, there is no longer an obvious

solution concept. Here are two:

o Maximin-Maximin pairs – each player considers his own game, and

find his solution to the game. This results in two values for the

Operations Research Notes Page 50 of 77

 © Daniel Guetta, 2009/2010

game, vI and vII, and it is not generally the case that the payoff

when both players play their maximin strategies against each other

is ()I II
,v v .

The minimax-minimax solution concept is generally not considered

to be ideal, because it assumes that each player tries to maximise

their own profit as well as minimize their opponent’s profit; these

may be diametrically opposed objectives.

o Equilibrium pairs – a pair of strategies * PÎp and * QÎq is an

equilibrium pair if and only if for any PÎp and QÎq

() () () ()* * * * *

1 1

*

1 2
,, , ,e e ee £ £p q p q pq qp

There is an important theorem concerning equilibrium pairs:

Theorem (Nash’s Theorem): Any two-person game

(zero-sum or non-zero-sum) with a finite set of pure

strategies has at least one equilibrium pair.

Proof: Let { }(,) : ,P QS Î= Îp p qq . S is then closed,

convex and bounded. Also define

() () (){ }
() () (){ }

1 1

2 2

, max 0, I , ,

, max 0, , II ,

i i

j j

c e e

d e e

= -

= -

p q q p q

p q p p q

These are the quantities to be gained by playing a given

pure strategy instead of the mixed strategy. Define2

() ()
() ()

1 1

(,) (,)
, , ,

1 , 1 ,
f

æ ö÷ç + + ÷ç ÷¢ ¢ ç= = ÷ç ÷ç ÷+ + ÷çè ø

p c p q q d p q
p q p q

c p q d p q

f is continuous, and so by the Brouwer fixed point

theorem, there exists a fixed point such that

() ()* * * *, ,f =p q p q

We cannot have () ()* * *

1 1
, ,

i
e I e>q p q for all i because

that would imply the boxed statement below which

leads to a contradiction:

2 Note that |x|1 = x1 + x2 + … is the L1-norm of x.

Operations Research Notes Page 51 of 77

 © Daniel Guetta, 2009/2010

This means that we have at least one i for which

() ()* * *

1 1
, ,

i
e I e£q p q , and so at least one i for which

()* *, 0
i

c =p q

Now, because ()* *,p q is a fixed point, we have that

* *¢=p p , and choosing the value of i for which

()* *, 0
i

c =p q , we get

()* *

1

, 0
n

i
i

c
=

=å p q

Since ci > 0, this means that ci = 0 for all i. As such,

for all i

() ()*

1

**

1
,,

i
e e I³q qp

And so

() ()*

1

* *

1
,, ee P³ " Îp q pp q

Similarly, we can show that () ()** *

2 2
, ,e e³ pp q q , and

so the fixed point is an equilibrium pair.

Finding equilibrium pairs is tricky, since the equations in the proof

to Nash’s Theorem involve quadratics. For 2 × 2 games, a

graphical method is useful:

 Let (),1p p= -p and (),1q q= -q .

 For a particular q, find the p that maximises ()1
,e p q . Plot

these on a p–q graph.

 For a particular p, find the q that maximises ()2
,e p q , and

plot that too.

 The intersections of the two graphs above are the

equilibrium points.

() ()

() ()

() () ()

* * * *

1 1
1

* * * * *

1 1
1 1

* * * * * * * *

1 1 1
1 1

, ,

, ,

, , ,

n

i i
i

n n

i i i
i i

n n

i i
i i

e p e I

p e I p e

p e e p e

=

= =

= =

=

>

= =

å

å å

å å

p q q

q p q

p q p q p q

Operations Research Notes Page 52 of 77

 © Daniel Guetta, 2009/2010

 Cooperation – consider the following game

1 2

1

2

II II

I (0,0) (1,1)

I (3,1) (1,3)

If I and II adopt strategies (),1p p= -p and (),1q q= -q respectively,

() ()1 2
, 2 3 1 , 2 2 3e q pq e pq p q= - + = - - +p q p q

The payoff region for this game is as follows:

If, however, we allow the players to cooperate, then they can decide to:

o Play a strategy that leads to payoff ()1 1
,u v with probability a .

o Play a strategy that leads to payoff ()2 2
,u v with probability 1 a- .

The resulting payoff is

() ()()1 1 2 2
, 1 ,u v u vb b+ -

Thus, the payoff region R for the cooperative game is given by the convex

hull of the region for the non-cooperative game; ie: the smallest convex

region that covers the region for the non-cooperative game:

The easiest way of obtaining this region is to draw the convex hull of

points equivalent to each player adopting one pure strategy.

Here randomisation is used to average over possible outcomes, each of

which might be mixed strategies.

1
e

2
e

()1,3

()3,1()1,1

()0,0

R

1
e

2
e

()1,3

()3,1
()1,1

()0,0

Operations Research Notes Page 53 of 77

 © Daniel Guetta, 2009/2010

 Bargaining – once we move to a cooperative game, the problem of pre-

play negotiation comes to the fore. First, some definitions:

Definition (Joint domination): A pair of payoffs (u, v)

in a cooperative game is jointly dominated by (),u v¢ ¢ if

uu ¢ ³ and vv ¢ ³ and () (),,u v u v¢ ¹¢ .

Definition (Pareto optimality): A pair of payoffs (u, v)

is Pareto optimal if it is not jointly dominated.

It is clear from the diagrams above that a point can

only be Pareto optimal if it is on the edge of the payoff

region.

It is clear that the players of the game would only be interested in Pareto-

optimal payoffs. Furthermore, by simply failing to cooperate, each player

can guarantee themselves a payoff of at least

() ()I 1 II 2
max min , maxmin ,

P Q Q P
v e v e

Î Î Î Î
= =

p q q p
p q p q

respectively. Thus, we would expect the solution of the cooperative game

to lie within the bargaining set (or negotiation set) B

() (){ }I II
, , , Pareto, | optimal in v v vB u v u u v R³ ³=

How do the players choose amongst the members of B?3 Nash suggested

that there is a special payoff ()0 0
,u v RÎ called the status-quo point which

is the outcome if the participants cannot agree on the transaction. An

arbitration procedure y is then a map from that point to another point

()* *,u v RÎ

() ()* *

0 0
(,), ,u v R u vy =

Nash suggested that such a procedure should fulfil a number of properties:

Definition (Nash Arbitration Procedure): A Nash

Arbitration Procedure fulfils the following axioms:

 1. Feasibility – ()* *,u v RÎ

3 It is important to remember that we must not make inter-player comparison of payoffs,

which are measured by their own utilities, not necessarily on the same scales. For example, it

is not clear that I prefers (4, 1) to (1, 10) less than II prefers (1, 10) to (4, 1).

Operations Research Notes Page 54 of 77

 © Daniel Guetta, 2009/2010

 2. At least as good as status quo –
0

*u u³ ,
0

*v v³

 3. Pareto optimality – If (),u v RÎ and *u u³ ,

v v³ , then () () *, ,u v u v= .

 4. Symmetry – if R is symmetric, such that

() (),, R u Ru vv Î Î and if
0 0

u v= , then

* *u v= . This assumes that the two players are

roughly of the same size in power and skill in

diplomacy.

 5. Invariance under linear transformations – let R¢

be obtained from R by the following linear

transformation

 , 0u au b v cv d a c¢ ¢= + = + >

 then if

 () ()* *

0 0
(,), ,u v R u vy =

 then

 () ()* *

0 0
(,), ,u v R u vy ¢ ¢ ¢ ¢ ¢=

 This is simply a statement of the fact utilities are

only defined uniquely up to a linear

transformations, and we are forbidding

interpersonal comparison of utilities

 6. Independence of irrelevant alternatives – if R¢ is

a subset of R, () ()* *

0 0
(,), ,u v R u Rvy = ¢Î , then we

must also have () ()* *

0 0
(,), ,u v R u vy ¢ = .

Axiom 6 is the more controversial. Consider the payoff region P1 with

status-quo point (0, 0). Then (5, 50) seems a fair solution. Axiom 6 insists

that if we cut the set of feasibly payoffs down to P2, (5, 50) must still be

the arbitration solution; this seems very generous to the second player:

Nash found a unique function y that satisfied these bargaining axioms:

1
e

2
e

()0,0 ()10,0

()0,100

()5,50

1
P

1
e

2
e

()0,0 ()10,0

()5,50

2
P

Operations Research Notes Page 55 of 77

 © Daniel Guetta, 2009/2010

Theorem (Nash’s Arbitration Procedure): If there exists

(),u v RÎ with
0 0
,u u v v> > then consider the function

() ()()0 0
,f u v u u v v= - -

defined over such points. Its maximum occurs at a

unique point ()* *,u v , and define

() ()* *

0 0
(,), ,u v R u vy =

If there are no points with
0

u u> and
0

v v> , then

simply try to maximise one of u and v as much as

possible to get () ()* *

0 0
(,), ,u v R u vy = .

The arbitration function y thus defined satisfies all the

Nash bargaining axioms, and is the only one to do so.

The maximin bargaining solution or Shapley solution is obtained by

applying the Nash arbitration procedure to the status-quo point

() ()0 0 I II
, ,u v v v= . Consider the following game, with maximin-maximin

solution ()1,1 :

The strategy is:

o Make a diagram of the cooperative payoff region R

o Plot the status-quo point () ()0 0 I II
, ,u v v v= in that region

o Find the negotiation set (the edges of R to the right and above the

status-quo point that are also Pareto-optimal). In the case above,

the negotiation set is shown in bold, and is

(){ }
(){ }7

2

3, | 2 3 12,1

, | 2 8,3

uB u v u v

u v u v u

= + =

È = £+

£ £

£

1
e

2
e

()0,1

()0,4

()4,0

()3,2

()1,1

() () ()
() () ()

1 2 3

1

11

II II II

I 2,1 3,2 0,4

I 0,1 4,0 2,1

Operations Research Notes Page 56 of 77

 © Daniel Guetta, 2009/2010

o The maximin bargaining solution must be in B, so simply maximise

() ()()0 0
,f u v u u v v= - - over that region. For each part of B, this

involves

 Substituting for u or v in f, using the equation of the line

that forms that part of B

 Maximising

 Checking that the result lies in B. If not, the result is

clearly at the edge of the line

Finally, find the global maximum by comparing the maxima for

each part of B.

N-Person Games

 The concept of a maximin-maximin pair seems far-fetched for an N-person

game, because requiring each player to minimize each of his opponent’s

payoffs can lead to ambiguities. The idea of an equilibrium pair, however,

can easily be generalised

Definition (equilibrium n-tuple): The n-tuple of

strategies * *

1 2

*, , ,
n

p p p where player i plays mixed

strategy *

i
p is an equilibrium n-tuple if for all other

strategies
1 2
, , ,

n
p p p ,

() ()* * *

1

** *

2

*

1 2
, , , ,, , , ,, ,

ii i ni n
ee ³p p p ppp pp

(An extension of Nash’s Theorem states that any finite n-person non-

cooperative game has at least one equilibrium n-tuple).

N-person games without cooperation are hardly interesting; we simply

have a large number of equilibrium n-tuples, and the problem reduces to

deciding which one to adopt. We therefore focus on cooperative games.

 In an N-person game, we might get cooperation between some but not all

of the players – we need to examine what coalitions of players might form.

A coalition S is a subset of { }1,2 ,,N N= . The worse thing that could

happen for a coalition is for the rest of the players to form a single

opposing coalition N/S. We then have a two-person non-cooperative

game, and we can define

Operations Research Notes Page 57 of 77

 © Daniel Guetta, 2009/2010

Definition (characteristic function): The characteristic

function of an n-person game assigns to each subset S of

the players the maximum value ()v S that the coalition

S can guarantee itself by coordinating the strategies of

its members, no matter what the other players do:

() ()
/

max min ,
S N S

i
i

P Q
S

v S e
Î Î

Î

= å
qp

p q

By definition, we take () 0v Æ = .

An important property of v is that it is superadditive

() () () if v S v Tv T TS S³È + Ç = Æ

(The condition requires that S and T be disjoint coalitions).

In some cases, it doesn’t pay to form any coalition and v is additive; in

other words, () () ()v S S v TTS T vÈ =Ç = Æ + . In such a case,

() ()1
{ }n

i
v N v i

=
= å , and the game is called inessential.

This concept is most appropriate if the game is constant sum (ie: every

outcome gives the same total payoff), because when N–S try to maximise

their combined payoffs, they are indeed minimising the payoff to S.

However, for other games, the characteristic function is often highly

pessimistic, because in reality, N–S are not “out to get” S as badly as

possible – they’re just trying to maximise their profit, which might not be

the same thing.

For example, consider the “oil game” in which:

o Country 1 has oil it can use for transport, at a profit of a per barrel.

o Country 2 can use it for manufacturing, at a profit of b per barrel.

o Country 3 can use it for food production, at a profit of c per barrel.

The characteristic function here is as follows:

Coalition S v(S) Comment

Æ 0 By definition

{1} a
If 2 and 3 form a coalition against 1, they

cannot force him to sell the oil.

{2},{3},{2,3} 0
Because no coalition of buyers can make the

seller sell them oil

{1,2} b Because 1 and 2 can use the oil at a profit b

Operations Research Notes Page 58 of 77

 © Daniel Guetta, 2009/2010

per barrel (1 sells to 2) and 3 would have to

pay at least b to get it

{1,3},{1,2,3} c
Since 1 and 3 can use 1’s oil at a profit of c

per barrel.

 Now that we have examined coalitions, we need to consider how to share

out rewards amongst members of a coalition (which, in turn, determines

which coalitions form). We call “reasonable” share-outs imputations

Definition (imputation): An imputation in an n-person

game with characteristic function v is a vector

()1 2
, , ,

n
x xx=x satisfying

()
1

()
n

i i
i

x v N x v i
=

= ³å

We denote the set of all imputations in a game by E(v).

The second condition says everyone must get as much as they could get if

they played by themselves. The first condition is a Pareto optimality

condition – the RHS is the most the players can get when they work

together, so we must have
1

()n

i i
x v N

=
å £ . However, if the inequality was

strict, then by working together they could always share out the rewards

so that everyone got more.

In an inessential game, there is only one imputation, but for essential

games, there are lots. In the oil market game, for example

() { }1 2 3 1 2 31 23
(, ,) : , , 0, 0E v x x x x x c x ax x x= + + ³ ³ ³=

Consider two imputations x and y. We have ()
i i

x v N yå = = å , and so y

cannot be better than x for everyone. However it is possible that for a

particular coalition, x is better than y for all its members. Indeed

Definition (dominated imputation): For (,)E vÎx y , we

say x dominates y over S (written
S

>x y) if

 ()
i i i

i S

x y i S x v S
Î

> " Î £å

(The second condition requires that S has enough payoff to ensure its

members x).

Operations Research Notes Page 59 of 77

 © Daniel Guetta, 2009/2010

 It is reasonable to assume that only imputations in the core can persist in

pre-game negotiations

Definition (The Core): The core of a game v, denoted

by ()C v , is the set of imputations which are not

dominated for any coalition.

The following theorem characterises the core

Theorem: A vector x is in the core if and only if

() ()
1

S

n

i i
i i

vx v N x S S N
Î=

³ " Ì=å å

Proof: Putting { }S i= for each { }i NÎ , we see that x

is indeed an imputation. To show it is not dominated,

suppose there is a coalition S for which
i i

y x> for all

i SÎ . We then have

(())
i i i

i i iS S S

y vx S y v S
Î Î Î

> ³ >å å å

But this violates the definition of a dominated

imputation. So x must be un-dominated.

Conversely, suppose x is in the core. Since it is an

imputation, the first condition must hold. Now, imagine

the second condition does not hold, and define

()
() () ()

1

2
\ { }

i S

i S i
S x v S

iN NS v v v S

e

e Ï

Î+ å =

+å = -

Then consider the vector

()
1

2
{ }

i

i

x i
y

v i i

S

S

e

e

ìï +ïï= íï + Ïî

Î

ïï

Now, it is clear that

 ()i
y v Nå = , from the definition of

1
e and

2
e

 ()i
y v i³ , because x was itself an imputation,

1
e is positive since we assume the second

equation in the Theorem doesn’t hold, and
2
e is

positive by superadditivity

Thus, y is an imputation. However, it is also true that

Operations Research Notes Page 60 of 77

 © Daniel Guetta, 2009/2010

i i

y x> for all i SÎ

 ()
i iS

y v S
Î

å = , from the definition of
1
e .

Thus, y dominates x, which contradicts x being in the

core. Thus, the second equation in the Theorem must

hold.

Consider the “oil game” as an example. We found that the set of

imputations is

() { }1 2 3 1 2 31 23
(, ,) : , , 0, 0E v x x x x x c x ax x x= + + ³ ³ ³=

We must apply the second requirement in the definition of the core to

each possible coalition (to save space, I haven’t bothered to include the

coalitions that lead to redundant results):

Coalition S v(S) Requirement

()
i S i

x v S
Î

å ³

{1,2} b 1 2
x bx+ ³ (1)

{1,3} c 1 3
x cx+ ³ (2)

From the definition of

E(v) 1 2 3
cx x x+ + = (3)

We first note that (2) and (3) imply x2 = 0, which gives x1 + x3 = c. (1)

then gives x1 > b, and so we’re left with

() (){ }, 0, :C v c b caa a= - £ £

We can interpret this as follows: 1 and 3 form a coalition, and 1 sells oil

to 3 at a price that is at least b (or else 1 would be better off selling to 2)

and no more than c (otherwise, there’s no reason 3 should buy it).

 The main problem with the core is that it often does not exist. The

nucleolus is an alternative solution concept, that seeks to make the most

unhappy coalition under it happier than the most unhappy coalition under

any other imputation.

We define () i iS
x S x

Î
= å , which means that () ()v S x S- is a measure of

how unhappy the coalition S is with the imputation x. We then define

()xq to be the vector of 2n values, arranged in decreasing order, of

() ()v S x S- as S varies across possible coalitions (including Æ and N).

Definition (The Nucleolus): The nucleolus of a game v,

denoted by N(v), is given by

Operations Research Notes Page 61 of 77

 © Daniel Guetta, 2009/2010

{ }() : () () ()() E v EN v v<= Î " Îx x y yq q

Where by () ()<x yq q , we mean that either

1 1
() ()<x yq q or () ()

k k
=x yq q for 1,2, , 1ik = - and

() ()
i i
<x yq q .

It can be shown that the core exists, and is unique. Furthermore, the

nucleolus lies within the core, provided it is non-empty, because:

o For any ()x C vÎ , () () 0v S x S £- for all S, so all the entries in

()xq are 0 or negative.

o This means that this will also be the case for the nucleolus.

o However, all imputations that give ()xq will all entries 0 or

negative must be in the core. Thus, the nucleolus is in the core.

Consider the oil-market game again. In finding the nucleolus, we only

need consider imputations in the core () (){ }, 0, :C v c b caa a= - £ £ .

We need to compute () ()v S x S- for each possible coalition (to save space,

I haven’t bothered to include coalitions that lead to redundant results)

Coalition S v(S) v(S) – x(S)

{1,2} b b a-

{3} 0 ca-

These two components are candidates for the largest nonzero unhappiness.

We need the largest of the two to be as small as possible. This occurs

when they are equal; ()1
2

b bc ca a a == - +- . So the nucleolus is

()1 1
2 2
(),0, ()c b c b+ - .

 We might also look at what each player could reasonably expect to get.

Shapley’s Axioms: Player i’s expectation of what he

could reasonably get from a game with characteristic

function v, denoted ()
i
vf , should satisfy

 1. ()
i
vf should be independent of the way we label

players. If p is an operation representing a

permutation of the labels, then ()()
()

i i
v vpf p f= .

 2. The sum of the expectations should equal the

maximum available from the game

1

() ()n

i i
v v Nf

=
å =

Operations Research Notes Page 62 of 77

 © Daniel Guetta, 2009/2010

 3. If u and v are the characteristic functions of two

games, u + v is the characteristic function of

playing both he game together, and f should

satisfy:

 () () ()i i i
u v u vf f f+ = +

The third of these axioms, especially, is decidedly odd. Nevertheless:

Theorem (Shapley): The only function that satisfies

Shapley’s axioms is given by the Shapley values

() () () ()()
:

1 ! !
() \ { }

!i
S Si

S n S
v v S v S i

n
f

Î

- -
= -å

(The summation is over all coalitions that contain the

player i).

This expression can be interpreted rather neatly by assuming that players

arrive in the game randomly. We then have the following:

o () ()\{ }v S v S i- is the extra amount i brings to the coalition S

when he arrives.

o () ()1 ! !S n S- - is the total number of ways |S| – 1 players could

have arrived before him, and n – |S| will be able to arrive after.

o n! is the total number of ways players could actually arrive

Thus, we simply find the total amount player i brings to every possible

coalition he could join, weighed by the probability he will indeed join that

coalition.

This is another solution concept. Note, however, that it results in an

imputation that is not necessarily in the core.

Market Games

 Consider a world with two commodities – A and B, say – and that there

are M A-traders and N B-traders. We assume that a trader with a units of

A and b units of B has utility (),
i

u a b , and we assume this function is

concave, to factor in the fact that ever trader prefers some combination of

the two commodities rather than either of the two extremes:

Operations Research Notes Page 63 of 77

 © Daniel Guetta, 2009/2010

() () ()2 2 2 21 1 1 1
(1)(,)(,) , (1) ,

i i i
a b u a aba bu b ul ll l- -³ ++

For simplicity, we also assume every trader has the same u, so we drop

the subscript i, and we assume that each trader starts with a or b units of

A or B respectively.

Now, consider a coalition of sA A-traders and sB B-traders. The worse the

other players could do is not trade with them. As such, the amount of A

and B they have is constrained by

A B A B

A B
1 1

s s s s

i i
i i

x s a y s b
+ +

= =

= =å å

They want to maximise their profits within that constraint, so

() ()
1A

A

B B B

B

1 , , , ,,
1

max ,
s s s s

s

x y i ix y

s

i

v S u x y
+ +

+

=

= å

Furthermore, by concavity of (,)u ⋅ ⋅ , we have that

() ()

() ()
A B

1 2
1 1 2 2

1 2

A B
A B

A B A1 B

2 ,
2

, ,

,

2

,
s s

i i
i

u x y u x y

u x y

x x y y
u

s s
s s u a b

s s s s

+

=

æ ö+ + ÷ç ÷ç£ ÷ç ÷÷çè ø
æ ö÷ç ÷ç £ + ÷ç ÷÷ç +è ø

+

+å

This implies, however, that the maximum of the LHS is given by the RHS

() () A B
A B

A B A B

,
s s

s s u a b
s s s

v
s

S
æ ö÷ç ÷ç+ ÷ç ÷÷ç + +è ø

=

 Consider a [1, N] market game, in which trader A is a monopolist. We

suspect that he can charge as high a price as he wants, provided it’s still

worth the other’s time to trade. We can prove this by showing that the

imputation corresponding to the following description is in the core:

o Each B-trader having a payoff of at least ()0,u b , which is what

they had originally.

o The A-trader having a payoff of () ()0,v S Nu b- , which is the most

that can be gained by the coalition, minus what the B-traders get.

In fact:

Theorem: The imputation

() () ()* (1) , 0, , 0, ,
1 1

, 0,
a Nb

N u bu Nu b u b
N N

æ öæ ö ÷ç ÷ç ÷÷ç= + -ç ÷÷ç ç ÷÷ç ÷ç + +è øè ø
x

lies in the core.

Operations Research Notes Page 64 of 77

 © Daniel Guetta, 2009/2010

Proof: When S does not include 1, it is trivial that

()*

i iS
x v SÎå = . When {1} { }S K= È , where K is some

k of the B-traders, we need to show that

()

() () () ()

() () () ()

* *

1

1 1 ,,
1 1

1 0, 1 ,

0,
1 1

,
1 1 11

i
Kk

v S

a kb
N k u

k k

a kb
N N k

x x

a Nb
u N k u b

N N

a Nb
u

N N
u b k

k k

Î

³

æ ö÷ç ÷+ ³ + ç ÷ç

+

æ ö÷ç ÷- -ç ÷ç ÷ç + +è ø
æ ö÷ç ÷ç ÷ç ÷ç +

÷ç + +è ø
æ ö÷ç ÷+ ³ - + + ç ÷ç ÷ç +ø + ø+è è

å

the last statement holds by the concavity of u, which

states that the best way to maximise the utility of

N + 1 people is to ensure that they all get the same.

Thus, *x is indeed in the core.

 Thus far, we’ve looked at something akin to bartering – the two types of

traders swap goods. Often, however, we need to consider competition

among a few firms who are producing the same or closely related products.

These are akin to ,Mé ù¥ê úë û games; the first type of trader is a producing

firm, and the second is the consumers, who have money they wish to

exchange for the product (when M = 2, we call the situation duopoly.

Otherwise, we call it oligopoly).

There are so many consumers that we no longer consider them as

individuals, and represent their requirements by one utility function

()2 21 1
, , ,, , , ,

M M
p q qp qu p ; the idea is that they are given the prices pi

and choose quantities qi. This reduces to a set of price-demand equations

which connect the demand qi for firm i’s product with the announced

prices

()1
,,

i Mi
q p pf=

Firm i’s utility is given by its profit

() ()1
,,

Mi i i i i
e p p qp c q= -

Where ci is the production cost function for firm i.

As an example, consider a duopoly with () ()1 1 2 2
0c q c q= = in which the

price-demand functions are

() { }
() { }

1 1
1 1 1 2 2 13 2

1 1
2 2 1 2

2
1 23

1
2 121 24 2

, max 1 ,0 0 2

0 2, max 1 ,0

q f p p p p

q

p

f p p p p

p

p p

 £ £ +

= = + -

£+ += = - £

Operations Research Notes Page 65 of 77

 © Daniel Guetta, 2009/2010

Where the constraints above are necessary to ensure that we can write

()
()

21 1
1 1 2 1 1 1 1 2 13 2

21 1
2 1 2 2 2 2 1 2 24 2

, 0

, 0

e p p p q p p p p

e p p p q p p p p

= - = + -

= - = + -

Once we have these equations, we simply need to solve d / d 0
i i

e p = .

Thus far, we can illustrate our feasible region as follows:

 We define the following

Definition (Cournot Equilibrium): A Cournot

equilibrium is a vector of prices pc so that for every

firm , ,1i M= :

() ()1 1
, , ,m ,, ,ax

i

c c

i i

c c

M i Mp
p p pe p e p=

Effectively, cp is an equilibrium n-tuple in an n-person non-coorperative

game of price competition. Since there is an infinite number of pure

strategies, we cannot appeal to Nash’s Theorem, but it can be shown that

under reasonable conditions, a Cournot equilibrium always exists.

Each of the e must be maximised with every other variable held fixed. So

effectively, we need d / d 0
i i

e p = .

In our particular example, solving
1 1 2 2
/ / 0e p e p¶ ¶ = ¶ ¶ = gives

() ()1 1
1 1 2 2 2 2 1 12 4

1 1p g p p p g p p= = + = = +

The intersection of those two curves gives the Cournot equilibrium:

1
p

2
p

1 2 3 4 5

1

2

3

4

5

1
2 12

2p p= +

2
1 23

2p p= +

Zero profit for 1

Zero profit for 2

Operations Research Notes Page 66 of 77

 © Daniel Guetta, 2009/2010

 However, we note that if firm 1 were to announce its price p1 first, firm 2

would simply choose ()2 2 1
p g p= . Realising this, firm 1 would simply

choose a price p1 to maximise ()()1 1 2 1
,e p g p .

Stackleberg introduced this kind of strategy, where firm 1 is the leader

and firm 2 is the follower.

There are three kinds of Stackleberg strategies

o If 1 was the leader, it would choose p1 to maximize

()() () 21 1 1
1 1 2 1 1 1 1 12 4 2

, 1e p g p p p p p= + + -

We call this solution S1.

o If 2 was the leader, we would obtain a similar expression and a

solution S2.

o The last obtain is for both plays to play as if they were leaders. So

1 would play p1 to maximize ()()1 1 2 1
,e p g p and 2 would play p2 to

maximize ()()2 1 2 2
,e g p p . The would then get a solution S

It is informative to plot these strategies together with the associated

profits (points not accurately plotted, to highlight differences):

1
p

2
p

1 2 3 4 5

1

2

3

4

5

()1 1 2
p g p=

()2 2 1
p g p=

Cournot equilibrium

Operations Research Notes Page 67 of 77

 © Daniel Guetta, 2009/2010

It turns out that the leader does improve over its Cournot equilibrium

using this technique, but not as much as the follower. If, however, both

firms simply choose their “leader price”, then they each achieve an

“intermediate” profit.

 We can, instead, think of duopoly as a cooperative game. In that case, we

might wonder what the negotiation set is. This can be done in two steps:

o Find the maximin values:

()
1 2

1 1 1 2
max min ,

p p
M e p p= ()

2 1
2 2 1 2

max min ,
p p

M e p p=

In this case, these are somewhat obvious.

o Find all Pareto optimal prices; this is, price vectors ()* *

1 2
,p p such

that there are no other ()1 2
,p p such that

() ()* *

1 21 2
, 1,, 2

ii
e p p e i³ =p p

This can be done by solving the non-linear program

(){ } () ()1 1 2 2 1 2 1 2
 andmax , s.t. , , feasiblee p p pp c pe p ³

for every value of c.

The negotiation set consists of these bold lines:

 1
p

2
p

()2 1 2
,e p p

()1 1 2
,e p p

1
M

2
M

JJ

1
p

2
p

1 2 3 4 5

1

2

3

4

5

2
S

1
S

S

()2 1 2
,e p p

()1 1 2
,e p p

C 2
S

1
S S

Operations Research Notes Page 68 of 77

 © Daniel Guetta, 2009/2010

One point of the negotiation set that if oft quoted in economic theory is

the joint maximisation of profit, used as a benchmark to measure the

possible collusion between the firms. The two firms choose their prices so

as to maximise

() ()1 1 2 1 1 2
, ,e p p e p p+

This is, in fact, none other than the characteristic function (){1,2}v .

Evolutionary Games

 Suppose than some individual uses a (behavioural) strategy x from some

set of possible strategies, and that on meeting an individual that uses y,

the payoff is (),e x y to the first individual. No rational thought is

involved in choose x – instead, the individual whose gene make it use

strategy x will have offspring with the same gene. If payoffs from strategy

x are high, then it will produce more offspring using strategy x.

 Suppose that changes to a strategy arise through a mutation. We look for

equilibrium point – strategies whose fitness is greater than that of any

mutant strategy that could arise:

Definition (Evolutionary stable strategy): Let X be the

set of strategies. A strategy * XÎx is an evolutionary

stable strategy (ESS) if for every *,XÎ ¹y y x

 () ()*, ,e e>x x y x (*)

where () *1 e e= - +x x y for sufficiently small 0e > .

Let’s work this definition into a more user-friendly form. First, expand (*)

() () () () () ()* * * *1 , , 1 , ,e e e ee e e e- + > - +x x x y y x y y

For (*) to hold, we therefore certainly need () ()* * *, ,e e³x x y x . If the

inequality is strict, then (*) will hold for sufficiently small e . If not, we

also need () ()*, ,e e>x y y y . This leads to an alternative definition:

Definition (Evolutionary stable strategy): A strategy
* XÎx is an ESS if for every *,XÎ ¹y y x

() ()* **, ,ee > yx xx

or

Operations Research Notes Page 69 of 77

 © Daniel Guetta, 2009/2010

() () () ()* * **, and , , ,ee e e= >x x x yy yx y

An ESS is like a two-person non-zero-sum game. If x* is an ESS, then

()* *,x x is an equilibrium pair for the game. But not every equilibrium

pair is an ESS.

 Finding pure ESSs is simple.

In terms of finding mixed ESS, consider a 2 × 2 game with non-trivial

payoff matrix

a b

c d

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

Suppose (),1x x= -x is a mixed ESS strategy.

Lemma: For any mixed ESS x

() () { }, : 0,
ii

e iI e i x" Î= >x x x

Proof: We have

() (), ,
i i

e x e I=åx x x

But since x is an ESS, we also have

() (), ,
i

e Ie ³x x x

But since 1
i

xå = , then for every xi > 0 we must have

() (), ,
i

e Ie =x x x

This proves the lemma.

Remark: this implies that there can be no pure ESS

strategies, or else we would require () (), ,
i

e I e>x x x .

Thus, in the case above, we have () ()1 2
, ,e I e I=x x , and so we simply need

to set

() ()1 1ax b x cx d x

b d
x

b c a d

+ - = + -

-
=

+ - -

Since x involves all the pure strategies, we have that for this x,

() (), ,e e=x x p x for all p. Thus, we need () (), ,e e>x q q q for all q. To

show this is the case, note that

() (), ()e d c d q p b d a d b c qé ù= + - + - + + - -ê úë ûp q

Operations Research Notes Page 70 of 77

 © Daniel Guetta, 2009/2010

Consider:

o If q > x, the bit in square brackets is negative and e increases as p

decreases. Thus, () (), ,e e>x q q q because x q< .

o If q < x, the exact opposite is true

Thus, all 2 × 2 games that are non-trivial (ie: ((,),)a b a c¹), there is at

least one ESS strategy.

Auctions

 Introduction

o In a private value model, each bidder knows the value he places on

the item, but doesn’t know the value placed by other bidders. In a

common value model, the item’s actual value is the same to all

bidders, but they have different a priori information about that

value (eg: a jar of coins).

o Auctions can be oral or written (bidders submit closed sealed bids

in writing)

o The symmetric independent private values model (SPIV) concerns

the auction of a single item with

 Risk neutral seller and bidders

 Each bidder knowing his own valuation of the item, which

he keeps secret.

 The valuations modelled as IID random variables.

o Types of auctions:

 English auction – bids increase in small increments until

one bidder remains. Equivalent to the second price sealed-

bid (or Vickrey) auction – winner pays the second highest

bid.

 Dutch auction – price decreases continuously until some

bidder calls stop. Equivalent to first price sealed bid –

winner pays the bid

 All pay sealed-bid auction – highest bidder wins, but all

pay their bids.

 The Revenue Equivalence Theorem

Operations Research Notes Page 71 of 77

 © Daniel Guetta, 2009/2010

Regret Minimization

 This section is concerned with a situation in which we repeatedly have to

make decisions in an uncertain environment. We would like to develop

algorithms that allow us to play the game with the guarantee that against

any opponent, we will perform nearly as well as the best fixed action in

hindsight.

 Model

o N available actions { }, ,1X N=

o At each time step t, an algorithm H selects a distribution

{ }: 1 ,,t t

i
p i N= =p

over the n actions and receives information

{ }: 1 ,,t t

i
i N= =

and experiences a loss

1

N
t t t

H i i
i

p
=

= å

For the sake of simplicity, we will assume that { }0,1t

i
Î

o The loss of action i by time T is

1

T
T T

i i
i

L
=

= å

and the loss of the algorithm by that time is

1

T
T t

H H
t

L
=

= å

o Now, insight, the best fixed action will be the one that gives us the

smallest L. In other words

min
minT T

ii
L L=

And defined the external regret of the algorithm H by4

min

T T

T H
R L L= -

 We first consider a greedy algorithm which proceeds as follows

4 More generally, the minimum in LT can be taken over a set that does not simply consist of

all the individual actions; it could consist of various mixed strategies.

Operations Research Notes Page 72 of 77

 © Daniel Guetta, 2009/2010

Greedy Algorithm: The greedy algorithm chooses the

action which, thus far, has incurred minimum loss:

 1. Originally, play x1 = 1

 2. At time t, play 1 1argmint t t
i

i

L Sx - -Î = . If 1tS -

contains more than one item, choose the one with

the lowest index

Theorem: The greedy algorithm always has loses which

satisfy

()greedy min
1T TNLL N£ + -

Proof: Consider the set S. At step t, the algorithm

picks one member of S. A number of things can happen:

 The algorithm chooses a winning action. The

action stays in the set, and
greedy min

t tL L- doesn’t

increase.

 The algorithm chooses a losing action from a

choice of several. The action leaves the set S,

and
greedy min

t tL L- increases by 1. This can occur a

maximum of N – 1 times, because the maximum

size of S is N, and the set needs to be populated

by more than 1 item for there to have been a

choice.

 The algorithm chooses a losing action, but it is

the only one left in S.
min

tL then increases, and

greedy min

t tL L- doesn’t increase.

Clearly, therefore, every time
min

tL increases by 1,

greedy min

t tL L- might have increased by as much as N – 1

(or less, if the size of S did not start at N). Thus

()()greedy min min
1 1t t tL L N L- - +£

(we use
min

1tL + because the algorithm may be “in

between updates” of
min

tL). The result follows.

This theorem only imposes a weak limit.

Operations Research Notes Page 73 of 77

 © Daniel Guetta, 2009/2010

 We next consider a randomized weighed majority algorithm which

proceeds as follows

Randomized weighed majority algorithm:

 1. Originally, set 1 11,
i

w w N= = and play action i

with probability / 1/t t t

i i
p w w N= = .

 2. At time t, let

()1 1

1

1
1

1

0

t t
t i i

t ti
i i

w
w

w
h

h- -

-

ìï - =ïï= íï =ïïî

 and

 t t

i
w w=å

 Then play i with probability

 /t t t

i i
p w w=

Effectively, we are giving each action a weight ()1
T
iLT

i
w h= - and

weighing probabilities proportional to the weights.

Theorem: For 1
2

h £ , the RWM algorithm has losses

which satisfy

()RMW min

ln
1T T N

L Lh
h

£ + +

With { }ln 1
2

min ,N
T

h = yields

RMW min
2 lnT TL L T N£ +

Proof: Our strategy will first be to show that any time

the algorithm has a large loss, w must drop

substantially. We then use the fact that

() () min11 max max 1 1
T T
iLT LT

ii i
ww h h+ +³ = - = -

To achieve our bound on Lmin

So, let’s begin by noting that the expected loss of the

RWM at time t is

RMW
1 is losing

action

t tN
t ti i

it t
i i

w w

w w=

= =å å

Operations Research Notes Page 74 of 77

 © Daniel Guetta, 2009/2010

We also note that each losing action will have its

weight multiplied by ()1 h- . We find, therefore, that

()

1

 was losing
action

 was losing
action

RMW

RMW
1

t

i

t
t i

t

t t

i

t

t

i

t

t

tt

w

w
w

w

w

w

w w

w

w

h

h

h

h

+ = -

= -

= -

= -

å

å

We have thus shown that when the algorithm incurs a

large loss, w drops significantly.

Now, since 1w N= , we can write

()RMW

1

1

1
T

T

t

tw N h+

=

= -

but we know that () min 11
T

TL
wh +- £ . And so

() ()min

RMW
1

1 1
T

t

L t
T

Nh h
=

-- £

Taking logarithms

() ()min R
1

MW
lln 1ln n1T t

T

t

L Nh h
=

- £ + -å

We can now use the inequality ()ln 1 zz- £-

()min RM
1

W

RMW

ln 1 ln

ln

T

t

T t

T

NL

N L

h h

h
=

- £

£ -

-å

As such

()
RMW min

ln 1 lnT T N
L L

h

h h

- -
£ +

We can now use the fact that () 2ln 1 z z z- £ +- for

1
2

0,z é ùÎ ê úë û

()RMW min

ln
1T T N

L Lh
h

£ + +

As expected.

Now, let { }ln 1
2

min ,N
T

h = . Imagine (ln)/N Th =

RMW min min

ln
lnT T T N

L L L T N
T

£ + +

Operations Research Notes Page 75 of 77

 © Daniel Guetta, 2009/2010

But
min

TL T£ (since the maximum an action can lose at

each time step is 1), and so

RMW min
2 lnT TL L T N£ +

We need to ensure that 1
2

[0,]h Î for the inequality

2log(1)z z z- £- + to hold; thus, if ln 1
2

N
T

³ , we

simply set 1
2

h = .

As such, we find that for the right choice of h

RMW RMW min 0
T T T

T

R L L

T T ¥

-
= ¾¾¾¾

It turns out that there is an analogous algorithm for losses 0,1t

i
é ùÎ ê úë û .

 Consider, now, the relationship this has to game theory. Consider a two-

person zero-sum game in which player I has strategies
I

1, ,N and player

II has strategies
II

1, ,N . We assume the game has a loss matrix for

player I of
ij

S (this is equal to
ij

e- in our previous notation). We then

have

()
I II

1 1

,
N N

T
i ij j

i i

S p S q S
= =

= =ååp q p q

Now, let

()
()

I

II

minmax ,

max min ,

v S

v S

=

- =
p q

q p

p q

p q

We know that
I II

vv- £ from before

 Now, imagine { }I,II plays algorithm
{I,II}

H which plays { , }t tp q at time t.

We clearly have that

()
()

I

II

,

,

t t t

H

t t t
H

S

S

=

= -

p q

p q

We show that

Theorem:

II

I II I

I II

T

T

H

T

T
H

v T R

L vT R

L £- +

£- +

Proof: Let

1

tT
j

j
t

q
q

T=

= å

Operations Research Notes Page 76 of 77

 © Daniel Guetta, 2009/2010

There exists an *i such that

*

T

i ij
SS

·
£ "pq q p

(This just means that we can choose the i for which

*i
S

·
q is smallest; clearly, the result will be smaller than

a linear combination of this *i
S

·
q and other

?
S ·q).

We further note that

*

TT

i i
i

LL
S

T T
S·= £ "p qq p

Now

I
*min I

T T T

iH I
L L R L R+£ £ +

And so

I
* I

I

I

II

min

maxmin

T

I

H i

T
L R

T T
R

S
T

R

T

v
T

T

R

L

S

£ +

= +

£ +

= - +

p

q p

p q

p q

As required.

It remains to show that a corrolary of this theorem is the

minimax theorem:

Theorem (minimax):
II I

v v- =

Proof: Take HI and HII such that

I II, 0
T T

T

R R

T T ¥
¾¾¾¾

(for example, use RWM with (log) /N Th =). Since

the game is a zero-sum game, we have

II I

T TL L

T T
- =

And so

II
I I

II I I
I

TT T TL L
v

R

T T T

R

T
v£- = £- +-

As T ¥ , we obtain

II I
v v£-

Operations Research Notes Page 77 of 77

 © Daniel Guetta, 2009/2010

But we know that
I II

vv- £ . We conclude that

I II
vv- =

which proves the minimax theorem.

