
Operations Research Notes  Page 1 of 77 

  © Daniel Guetta, 2009/2010 

 

 

 

Mathematics of Operations 

Research 

 

Part III Course, Michaelmas 2009 

 

Revision Notes 

 

Daniel Guetta 

guetta@cantab.net 



Operations Research Notes  Page 2 of 77 

  © Daniel Guetta, 2009/2010 

Linear Programming 
 

Lagrangian Methods 

 Let P(b) denote the optimization problem 

Minimize ( )f x  subject to ( ) , XÎ=h x b x  

We say that x is feasible if { }( ) : ( )X b xx X h x bÎ = Î = . We define the 

Lagrangian as 

( ) ( ) ( ), ( )TL f x= - -x h x bl l  

l  is called a Lagrangian multiplier and typically 

o nX Í   

o , mÎb l   

o : n mh     
The following theorem concerns such problems: 

Theorem (Lagrangian Sufficiency Theorem – LST): If 

( )XÎx b  (ie: x  is feasible for P(b)) and there exists l  

such that 

( ) ( )inf , ,
X
L L

Î
=

x
x xl l  

Then x  is optimal for P(b). 
 

Proof: For all l  and feasible x (ie: ( )X XÎ b ), we 

have 

( )( , ) ( ) ( ) ( )TL f f= - - =x x h x b xl l  

By assumption 

( , ) ( , )  L XL £ " Îxx xll  

If we restrict our attention to ( )X XÎ Íx b , the only 

possible x that can solve our problem, we find that 

( , ) ( )  ( ( , )) ()f L f xL X£ = "= Îx x x x bll  

Thus, x  is optimal for P(b)  
 

This leads to a method for solving such optimisation problems 

o Minimize ( ),L x l  subject to XÎx . The answer *( )x l  will, of 

course, depend on l . 

o Find a * mÎl   such that ( )* *x l  is feasible. 
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This method effectively involves relaxing the constraint but associating a 

penalty to deviations from the constraint. For some value of the penalty, 

the maximum will be just right. 
 

Note, however, that the converse of the theorem above is not true, and so 

this method might not always work. 

 We define 

( )
Solution value to ( ) ( ) inf ( )

( ) inf ( , )
X

X

P b f

g L

f
Î

Î

= =

=
x b

x

b x

xl l
 

It turns out that 

Theorem (Weak Duality): (( )) gf ³b l ,  , m" Îbl   
 

Proof: First, we have that if ( )XÎx b , then 

( , ) ( )L f=x xl  for all l , so 

( ) ( )
( ) inf ( ) inf ( , )

X X
f Lf

Î Î
= =

x b x b
b x x l  

Clearly, 

( )
inf ( , ) inf ( , ) ( )
X X

L L g
Î Î

=³
x b x

x xl l l  

Because the first infimum is taken over a smaller set. 

This proves the Theorem.  
 

Clearly, therefore, g is a lower bound on the solution value of P(b). It 

makes sense to try and make this lower bound as large as possible. In fact, 

we define: 

Definition (Dual Problem): The dual problem of P(b) is 

maximize ( )g l  subject to YÎl  

Where { : ( ) }Y g= >-¥l l  
 

The Primal Problem is simply finding ( )f b . 
 

Definition (Strong Lagrangian): We say that P(b) is 

Strong Lagrangian if there exists l  such that 

( )( ) ( ) inf ,
X

g Lf
Î

= =
x

b xl l  

In other words, problems for which: 

 1. The Lagrangian Sufficiency Theorem applies 

 2. The min of the primal = max of the dual 
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Determining whether the LST applies to a given problem reduces to 

determining whether the problem is Strong Lagrangian. 

 Geometrically, what is ( )g l ? We first present the following calculation 

( )
( )
( ){ }

( )

(

( ) inf ( , )

inf inf ( ) ( )

inf )

p )

(

su :

m

m

T

X
T

X

mT

g L

f

f

f

b b

b

Î

ÎÎ

Î

=
é ù= - -ê úë û

= - -

= +

=

Î- £ "

cc

c

x

x

x

x h x b

c c b

c b c c

l

l l

l

l

l







 

Geometrically, this implies that ( )g b= ll  is obtained by 

o Drawing a graph of ( )f c  

o Drawing a hyperplane of gradient(s) l  under this curve, and 

pushing it up as snugly as possible against the curve 

o Reading off the intercept of this curve when c = b 

It’s therefore clear that the dual problem simply consists of tweaking l  

to find the maximum value of bl . The specification that 

{ : ( ) }g -¥Î >l l l  simply ensures that the resulting hyperplane is not 

vertical. 
 

We will only obtain max ( )b f= bl  (the solution to the problem) if one of 

those “snugly fitting hyperplanes” touches the point ( )f b  of the curve f . 

Formally, we require there to be a supporting hyperplane: 
 

Definition (Supporting hyperplane): A supporting 

hyperplane ( , )ac  to f  at the point b is of the form 

( ) ( ) ( )Ta f= - -c b b cl  

Where 

(( )) maf ³ " Îc cc   

In other words, the hyperplane touches the curve snugly 

at ( )f b  and lies below f  everywhere else. 
 

And in fact 
 

Theorem: The following are equivalent 

 1. There exists a (non-vertical) supporting 

hyperplane to ( )f c  at c = b. 
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 2. The problem is Strong Lagrangian (ie: 

max ( )b f= bl )  
 

Proof: Suppose 1 is true. This means that there exists 

l  such that 

(( )) ) (T mf f - -³ " Îb cc b cl   

This implies that 

( )

( ) inf ( )

inf inf ( )

inf

( )

( ( )

(

)

( , )

)

m

m X

T

T

X

g

hf

L

f f
Î

ÎÎ

Î

é ù£ +ê úë û
é ù= +

-

-ê úë û
=

=

c

x cc

x

b c

b x

b c

x

x

l

l

l

l



  

However, we know that (( ))g f£ bl , and so we must 

have (( ))g f= bl  and P(b) is Strong Lagrangian. 
 

Conversely, if the problem is Strong Lagrangian, then 

there exists l  such that 

( )
( ,

( ) inf ( , )

( )

( )

)

( ( ))

X

T

L

L

X
f

f

f

f

Î

£
" Î

£ - -

=
x

x
x

x h x

b

b

b b

x

l

l

l

 

We can minimize the RHS over ( )XÎx c , and get 

( )(( )) Tff £ - -c c bb l  

Thhis is true for all c, and hence 

( ) ( )( ) T mf f- £ "- Îb c c cb l   

And therefore f  has a non-vertical supporting 

hyperplane at b.  
 

This theorem is particularly useful in conjunction with the following: 
 

Theorem (Supporting hyperplane): If f  is convex and b 

lies in the interior of the set of points where f  is finite, 

there exists a (non-vertical) supporting hyperplane to f  

at b. 
 

Note also the following definitions 
 

Definition (Convexity): 

 1. A set S is a convex set if for all [0,1]l Î  
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   ( )1, S xx y y Sl lÎ  + - Î  

 2. A real-valued function f defined over a convex set 

S is a convex function if for all ,x y SÎ  and 

[0,1]l Î  

   ( ) ( )( ) 1 ( ) (1 )f x f y f x yl d l d+ - ³ + -  
 

Definition (Extreme Point): A point x is an extreme 

point of S whenever, for some ,x y SÎ  and [0,1]l Î  

( )1 z zx y x yl l - =+ ==  
 

 The discussion above has made it clear that we are interested in problems 

in which f  is convex. The following theorem is of use in that respect 

Theorem: Consider the problem P(b) defined as 

minimize f(x) subject to , ( )X hÎ £x x b  

If X is a convex set and f and h are convex, then f  is 

convex. 
 

Proof: Take 

 
1 2
,b b  such that f  is defined, and 

( )1 2
1l l= + -b b b  for (0,1)l Î . 

 xi to be feasible for P(bi) and ( )1 2
1l l= + -x x x  

Then 
1 2
, XÎx x  and X convex implies XÎx . Also, h 

convex gives 

( )( )
( )

( )

1 2

1 2

1 2

1

( ) 1

(

)

1

)

(

h

h h

h l l

l l

l l

+ -

£ + -

£ +

=

-
=

x x

x x

b b

x

b

 

So x is feasible for P(b). This means that 

(( )) ff £ xb  

If f is convex 

( ) ( ) ( )1 2
( ) 1f ff l l£ + -x xb  

This holds for all ( )
ii

XÎx b  and so taking infimums 

( ) ( ) ( )1 2
( ) 1f lf l f£ + -b bb  

So f  is indeed convex.  
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Note that the constraint ( )h =x b  is equivalent to the 

two constraints ( )h £x b  and ( )h- £-x b , so f  is also 

convex under that constraint provided h and –h are 

convex. 

 

Linear Programs 

 We consider problems of the form 

Definition (Linear program):  

 
 

Problems that involve free variables x can be modified to fit this form by 

replacing x with x+ – x–, where x+ and x– are two nonnegative variables. 

 These problems can be cast into standard form by the addition of slack 

variables z to form the problem 
 

Definition (Linear program in standard form):  

{ }minimize 0, 0: ,T A ³= ³-c x x z xb z  
 

 Let’s clearly summarise the variables involved in a standard form LP 
 

 

Original form 

min :
0

T
Aì üï ïï ïí ýï ïï ïî

³

³ þ

x
c x

x

b
 

Standard form 

min :
( , ) 0

T
Aì üï ï- =ï ïí ýï ³ ïï ïî þ

x z b
c x

x z
 

#Variables n ¢  n n m¢= +  
#Constraints m m 

#Non-neg 

constraints n ¢  n n m¢= +  

Total 

constraints n m¢ +  2n m n m¢ + = +  
 

Geometrically, these two problems are somewhat different 

o The original problem defines a polyhedron, over which we need to 

find the maximum of a given function. It turns out that 
 

{ }minimize 0: ,T A ³ ³x bx xc

m n´

1n´ 1m´1 n´
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Theorem: If an LP has a finite optimum, then it occurs 

at an extreme point of the feasible set. 
 

Since there are n ¢  variables, we need n ¢  equations to characterise 

an extreme point. Thus, we require n ¢  of the inequalities to be 

tight, from the n m¢ +  in the original problem, and there are 

therefore n m n

n n m
C C¢+

¢ -
=  extreme points.  

 

Finding extreme points involves choosing which inequalities to 

make tight. 

o The normal form problem involves a higher dimensional system of 

equations, the solutions of which completely cover the polyhedron 

in the original problem. 
 

It should be pretty clear here that 

 The slack variable zi is 0 only if the corresponding 

inequality is active. 

 The variable xi is 0 only if the corresponding non-negativity 

constraint is active. 
 

So finding the extreme points simply reduces to setting n n m¢ = -  

variables to 0. To make our lives easier, we introduce the following 

notation 

 
 

We’re now ready to characterise our extreme points algebraically 
 

Definition (Basic solution): 

 • A basic solution to Ax = b is one with at least 

n m-  zero variables. In other words, one in which 

xN = 0. 

 • The m non-zero variables xB are called basic and 

form the basis. The others are called non-basic. 

1m´

m m´

B B N N
A A+ =x x b

( )m m n´ -

( ) 1m n- ´ 1m´
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 • Such a solution is non-degenerate if exactly n – m 

of these variables are 0 (ie: if no component of xB 

is 0). 

 • If a basic solution satisfies 0 0
B

³  ³x x  then it 

is called a basic feasible solution. 
 

Theorem: The basic feasible solutions are the extreme 

points of the feasible set.    
 

 The idea behind the simplex algorithm is simply to start with a BFS, test 

whether it is optimal and move to another one if it isn’t. We make the 

following assumptions (if they do not hold, then they will for a small 

perturbation of the data) 

o The matrix A has linearly independent rows (ie: rank A m= ); 

otherwise, we have “duplicate constraints”. 

o Any m m´  matrix formed from m columns of A is non-singular; 

otherwise, we might have some trouble finding one of the BFS. 

o All basic solutions have exactly m non-zero variables (ie: the BFS 

is non-degenerate). 

 Imagine we find ourselves at a BFS x, with 1

B B
A-=x b . How can we check 

whether this BFS is optimal, and where do we go if it isn’t? 
 

Imagine moving away from that BFS to a new point jq+x d  by 

increasing a non-basic variable j. The variables in the basis will then also 

have to change to keep the solution feasible. Algebraically, we have 

( )
0 \

1

{ }j

i

j

B i

i j

d i

d i

N j

B

q q Î

Î

ìï =ïïïï= íïïïïïî

 

 

We can find j

B
d  by requiring that jq+x d  be feasible (and remembering 

that x is feasible, so A =x b ) 

( )

1

0

j

j

B B j

j

B

j

B j

A

A A

A

A

q

·

-
·

=

+

-

+ =

=

=

d 0

b

d

d

d A

x
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Moving along this direction will change the objective function by the 

reduced cost T j T j

j j B B
c c= = -c d c d . We can write this as 

1T

j j B B j
c c A-

·= -c A  

(And note that for j basic, 1T

B B j j
A c-

· =c A  and so 0
j

c = )1. 
 

But consider that for any x with Ax = b, we have 

( )1
B B N N

B B N N

A A

A A-

+ =

= -

x x b

x b x
 

Therefore 

( )1

1

Objective function T T T

B B N N
T T

B B N N N N
T

B B N N

A A

A

-

-

= = +

= - +

= +

c x c x c x

c b x c x

c b c x

 

Now, imagine a BFS X with 0
N
£c  for all N, and, by definition, 

N
=x 0 . 

Moving away from this BFS necessarily implies increasing 
N

x  (or keeping 

it at 0) and therefore decreasing the objective function. Thus 
1Objective function T T

B B
A- =£ c b c X  

And so X is optimal. In fact 
 

Theorem: A basis matrix AB is said to be optimal if 

 1 0
B B

A- = ³b x  (Feasibility) 

 1

B B
A A-= - ³c c c 0  (Optimality) 

 

(Note that if the BFS is degenerate, it could be optimal but nevertheless 

have negative reduced costs. This is because if those negative reduced 

costs coincide with a variable in the basis that is 0, we cannot move in 

that direction without violating the non-negativity constraints. So the 

direction only appears to be improving). 
 

If we find that some of the reduced costs are negative, then we choose the 

non-basic variable j with most negative reduced cost (ie: from which we 

can gain the most) and make that variable enter the basis. In other words, 

we move in the direction jd  until one of the previously basic variables 

becomes 0 (ie: leaves the basis) – past that point, we would be violating 

                                                 
1 To see why, note that 1

B B
A A I- = , which implies that ( )1 j

B B j
A A I-

·
= , where j

i ij
I d= . Thus, 

if j BÎ  then ( )1 1T T T j
B B j B B B B jj
A A A I c- -

· ·
= = =c A c c . 
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non-negativity constraints. If we move a distance jqd , then each variable 

i changes by j

i
dq . If it’s positive, then no problem. If it’s negative, then we 

require 

{ }0 : 0ji
ij

i

j

i i
x d

x
i i d

d
qq q³  £- "+ Î <  

This makes it clear that we should choose 

( ) ( )1

1

min : 0,

min : 0,
j

i
ij

i

i
B i

B ij

x
d i

d

x
A A i

A A

B

B

q

q
·

-

-
·

ì üï ïï ï= <í ýï ï-ï ïî þ
ì üï ïï ïï ï= >

Î

Îí ýï ïï ïï ïî þ

 

The variable which ends up determining q  will be the one to leave the 

basis. 
 

(Note: if every ( )1 0j

i ijB
d A A-

·= - > , then q = ¥ , because we can improve 

in that direction infinitely without ever violating the non-negativity 

constraints. So the problem is unbounded). 

 We now need a practical method to carry out simplex. Unfortunately, 

carrying out the method above naively leads to a very inefficient 

algorithm, because we need to evaluate 1

B
A-  at every iteration. 

 

A move efficient method carries this information through each iteration. 

We store the information stored at each step in the following tableau:  
 

1

B
A A-  

Value of basic 

variables 

Reduced costs –Objective function 
 

Mathematically, the tableau looks like: 
 

1     
B

A A-


 


 1

B B
A- =b x




 

1    T T

B B
A A--c c   1T T

B B B B
A-- = -c b c x  

 

We often represent the Tableau by an array a 
 

( )ij
a  0i

a  

0 j
a  

00
a  
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The simplex method then proceeds as follows: 

o Begin by choosing a basic feasible solution. This is often easily done 

by setting all the slack variables to b and all the “real” variables to 

0 (see later for cases where this doesn’t work). In that case, 
1

B B
A A I-= =  (where some of the entries might be negative, 

depending on the type of inequality), and the tableau can easily be 

filled in: 
 

 
 

Calculate the reduced cost and enter them into the last row. Often, 

the objective function coefficients will only include non-basic 

variables. In that case, T

B
=c 0  and so =c c  and our work is done. 

Otherwise, proceed as follows: 

 Multiply each row by the corresponding objective function 

coefficient (eg: multiply the first row above by 
1z

c ). 

 Subtract each row from the last row. 

In terms of our tableau, this looks like: 

 
Finally, work out the objective function value to put into the 

bottom right-hand corner. 

o Choose a variable to enter the basis Choose a pivot column with 

the smallest 
0

0
j j

a c= < , or, in case of ties, the one with the 

smallest j. This is the nonbasic variable with the most negative 

reduced cost. 
 

Termination check: If all 0
j

c > , then there is no 

improving direction. Done. 
 

In terms of our tableau: 

 
 

 x1 x2   zm b 

z1 basic a11    b1 

        

zm basic    amn bm 

 c1 c2   
 

0 0 

0 0 0j j ij j
a a a a= -

{ }0 0
Entering basis Pivot column argmin : 0

j j
j

j a a= = = <
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o Choose a variable to leave the basis by finding q :  

( ) ( )1

1
min : 0,i

B i
B

j

j i

x
A A i

A A
Bq -

- ·

·

ì üï ïï ïï ï= >í Î ýï ïï ïï ïî þ

 

In this case, we know what j is; we’ve already chosen the pivot 

column. Since the tableau contains 1

B
A A- , then the pivot column 

contains 1

B j
A A-

·
, and we know that the last column contains 

B
x . So: 

 Divide each item in the last column by the corresponding 

item in the pivot column; only when the item in the pivot 

column is positive. 

 Choose the least one of those – the corresponding variable 

will end up leaving the basis, and the corresponding row is 

the pivot row. 

In terms of our tableau: 

 
 

Degeneracy check: If there is more than one i that 

minimizes the above, then two variables will 

simultaneously become 0 and the problem is degenerate 

(because more than n constraints will be tight at that 

point). 
 

Termination check: If all ( )1 0
ij B ij

a A A·
-= < , then the 

problem is unbounded, and we can improve along that 

direction to infinity. Done. 
 

o Update the tableau (pivot on element aij) by moving along that 

direction. Effectively, this involves updating the matrix 1

B
A-  to 

reflect the fact the basis has now changed. Assume variable j has 

entered the basis and variable i has left it. The old and new 

matrices look like 

? ?

? ?

B i

jB
A

A
· ·

· ·

·

·

é ù
ê úë û
é ù
ê úë û

=

=

A A

A A A

A 

 
  ? BÎ  

0Leaving basis Pivot row argmin : 0i
ij

i
ij

a
i a

a

ì üï ïï ïï ï= = = >í ýï ïï ïï ïî þ
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Now, since 1

B B
A A I- = , we have that ( )1 j

B B j
A A I-

·
= , where j

i ij
I d= . 

This implies that 

1 1 1 ?

B B B j
A A I A I- -

·
é ù= ê úë ûA   

Now, imagine we find a matrix Q such that 

1 1 1 ?

1 1

B B B j

B B

QA A Q I A I I

QA A

- -
·

- -

é ù= =ê úë û
=

A 
 

So we simply need to find this magical matrix of row operations Q, 

apply it to our tableau (which contains 1

B
A- ) and we’ll get 1

B
A- . 

 

These row operations are as follows: 

 Divide the pivot row by the pivot element (so we get 1 on 

the diagonal) 

 For each row ia ¹ , subtract 
j

aa  times the pivot row, 

where Aki is the value of the pivot column in that row (so 

we get 0 everywhere else). 

In terms of our tableau 

/ for the pivot row (ie: )

for every other row (ie: )
ij

j i

a a i
a

a a ia
ab

ab
ab a b

a
a

ìï =ï= íï -î ¹ï
 

 

It turns out this rule also applies to the last row of the tableau. To 

see why, consider that originally, the last row is (the vertical lines 

indicate jumping from cell to cell in the tableau) 
1| 0 |T T

B B
A A-é ù é ù- ê úê ú ë ûë ûc c b  

When we add a multiple of the pivot row, we are adding a linear 

combination of |Aé ùê úë ûb . So our result will be of the form 

| 0 |T Aé ù é ù- ê úê ú ë ûë ûc T b  

where T is some linear transformation. But notice that after these 

row operations 

 We end up with a 0 in the pivot column, by design. 

 We end up with a 0 in every other column k j¹  that stays 

in the basis, because (1) the original value there was 0, 

being the reduced cost of a basic variable (2) the entry in 

the pivot row for that column is also 0, because for any 
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basic variable k, 1 k

B k
A I-

·
=A , but k j¹ , so the entry in 

the pivot row is indeed 0. 

So we end up with a 0 in every column corresponding to the new 

basis. Thus 

1

0T

B B
T

B B

A

A-

- =

=

c T

T c
 

And so we end up with a bottom row of 
1| 0 |T T

B B
A-é ù é ù- ê úê ú ë ûë ûc c A b  

As required. 

 Sometimes, we do not have any obvious basic feasible solution (this often 

occurs when we have equality constraints, > something positive or < 

something negative, in which case the “obvious” BFS can make the slack 

variables negative). 
 

For example, consider the problem 

{ }min : , 0T ³=c x Ax b x  

The trick here is to 

o Multiply the equalities by –1 as needed to make bi positive. 

o Introduce a vector of artificial variables y and solve the problem 

{ }1
in 0: , , 0m

m
yy + ³ ³+ + =Ax b x yy  

Several possibilities 

o If the optimal solution has 0¹y , then the original problem was 

not feasible. 

o If the optimal solution has =y 0  and the method terminates with 

a basis matrix AB consisting exclusively of columns of A, then we’re 

good – we can simply drop the columns corresponding to artificial 

variables and go from there. 

o If the optimal solution has =y 0  but some of the artifical variables 

are still in the basis, then the original problem has a degenerate 

basic feasible solution. We must drive the artificial variables out of 

the basis. 
 

To do that, assume that the  th basic variable is an artificial 

variable (in the basis at 0 level, since y  = 0). 
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 Find a column j corresponding to one of the original non-

artificial variables with a non-zero entry in that row – ie: 

( )1 0
B j

A-
· ¹A


. 

 This column is linearly independent from every other 

column 1

B k
A A-

·
 where k BÎ , because for these columns, 

( )1

B k iki
A A d-

· = , and since k <   (since   is an artificial 

variable) every one of these columns have a 0 entry in the 

 th row. 

 We can therefore make that variable j enter the basis 

instead of   [note that the pivot element might be 

negative]. 
 

If, however, every element in the  th row of 1

B
A A-  [ie: every entry 

corresponding to the original non-artificial variables in the tableau] 

is 0, then the above method does not work, because it means that 

the original matrix A has a rank < m. In other words, the matrix A 

has some linearly dependent rows, and some of the constraints in 

the original problem are redundant. In that case, we can simply 

delete that  th row. To see why, consider 

 The  th row of 1

B
A A-  is equal to 0, so 0TA =T , where TT 

is the  th row of 1

B
A- . 

 Since the problem is feasible, we must also have 0T =T b .  

 This means that the constraint T TA =T x T b  is redundant, 

and can be eliminated. Since this constraint is the 

information provided in the  th row, we can simply delete 

that row, and continue from there. 

In general, if a variable appears in a single constraint with a 

positive coefficient, we can always let that variable be in the initial 

basis, and we do not need to associate an artificial variable with 

that constraint. 
 

Note that the two methods can be combined into a single one, by 

minimizing 
T

i
M y+ åc X  
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Where M is a very large number (in fact, we don’t even need to ascribe a 

number to M – we can simply leave it as an unknown, and assume it is 

bigger than any number in our tableau when we need to make 

comparisons). 

 

Duality Theory 

 Recall that: 
 

Definition (Linear program in standard form):  

{ }minimize 0, 0: ,T A ³= ³-c x x z xb z  
 

The permissible set m nX +Ì   is given by 

( ){ }: , 0, 0
i i

zX x ³ ³= x z  

The Lagrangian for the problem is then 

( ) ( )
( )

( , ); T T

T T T T

L A

A

= - - -

= - + +

x z c x x z b

c x z b

l l

l l l
 

Now, recall that 

( )
( , )

( ) inf ( , );
X

g L
Î

=
x z

x zl l  

In this case, we note that 

o L only has a finite minimum in X if both the coefficients of x and z 

are positive, so 

{ }: 0, 0T TY AÎ = ³ - ³c ll l l  

Otherwise, we could simply take x and/or z to infinity and make 

the function smaller and smaller as we go. 

o This minimum occurs when both the first two terms in L disappear, 

so that 

( )
( , )

( ) inf ( , ); T

X
g L

Î
= =

x z
x z bl l l  

This motivates the definition of the dual linear program: 

Definition (Dual program):  

{ }, 0maximize :T TTA £ ³b c ll l  
 

By similar logic, we can construct dual programs for all kinds of primal 

constraints and negativity constraints. In fact 

Primal Dual 
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minimize Tc x  maximize Tbl  
T

i i
b

·
³A x  0

i
l ³  

T

i i
b

·
£A x  0

i
l £  

T

i i
b

·
=A x   free

i
l  

0
j

x ³  
j

T

j
c

·
£Al  

0
j

x £  
j

T

j
c· ³Al  

 free
j

x  
j

T

j
c· =Al  

 

 We note also that we can give an interpretation to the l . Since this 

optimization problem is convex, we have 

( )
i

i i

g

b b

f
l

¶ ¶
= =

¶ ¶
l

 

The variables 
i

l  are therefore shadow prices or marginal costs – they 

indicate by how much our solution f  would increase if we increased one 

of the constraints bi. 
 

This provides another interpretation of duality. c is the cost of adding 1 

to variables in the primal problem. l  is the cost of adding 1 to the RHS 

of each constraint. These are two ways of accounting for the total cost; we 

can either see it as a cost imposed by buying stuff, or a cost imposed by 

constraints. Duality requires T T=c x bl ; in other words, it requires the 

cost to be the same regardless of the accounting method. 

 We can quickly prove the following theorem 

Theorem (Strong duality): If a linear programming 

problem has an optimal solution, so does its dual, and 

the respective optimal costs are equal. 
 

Proof: We can first translate any problem to its 

standard form equivalent 

{ }minimize 0: ,T A ³=x x b xc  

At the optimal solution, the reduced costs must be non-

negative, so 
1T T

B B

TA A-- ³c 0c  

If we let 1T T

B B
A-= cl , we have TTA £ cl . So l  is 

feasible for the dual 
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{ }, 0maximize :T TTA £ ³b c ll l  

Furthermore 1T T T T

B B B B
A-= = =b c b c x c xl , and so by 

weak duality l  is also optimal for the dual.  

The theorem above provides an interesting insight into what the simplex 

algorithm does. We see that the optimality condition 1T T

B B

TA A-- ³c 0c  

implies TTA £ cl , which is dual feasibility. So effectively, the primal 

simplex algorithm maintains primal feasibility while searching for dual 

feasibility. 

 The dual simplex method does the opposite – it starts with a dual feasible 

solution, and searches for primal feasibility. Let AB be a basis and 

consider the corresponding simplex tableau 

1     
B

A A-


 


 1

B B
A- =b x




 

1    T T

B B
A A--c c   1T T

B B B B
A-- = -c b c x  

This time, we no longer require 0
B
³x , and so the solution is basic but 

might not be feasible. However, we require that 0³c , which means that 

he solution is dual feasible. If it so happens that 0
B
³x , then the solution 

is also primal feasible with the same cost, and optimal solutions to both 

problems have been found. Otherwise: 

o We choose a row with ( ) 0
B i

x < ; our pivot row i 

o For each negative item ( )1 0
k B k i

v A-
·= <A in that row, we calculate 

/
k k

c v  and let j be the index that minimizes this; our pivot column 

{ }| 0

argmin
k

k

k v
k

c
j

v<
=  

If every item in this row is non-negative, then we can move in that 

direction for ever and keep the dual problem feasible. Thus, the 

problem is unbounded. 

o We then let the pivot column enter the basis and the pivot row 

leave the basis in the usual way. As a result, the 0th row for every k 

now reads 

j

k k

j

c
c v

v
+  
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We chose j precisely to ensure that none of these values fall below 0. 

So the result is still dual feasible. 
 

Furthermore, the cost cell will decrease, which means that the 

objective cost of the dual will increase, and the algorirthm will 

eventually terminate. 
 

Note that if the pivot column entry in the 0th row is 0, then moving 

in that direction does not change the cost; we have degeneracy. 

In general, the value of the dual variables can be found in the last row of 

the tableau, under the slack variables (the sign will vary depending on the 

type of inequality). 

 This method is particularly useful in two situations: 

o When it’s easy to find a basic solution with 0>c , but not so easy 

to find a BFS. For example, if it involves making all the slack 

variables negative. 

o When we need to add a new constraint T b³xa  to an already-

solved simplex. In that case, we create a new slack variable for that 

problem, and let it enter the basis. The determine what the new 

tableau will look like, we note that: 

1T

A
A

é ù
ê ú= ê ú-ê úë û

0

a
  

0

1
B
TB
B

A
A

é ù
ê ú= ê ú-ê úë ûa

 

We then have 
1

1
1 1

B
TB
B B

A
A

A

-
-

-

é ù
ê ú= ê ú-ê úë û

0

a
 

And so 
1

1
1 1
B

T TB
B B

A A
A A

A A

-
-

-

é ù
ê ú= ê ú-ê úë û

0

a a
 

And the reduced costs remain the same, with the last reduced cost 

equal to 0. 

This last method is particular useful for integer linear programming, 

where we can apply Gomory’s cutting plane method. Consider a solved 

tableau in which, for each basic variable i, we are left with the constraints 

0i ij j i
j N

x a x a
Î

+ =å  

Since all the variables are positive, we must also have 
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0
N

i ij j i ij j i
j j N

x a x x a x a
Î Î

ê ú +ê úë û £+ =å å  

Where 
ij

aê ú
ê úë û  is the integer just below aij. If, however, xj should be an 

integer (ie: if we have an ILP), then the LHS is an integer and can be no 

more than the integer right below ai0. We then have 

0i ij j i
j N

x a x a
Î

ê ú ê ú+ ê úê ú ë ûë £ûå  

This new constraint is called a cutting plane, and can be added to the 

problem. Repeatedly applying these cuts eventually provides us with an 

integer solution. 

 The following important result underlies much of the theory above 

Theorem (Complementary slackness): For the LP 

problem 

{ }minimize 0: ,T A ³ ³x bx xc  

x and l  are primal and dual optimal respectively if 

and only if x is primal feasible, l  is dual feasible and 

( )
( )

0

0

T T
ii

j j

A

A

- =

- =

c x

x b

l

l
 

 

Proof: Consider the two vectors 

( )
( )

T T
i ii

j j j

= -

= -

v c A x

u Ax b

l

l
 

Note that 

 The form of the dual problem requires the sign of 

j
l  to be the same as that of -Ax b , so uj > 0. 

 Likewise for v; vi > 0. 
 

Furthermore, not that ( )T T
i
= -åv c A xl  and 

( )T
j
= -åu Ax bl , so 

T T
i j
+ = -å åv u c x bl  

And finally, note that if x and l  are primal and dual 

feasible, then by strong duality 

0T T
i j
+ = - =å åv u c x bl  
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But since none of the components can be negative, this 

means that every component is 0.  
 

The second of these constraints is automatically satisfied for any optimal 

solution of the problem Ax = b. If the problem is not in standard form, 

then the constraint simply states that if a constraint is not tight, the 

reduced cost for that constraint is 0 (which makes sense; changing the 

constraint would do nothing to our optimal solution). 
 

The first constraint is more interesting. It states that 

( ) 0T T
ii

T T
i i i i

A

·

- =

=

c x

c x A x

l

l
 

If the problem is primal feasible (hence the first constraint) 
T T
i i

=c x bl  

The LHS is the cost of the primal problem. The RHS is the cost of the 

dual. So complimentary slackness effectively states that the cost of the 

primal and the dual have to be the same. 
 

This gives us yet another insight into what the simplex method does; it 

maintains primal feasibility and complementary slackness, and seeks dual 

feasibility. The dual simplex algorithm maintains dual feasibility and 

complimentary slackness, seeks primal feasibility. 

 

Integer Linear Programming 

 Consider a linear program in which every variable has to be an integer. 

The best integer solution is not necessarily the closest to the best non-

integer solution, so rounding won’t always give the best solution. In fact, 

the closest integer solution might not even be feasible! 

 One possible strategy is to try every solution in the (finite) set of 

possibilities and compare them. An efficient way of doing this is using the 

branch and bound technique: 
 

Suppose we want to solve the problem 

{ }min ( ) s.t. f x x XÎ  

We divide this problem into sub-problems, the ith of which is 

{ }min ( )  s.t. 
i

f x x XÎ . We continue breaking those into sub-problems, 
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until we find out that is easy to solve. We also suppose that for any sub-

problem we can calculate a lower bound ( ) min ( )
ix Xi

X f x
Î

£ . The steps are 

then: 

o Initialise: Set U = ¥ , discard any obviously infeasible solutions 

and treat the rest as one subset. 

o Branch: Use some branch rule to select one of the remaining 

subsets, and break it into two or more subsets. Two common rules 

are 

 Best bound rule – partition the subset with the lowest 

bound, in the hope that this gives the best chance of an 

optimal solution and of being able to discard other larger 

subsets by the fathom test. 

 Newest bound rule – we partition the most recently created 

subset, breaking ties with the best bound rule. This has 

book-keeping advantages because it doesn’t involve 

jumping round the tree so much. 

o Bound: For each new subset Y, calculate ( )Y  

o Fathom step: 

 If ( ) UY ³ , delete the subset 

 If Y contains no feasible solution, delete the subset 

 If Y can be solved to find an optimal solution y YÎ , then 

( ) ( )Y f y= . If ( ) UY ³ , we eliminate the subset. If 

( ) UY < , reset ( )U Y¬  , store y as the best solution so 

far, and re-apply the fathom step to all subsets. 

o Stopping rule: if there are no remaining active subsets, stop. The 

best solution obtained so far is optimal. Otherwise, return to the 

branch step. 

An example of that method is the knapsack problem, in which the lower 

bound might be obtained by noting that at least one item is needed in the 

knapsack. 

 Dakin’s Method applies to mixed integer programs (where only some of 

the variables are constrained to be integers) as well as pure integer 
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programs. It is a form of branch-and-bound in which we use the linear 

programming relaxation as our lower bound. 

o Initialise: Set U = ¥  and solve the LP relaxation with the primal 

simplex method. If the optimal solution x̂  has ˆ  
j

x jÎ " , then stop 

– the solution is optimal and feasible. 

o Branch: Pick a variable that should be an integer but isn’t. 

Partition into two subsets by adding one or another of the 

constraints 

jj j j
x x xx ê ú é ù£ ³ê ú ê úë û ê ú  

Use the newest bound rule for greatest efficiency.  

o Bound: Solve the resulting LP relaxation of the problem with the 

new constraint to find  . This works best using the dual simplex. 

o Fathom step: for each sub-problem Y 

 If ( ) UY ³ , delete the subset 

 If the dual simplex indicate that Y is infeasible 

 If Y has an optimal solution with integer values of the 

variables and ( )Y u< , reset ( )U Y¬   and store x as the 

incumbent solution. 

 

Complexity 

 An instance of an optimization problem is defined by its input data, and 

the instance size is the number of bits required to define the instance. 

Ignoring the details of the implementation, we might expect the running 

time of an algorithm to be proportional to the number of arithmetic 

operations involved. 

 We define 

o ( )( ) ( )f n O g n=  if there exists a c such that ((  ) )cgf n nn £ " . 

o ( )( ) ( )f n g nW=  if there exists a c such that ((  ) )cgf n nn ³ " . 

o ( )( ) ( )f n g nQ=  if ( )f n  is both ( )( )O g n  and ( )( )g nW . 

 Turing proved that the class of things that can be computed is the class of 

things that can be computed by a deterministic turing machine (DTM). 

When a DTM is given an input x, it runs for a certain number of steps 

(its running time) and outputs an answer f(x). There are many Turing 
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Machines that can run a problem; let ( )M
T n  be the worse running time of 

a given DTM over inputs of size x n= . We say f(x) is computable in 

polynomial time if there exists a machine that can calculate f(x) within 
k

x  steps (for some fixed k). The definition is robust because different 

DTMs can replicate each other by at most squaring or cubing the number 

of operations. In constrast, if ( ) ( )2 n

M

cT n = W  for all m, then f(x) is said to 

be computable in exponential time. 

 There are broadly three types of problems 

o Optimization; for example “find the shortest tour” 

o Evaluation; for example “find the length of the shortest tour” 

o Decision; for example “is there a tour with length < L?” 

We focus on decision problems, which have less potential complications. 

 A decision problem is in   if its answer is calculable in polynomial time 

(ie: given input x, there exists a DTM can compute an answer in a 

number of steps bounded by |x|k). 

 A decision problem belongs to   if and only if there exists a checking 

function ( ),r x y  such that the answer is yes if and only if there exists a y 

(called a certificate) such that ( ), 1r x y =  and ( ),r x y  can be calculated in 

polynomial time. 
 

For the decision TSP, for example, a certificate might be the order in 

which the nodes are visited. It takes O(n) time to check the length of the 

path from y. 
 

  stands for nondeterministic polynomial, and an alternative definition 

is that it contains problems which can be solved by a nondeterministic 

Turing machine, consisting of many DTMS working in parallel, any one of 

which can answer “yes” in polynomial time without consulting the others. 

For example, for the decision TSP, we could use (n – 1)! machines 

checking r(x, y) for a different y. 

 Clearly, Í  . It is believed that Ì  , but this is a major 

unsolved problem. 

 We say that problem 
1

P  reproduces 
2

P  and is no harder than it if 
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o We can make a polynomial time transformation of 
1

P  into an 

instance of 
2

P . 

o Apply some algorithm to solve an instance of 
2

P . 

o Make a polynomial time transformation of this solution of 
2

P  into 

a solution of 
1

P . 

 A problem P  is known as  -hard if every problem in   can be 

reduced to it. It is said to be  -complete if, in addition, P Î  . Thus, 

all  -complete problems can be reduced to one another and are as 

difficult as all problems in  . 
 

To show that a new problem is  -complete, we must 

o Show that it is in   

o Find another  -complete problem that reduces to it. 

 Examples of  -complete problems: 

o ILPs: LPs were values of variables are restricted to {0, 1}. 

o The TSP 

o Satisfiability: given a logical expression involving several variables, 

can we find an assignment that makes the whole expression true? 

o Hamiltonian circuit: given a graph G with n edges is there a set of 

edges forming a tour of all vertices (equivalent to a decision TSP  

asking “is there a tour with length < n” on a saturated TSP with 

edge cost 1 if the edge exists in G and 2 otherwise) 

o Subgraph isomorphism: Given two graphs G and G ¢ , is there a 

subgraph of G isomorphic to G ¢ ? 

o Clique decision problem: given a graph G, does the it contain a 

clique of size k (k vertices all pairs of which are connected together) 

o Vertex cover decision problem: given a graph G, is there a set of k 

vertices such that every edge starts or finishes at one of them? 
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Graphs, Networks & All that Jazz 
 

Terminology 

 A graph ( ),G N=   consists of a set of nodes, N, and a set of arcs,  . 

 In an undirected graph, the arcs are unordered pairs of nodes { },i j Î   

and ,i j NÎ . In a directed graph or network the arcs are ordered pairs of 

nodes (i, j). 

 A walk is an ordered list of nodes 
1 t
i i  such that { }1,

k k
i i + Î  . A walk is 

a path if each of the i are distinct. A walk is a cycle if each of the 
11 t

i i
-

  

are distinct and 
1 t
i i= . A graph is connected if there is a path connecting 

every pair of nodes. 

 A network is acyclic if it contains no cycles. A network is a tree if it is 

connected and acyclic. 

 A network ( ),N ¢ ¢  is a subnetwork of ( ),N   if NN ¢ Ì  and ¢ Ì  . A 

sub-network ( ),N ¢ ¢  is a spanning tree if it is a tree and N N¢ = . 

 

The Minimum Cost Flow Problem 

 Let 

o fij denote the flow of some material along arc ( ),i j Î   

o bi denote the amount of flow that enters the network at node i NÎ . 

If bi > 0, the node is a source. If bi < 0, it is a sink. 

o mij and Mij denote the minimum and maximum flow possible along 

arc ( ),i j Î  . The special case of uncapacitated flows has 0
ij

m =  

and 
ij

M = ¥ . 

o cij be the cost of unit flow on arc ( ),i j Î   

Then the minimum cost flow problem is 

( ) ( )

( )

{ }( , )

: , : ,

,

m
i

i
m n

n T
A

A A

ij

ij ij
i j

ij ji i
j i j i

j

j

j

j

i i

i N A

m f M i

c f

b

A

f f

j

Î

Î Î

üïïï ìï ïï ïï ïï ïï

ì üï ïï ïí ýï ïï ïî
ï" Î  =ý íï ïï ï £ £ï ïï ïïîï£ £ " Î ïïïþ

þ
- =

å
å å

c f

f b

m f M

 

Where the vector f has dimensions   and the matrix A is given by 
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th

th

1  is the start node of  arc

1  is the end node of  arc

0 otherwise
ik

i k

A i k

ìïïïï= -íïïïïî

 

Thus, every column has exactly two nonzero entries – a 1 and a –1. 

 We now characterise basic solutions 

Definition (Spanning tree solution): A spanning tree 

solution f to the problem above is one that can be 

constructed as follows: 

 1. Pick a set T Ì   of n – 1 arcs that form a tree 

when their direction is ignored. 

 2. Partition the rest of the arcs into two disjoint 

subsets L and U. Set 

  
( , )

( , )
ij

ij
ij

m i j
f

M i

L

Uj

ìïï= í
Î
Îïïî

 

 3. Solve the flow equations for the remaining 

variables. This can be done by starting at the 

leaves of the tree and then working upwards. 
 

Theorem: A flow vector is a spanning tree solution if 

and only if it is a basic solution of the minimum cost 

flow problem. 
 

 We can also characterise our dual feasibility and complementary slackness 

conditions. Consider the Lagrangian for this problem 

( )

( )
( , ) :( , ) :( , )

( , )

,
ij ij i i ij ji

i j i j i j j j i

ij i j ij i i
i

N

Nj i

L c f b f f

c f b

l

l l l
Î Î Î Î

Î Î

æ ö÷ç ÷ç= - - + - ÷ç ÷÷çè ø
= - + +

å å å å

å å

f l
  



 

Minimizing over the allowed f gives the following conditions 

0 if

0 if

0 if

ij ij ij

ij ij i j ij ij

ij ij

m f M

c c f m

f M

l l

ìï= < <ïïï= - + > =íïï< =ïïî

 

We also note that 0
ij

c =  for every basic variable (ie: for every arc in T). 

We can therefore solve for the l  by setting 

( , )0
n i j ij

c i j Tl l l- = "= Î  
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In practice, we begin at the root note and set 0l =  there and we then 

proceed to find l  for every other node in the tree. 

 The network simplex algorithm then proceeds as follows: 

o Initiation: start with a feasible spanning tree solution. A simple 

way to do this is as follows: 

 If ¹m 0 , replace the problem with the following one 

( )A¢ = -Af b m  

In which =m 0 . 

 Reduce the problem to one with neither source nor sink, by 

adding a “master source” which feeds all the sources and a 

“master sink” which collects from all the sinks and then 

joining them to each other. 

 The solution =f 0  is then basic for that problem. 

o Compute the reduced costs for each arc 

ij ij i j
c c l l= - +  

o Termination test: If 

0 ( , )

0 ( , )ij

i j L

i U
c

j

³ " Î
£ " Î

ìïïíïïî
 

Then decreasing the cost would imply pushing the flow past 

allowed limits. Thus, the feasible solution is optimal. 

o Choose a variable to enter the basis: – in other words, choose an 

arc ( , )i j TÏ  such that 

0 (eithe , )

or 0 ( , )

r
ij

ij

i j L

c i j U

c £ Î
³ Î

 

This arc together with T will form a unique cycle. We’ll be pushing 

as much flow as possible round that cycle. 

o Update the basis: Push as much flow as possible round that cycle 

without exceeding the capacity of any arc. 

Effectively, the algorithm looks for negative-cost cycles and pushes as 

much flow around them as possible. 

 Note that: 

o The matrix A contains only entries of +1 or –1. The columns of the 

basis matrix AB can be re-ordered so that every element on the 
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diagonal is a +1 or –1. The determinant of the matrix is therefore 

+ 1, and by Crammer’s Rule, 1

B
A-  has integer entries. 

o 1

B
A-=f b , so if b contains integer entries, every basic solution has 

integer coordinates. 

o 1T

B B
A-= cl , and so provided c contains integer entires, every dual 

basic solution has integer coordinates. 

So for every network flow problem with integer data, every basic solution 

assigns an integer flow to every arc. 

 

Transportation & Assignment Problems 

 In a transportation problem, there are m suppliers of a good each with 

supply si, and n customers each with demand dj, such that 
i j

s då = å  

The cost of transport from supplier i to customer j is cij. Our problem is 

1 1

1 1

min

  

0 ,

m n

ij ij
i j

m

ij

n

ij i
ji

ij

j
j f s i

f i

c f

f

j

d

=

=

=

=

ì üï ïï ïí ýï ïï ïî þ

= " = "

³ "

åå

å å  

It is a special case of the minimum cost flow problem over a bipartite 

graph, in which the nodes divide into two disjoint sets of suppliers (S) 

and customers (C) and S CÌ ´ . 
 

Lemma: Every minimum cost flow problem is 

equivalent to a transportation problem. 
 

Proof: Transform the problem as described above to 

make =m 0  and < ¥M . Then 

 For every arc (i, j) in the original problem, 

construct a source node with supply Mij. 

 For every node, construct a sink node with 

demand 
:( , ) ik ik i k

M b
Î

-å 
 (which gives the 

absolute maximum that could come out of that 

node). 
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 Connect source node (i, j) to the sink nodes i and 

j with infinite upper bound of capacity, and with 

( , ),
0

i j i
c¢ =  and 

( , ),i j j ij
c c¢ = . 

There is then a 1-1 correspondence between optimal 

flows in the two problems, and the flows have the same 

cost.  

 The information contained in a transformation contained is often 

displayed in a specialised tableau: 

 
Each cell contains the amount of product flowing along that route, and 

the small insets contain the cost of flow among that route. 
 

The steps of the algorithm are then: 

o Calculate the l , by insisting that for any cell in the basis,  

i j ij
cl l- =  

(Remember to start with 
1

0
s

l =  ). 

o Calculate reduced costs for all empty cells 

ij ij i j
c c l l= - +  

o Termination: if all reduced costs are positive, we have reached an 

optimum. 

o Choose a single empty cell to enter the basis (usually the one with 

most negative reduced cost). 

o Find a cycle through which flow can be pushed. In terms of the 

tableau, the requirement for such a cycle is that 

 Consecutive cells are in the same column or row (but not 

necessarily adjacent). 

 No more than two cells per row or column 

  Customers   

  1 … n Supply  

1    s1 1s
l  

   
         

S
u
p
p
liers 

m    sm sm
l  

Demand d1 … dn   

  1c
l  … cn

l    
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 Every cell basic, except for the cell entering the basis 

We then increment our first cells by q+ , our second by q- , etc… 

The value of q  is determined by the largest basic cell from which 

we need to subtract some flow. 

 An assignment problem is a transportation problem in which the sources 

(people) all have b = 1, the sinks (tasks) all have b = –1 and the flows are 

restricted to be + 1. Replacing the integer constraint with 0 < fij < 1 

gives the LP-relaxation of the problem, and it is a feature of the spanning-

tree (simplex) algorithm that the result will also be an integer, and 

therefore also solve the integer problem. 

 

Maximum Flow Problems 

 Consider a network with a single source and sink node, upper bounds C 

on all the arcs, and m = 0.  The problem of finding the maximum flow 

through this network is 

{ }

:( , ) :( , )

max

if 1

if 

0 otherwise

0

ij ij
j i j j j

ij j

i

i

i

f f i n

f C

d

d
d

Î Î

ìï =ïïï

£

- = - =íïï
î
£

ïï

å å
 

 

This problem can be converted to a minimum cost flow problem by 

o Adding an arc (n, 1) to the network, with cost –1 and 

1 1
0,

n n
m M= = ¥ . 

o Setting the cost of all the other arcs in the network to 0 (but 

leaving capacities as they are). 

o Finding the minimum cost flow through the network 

Since the only arc with non-zero cost has negative cost, the algorithm will 

circulate as much flow as possible subject to capacity constraints. 

 For S NÌ , we define the capacity of the cut , \S N Sé ùê úë û  as 

( )
,

, \
ij

S j Si

C S N S C
Î Ï

= å  

Theorem (Max-flow min-cut): 

( )
: ,1

Max flow Min cut capacity min , \
S nS S

C S N Sd
Î Ï

= =  
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Proof: We first prove that value of any flow < 

capacity of any cut. We first define a function that 

calculates all the flow from one set to another 

( )
, :( , )

,
X j Y i

ij
ji

f X Y f
Î Î Î

= å


 

We then note that if 1 SÎ  and n SÏ , any flow is 

simply given by the net amount leaving S: 

( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )

( )

:( ) ( , )

,

:

,

,

, ,

, , \ \ , ,

, \ \ ,

, \

, \

ij ij
i j iS

ij
i S j S

ij
i S j

j j

S

j i

f f

f S N f N S

f S S f S N S f N S S

f S N S

f

C

C

f S S

f S N

S

S

N

S S

S

f N

d
Î Î Î

Î Ï

Î Ï

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
= -

=

£
=

£

+ -

=

=

-

-

å
å

å å å
 

 

 

For the second part of the proof, we develop the Ford-

Fulkerson Algorithm. Suppose fij is optimal, and 

recursively define S NÌ  as follows: 

 Start with 1 SÎ  

 If i SÎ  and 
ij ij
f C< , then j SÎ  

 If i SÎ  and 0
ji

f > , then j SÎ  

 Scan each node newly added to S, until every 

node has been scanned (or, for the purposes of 

this algorithm, until n has been reached). 

So S is simply the set of nodes to which we can increase 

flow. If n SÎ , then we have an augmenting path – we 

can increase the flow from 1 to n, and we do as much as 

we can. Otherwise, , \S N Sé ùê úë û  is a cut with 1 SÎ  and 

n SÏ . But if i SÎ , j SÏ , then we must have 
ij ij
f C= , 

0
ji

f =  (otherwise, more nodes would have been added 

to S by the procedure above). As such 

( ) ( ) ( ), \ \ , , \f S N S f N S S C S N Sd = - =  
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Thus, the maximum flow is indeed equal to the 

minimum cut. We also note that if the capacities and 

initial flow are all integers, then each step increases the 

flow by an integer amount. Thus, the algorithm will 

converge to an integer solution.  

 We can recast our maximum-flow problem in dual form: 

{ }1
:( , ) :( ,

1

)

min

0

0 0

n

ij ij
j i j j j i

ij ij n
f C

f

f f

f
Î Î

£ £

-

³

- =å å
 

 

The Lagrangian in its usual form (with dual variables 
i

l ) gives, for 

optimality on arc (n, 1): 

1 1 1
1 0 1

nn n
c l l l l= - - + =  = +  

On every other arc, the costs are 0, and 

1

0 if 0

0 if 
j i ij

j ij ij

f

f C

l l
l l

- > =
- < =

 

So 

1 if 

0 if \i N

i S

Si
l

Îìï
= í Î

ï
ïïî

 

 

 Critical path analysis – consider a project consisting of a number of jobs, 

where job i takes time 
i
t  to complete. We consider a graph with 

o A node for each project 

o An arc (i, j) if project i needs to be completed before job j. 

o A source node s and a sink node s ¢ , each of 0 duration. The source 

node connects to every project, and every project is connected to 

the sink node. 

Our problem is then 

{ }
( ,

mi

)

n

i

s s

j i

t t

t t i jt
¢ -

- ³ " Î 
 

With dual 
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( , )

:( , ) :( , )

max

1

1

0 otherwi

,

se

0 ( )

i ij
i j

ji ij
j j i j i j

ij

f

i s

f

i j

f i s

f

t
Î

Î Î

ì üï ïï ïí ýï ïï ïî þ
ìï =ïïï ¢- = - - =íïïïï

³ Î
î
"

å

å å



 



 

This is a minimum cost flow problem with arc costs 
i
t- . The path for 

which fij = 1 defines the critical path. 

 

Shortest Path Problems 

 Consider a network and choose a node n as a root node. Put a demand of 

1n -  at that node (ie: ( 1)
n

b n= - - ) and a supply of one unit on every 

other node. Let the cost of each arc be equal to its length. Solve the 

network flow problem. The shortest part from any node i to n is given by 

following the arcs of the spanning tree from i to n. If vi is the shortest 

distance from i to n these quantities are known as labels. Label-setting 

algorithms systematically determine their values in some order. Label-

correcting algorithms find their values through a sequence of iterations. 

 Consider the solution above, and suppose the 
i

l  are the optimal dual 

variables associated with the optimal spanning tree solution. On every arc 

through which fij > 0, we have 

i ij j
cl l= +  

Taking 0
n n

vl = =  (for the root node) and adding these equalities along 

a path from i to n, we conclude that 
i i

vl = . Furthermore, as 

11
1

n
bb -== = , the dual is 

1

1

(ax ,m )
n

ii
i

ji j
c i jl l l

-

=

ì üï ïï ïí ýï ïï ï
+

î þ
£ Îå   

It follows that if all the other l  are fixed, 
i

l  satisfies (with 0
n

l = ) 

{ }
:( , )
min 1, , 1

i ik kk i k
c i nl l

Î
= = -+ 


 

Intuitively, this means that if the shortest path from i to n contains node 

k, then the path from k to n should also be optimal. 
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The idea is that if we’re looking for a path from i to n, then we should 

choose the segment from (i, k) by minimizing over path lengths 
ik k

c l+ . 

This is known as dynamic programming. 

 The Bellman-Ford Algorithm – let ( )
i

v t  be the length of the shortest path 

from i to n which uses at most t arcs. ( ) 0
n

v t =  t"  and (0)
i

v = ¥  i n" ¹ . 

Then the label-correcting Bellman-Ford algorithm is defined by 

( ) { }
:( , )

1 min ) 1, ,( 1
i ik kk i k

v t c v t ni
Î

+ = -= + 


 

Note that ( )1 ( )
i i

t tv v£+ , because increasing the number of arcs we allow, 

we increase the possible paths. If there are no negative length cycles, there 

exists a shortest path which has at most n – 1 arcs. Thus, ( )1i i
v n v- = , 

and we cannot reduce the total length. Thus, if ( ) ( )1n n- =v v , we have 

found an optimal solution. 
 

The algorithm has running time O(mn) since there is a maximum of n 

iterations, and each iteration examines each arc once. 
 

We can book-keep the Bellman-Ford algorithm as follows: 

t v1(t) v2(t) … vn(t) 

0 +¥  +¥  +¥  0 

     0 

n    0 
     

t d1 d2 … dn 

1    – 

      

n     

At every step, update the v using the formula above. The d correspond to 

the latest successor of any given node (ie: the node that was used for the 

minimization in updated the v).  

 Dijkstra’s Algorithm is a lebel-setting algorithm; it can only be applied 

when all the arc lengths are positive. To each exposition, we suppose all 

arcs are present, setting 
ij

c = ¥  where no arc exists. 
 

Theorem: Suppose that 0
ij

c ³  for all i, j. Let n¹  be 

such that 
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min
nn ini

c c
¹

=  

Then 
n

v c=   and  
k

v v k n£ " ¹ . 
 

Proof: A path from node k to n has a last arc (i, n) 

whose length cin is at least 
n

c , so 
nk

v c³  . For node  , 

we also have 
n

v c£  , and so  
n k

v nc kv £ ¹= "  . 
 

Note that the proof relies heavily on the fact no arcs 

have negative cost.  
 

The algorithm them simply proceeds as follows: 

o Find a node n¹  such that 
inn

c c£  for all i n¹ . Set 
n

v c=  . 

o For every node ,i n¹  , set { }min ,
in in i n

c c c c= +   

o Remove node   from the graph, return to step 1 and apply those 

steps to the new graph. 

The algorithm has running time O(n2) since there are n iteration, each of 

which involves a comparison and update of arc lengths from each node. 

 Note that if vi is the shortest path length from node i to node n, then 

from Bellman’s equations, we have 

ii j j
c vv £ +  

This means that the quantities 0
ij ij j i

c c v v= + ³- . We can therefore 

construct a new problem in which the arc lengths 
ij

c  are replaced by 
ij

c . 
 

For such a problem, the length of any path from 
1
i  to 

t
i  is given by 

( )
1 1 1 1 1

1 1 1

1 1 1
t

t t t

i i i i i i i i i i
c c v v v v c

t t t t t t t t
t t t

+ + + +

- - -

= = =

= + - = - +å å å  

So the shortest path under the new arc lengths are the same as those 

under the original (possibly negative) arc lengths. We can now, if we wish, 

use Dijkstra’s algorithm. 
 

This transformation is useful when we wish to solve the all-pairs problem 

(ie: to find the shortest distance between all pairs of nodes). If we have 

negative arc lengths, we can first use the Bellman-Ford algorithm to 

obtain vi for a given root node and then apply Dijkstra’s algorithm to 

solve the problem with the n – 1 remaining root nodes using the 

transformed non-negative costs. 
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Assuming a dense graph, the BF algorithm runs in ( ) ( )3O nm O n»  and 

Dijkstra’s algorithm runs in ( )2O n , so this procedure runs in 

( ) ( ) ( ) ( )3 2 31O n n O n O n+ - =  

Which is much better than the ( )4O n  which we’d need if we applied the 

BF algorithm n times. 

 Consider a network ( ),N   with cost cij associated with arc ( , )i j Î  . The 

minimal spanning tree problem is concerned with finding a spanning tree 

of least cost through this network. We first prove a theorem: 
 

Theorem: Let U be some proper subset of N. If 

( )
, \

, argmin
U v N

v
u U

u
u v c

Î Î
=  

then there is a minimal cost spanning tree that includes 

(u, v) as an arc. 
 

Proof: Assume that T is a spanning tree that does not 

contain (u, v). Adding (u, v) to T produces a cycle. 

There must therefore be another arc ( ),u v¢ ¢  such that 

, \Nu U v U¢ Î¢ Î , or else there would be no way for the 

cycle to “return” to U. 
 

Now, imagine deleting ( ),u v¢ ¢  and replacing it with  

(u, v) to form a new spanning tree T ¢ . By assumption, 

uuv v
cc ¢ ¢£ , and so the cost of T ¢  is < the cost of T. 

Thus, T ¢  is also a minimal spanning tree, which 

contradicts our assumption that no minimal spanning 

tree contains (u, v).  
 

Prim’s greedy algorithm constructs a MST as follows: 

o Label the nodes { }1,2 ,,N n=   and set { }1U =  

o For the cheapest arc (u, v) connecting U and N\U. 

o Add v to U and repeat until U = N. 

Prim’s algorithm can easily be implemented on the matrix representation 

of a graph by crossing out rows corresponding to each vertex added to the 

spanning tree and choosing the smallest entry in any column 

corresponding to an already-added row. 
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The algorithm can be made to run in O(n2) provided that before each step, 

we already know the shortest distance between U and any j UÏ  [say 

min
Uj iUi j

c cÎ= ]. It then takes no more than n comparisons to find the best 

node to add to our tree. We can then find the shortest distance between 

{ }U U v¢ = +  and any j in \N U ¢  by evaluating { }min ,
U j vj Uj

c c c¢ = . Thus, 

the algorithm requires at most n comparisons, and takes n – 1 steps. 

 

The Travelling Salesman Problem (TSP) 

 Given an undirected graph ( ),G N=   consisting of n nodes and m arcs 

together with costs cij for each arc { },i j Î  , the travelling salesman 

problem (TSP) is to find a tour of minimum cost. 

 There are three types of algorithms 

o Exact algorithms are guaranteed to find an optimal solution but 

may take an exponential number of iterations. 

o Approximations algorithms have polynomial worse-case time 

complexity, supplying a suboptimal solution with a guaranteed 

bound on the degree of suboptimality. 

o Heuristic algorithms supply suboptimal solutions without any 

bound on their quality. They do not guarantee polynomial running 

times, but often provide a successful tradeoff between optimality 

and speed. 

 One exact method is to formulate the problem is an integer linear 

program and solve it using branch-and-bound. 
 

Set xij = 1 if { },i j Î   is present in the tour, 0 otherwise. Define 

{ }{ , }) ,( :i jS i S j Sd Î Î= Ï  

For a tour, there must be two arcs incident to every node, so 

( ){ , } { }

2
i

ij
i j

Nx i
dÎ

= Îå  

Furthermore, for any partition of the nodes into subsets S and N\S, there 

must be at least two edges connecting S and N\S, and so 

{ , } ( )

2  s.t.  and 
ij

i j S

x S N S S N
dÎ

³ " Ì ¹ Æ ¹å  

The so-called cutest formulation of the TSP is therefore 
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{ , }

min
ij ij

i j

c x
Î

ì üï ïï ïí ýï ïï ïî þ
å



 

Subject to the two constraints above and {0,1}
ij

x Î . 
 

Alternatively, the subtour elimination formulation of the TSP replaces the 

second constraint above by 

{ , }: ,

1  s.t.  and 
i

i j i j S
j

S S N Nx S S
Î

£ - " Ì ¹ Æ ¹å  

This ensures there is no cycle involved less than all n nodes. 
 

In both cases, we have an exponential number of constraints, because 

there are 2n – 2 possible subsets of N. It turns out that the LP relaxation 

of both problems has the same feasible set. 

 There is also a way to formulate this linear program with a polynomial 

number of constraints. First, we note that each node in the tour must 

have exactly one node preceding it and one node following it. Thus 

 
:( , )

1
ij

j i j

x i
Î

"=å


 (*) 

 
:( , )

1
ij

i i j

x j
Î

"=å


 (*) 

These constraints, however, do not ensure that the solutions to not consist 

of several sub-tours, each disconnected from each other. To prevent that, 

we require that if xij = 1, then tj = ti + 1 (where ti is the position of node i 

in the subtour). In fact, it turns out that the following works just as well: 

 ( )1 1 0, 1,
i ijj
t n x i j jt i³ + - - ³ ³ ¹  (*) 

To see why, consider a subtour that does not include node 0 and includes 

r nodes. Summing the inequalities above for all xij in this tour gives 0 > r, 

and so there can be no such smaller subtour. 
 

The TSP can therefore be formulated as an ILP in n2 + n variables and 

( )2 1n n n+ -  constraints. Namely: 

,

min
ij ij

i j

c x
ì üï ïï ïí ýï ïï ïî þ
å  

Subject to the three stared constraints above, { }0,1
ij

x Î , 
0

0t =  and 

{ }0,1, , 1
i

nt Î - . 

 Notice that by relaxing the sub-tours constraint, we are left with an 

assignment problem, which can efficiently be solved by the network 
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simplex to provide a lower bound on the optimal solution. We need not 

worry about integer constraints since the network simplex algorithm will 

find an optimal solution. 
 

If the said solution contains all cities, then it is optimal for the original 

TSP. Otherwise, we continue with a branch-and-bound using a branching 

rule that breaks the problem in two by an additional constraint of the 

form xij = 0 (ie: setting 
ij

c = ¥ ) – perhaps by choosing an arc in a 

subtour. 
 

This creates a new TSP whose solution will be a subset of the old one, 

and solve the corresponding assignment problem to find a lower bound on 

that branch. 

 We now move on to approximation algorithms 

Definition (approximation algorithm): An 

approximation algorithm for a minimization problem 

with optimal cost Zopt runs in polynomial time and 

returns a feasible solution cost cost Zapp such that 

( ) oapp pt
1Z Ze£ +  

 

We consider one such algorithm for 1e =  and with costs that satisfy the 

triangle inequality: 

, ,
jij ik k

c cc i j k£ + "  

The algorithm works as follows: 

o Suppose M is the cost of the minimal spanning tree (obtained using 

Prim’s algorithm). Consider any starting node and traverse the 

minimal spanning tree to visit all the nodes. This uses each arc 

exactly twice, with cost 2M. 

o This can be converted into a tour visiting all the nodes by skipping 

any intermediate node that has already been visited. By the 

triangle inequality, this will have cost bounded above by 2M. 

o Also, every tour contains a spanning tree (since dropping one arc 

leaves a spanning tree) and so has cost at least M. 

Thus, a straight-forward algorithm based on the MST gives 

oapp pt
2 2M ZZ £ £  

 Heuristic methods for the TSP include 
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o Nearest neighbour heuristic: start at some city and then visit the 

nearest city. Continue until the tour is complete. 
 

The results are usually bad, but can form a good starting point for 

local search methods. 

o Cheapest insertion heuristic: start with a single node and then, one 

by one, add the node whose insertion makes the smallest increase 

to the length of the tour. 

o Furthest insertion heuristic: insert the node whose minimal 

distance to the existing tour node is greatest. The idea is to 

determine the overall layout of the tour early on. 

o Savings heuristic: rank the arcs in ascending order of cost. Add the 

arcs in this order, so long as they do not violate any constraints, 

and until all cities have been visited. 

 We also consider the concept of a neighbourhood search. Consider the 

general problem 

{ }min ( )  s.t. c x x XÎ  

Suppose that for any point x XÎ  we have a set of neighbourhood points 

( )N x XÌ . The basic approach of local search is 

o Select some x XÎ  

o Evaluate c(x) 

o Pick some ( )y N xÎ  and evaluate ( )c y . If c(y) < c(x), select y as 

the new value for x and result to the previous step. If there is no 

such y, stop with solution x. 

We need to specify N(x) and which ( )y N xÎ  to choose. We might also 

choose the best ( )y N xÎ , or the best of a few tries, etc… Note also that 

simplex is a local search method which happens to lead to a global 

optimum because in linear programming, any local optimum is a local 

optimum. 
 

In the TSP, we can define a neighbour to a feasible solution x by 

removing any k > 2 arcs from the tour, and replacing them with k new 

ones. When k = 2, the method is known as 2OPT. It can be shown that 

3OPT gives better results than 2OPT, but going beyond 3 doesn’t gain 
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much. Choosing a greater neighbourhood gives a better solution, but 

makes N bigger and therefore results in a slower algorithm. 
 

In practice, we fix the neighbourhood size and repeat the algorithm 

starting at different optimal solutions. 

 Simulated annealing tries to prevent the algorithm getting stuck at a local 

optimum. It allows the algorithm to jump to worse neighbours originally 

but slowly becomes more reluctant to allow such jumps. 
 

A jump from x to ( )y N xÎ  can occur with probability 

( ) ( )
min 1,exp

xy

c y c x
p

T

æ öé ù- ÷ç ê ú÷ç= - ÷ç ê ú÷÷çè øë û
 

where T starts large and decreases at each iteration (a common schedule 

for T is to let it decrease with iteration number as ( ) / logT t C t= , with 

constant C). 
 

It can be shown that if C is sufficiently large, 

( )lim ( ) is optimal 1
t

P t
¥

=x  

 Finally, genetic algorithms can be used in a wide range of problems, but 

they can often get stuck at a minimum. They run as follows: 

o Initiate: Create a random initial state (ie: a set of tours). 

o Evaluate fitness of each item (eg: the length of the tour) 

o Reproduce: those fitter chromosomes are more likely to reproduce. 

For example, “greedy crossover” selects the first city of one parent, 

then the closest next city in either parents, etc… If both cities have 

already been chosen, choose another random one. 

o Mutate: randomly swap a pair of cities. 
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Game Theory 
 

Terminology 

 A move is either a decision by a player or the outcome of a chance event. 

 A game is a sequence of moves, some of whicsh may be simultaneous. 

 At the end of each game, each player receives a return (payoff). The 

payoff to each player is a real number. If a move has a random outcome, 

we use an expected payoff. 

 A strategy is a description of the decisions that a player will make at all 

possible situations that can arise in the game. 

 A game is zero-sum if the sum of the players’ payoffs is always 0. 

 A game has perfect information if at every move of the game, all players 

know all the moves that have already been made (including random 

moves). 

 

Two-Person, Zero-Sum Games 

 Introduction 

o Players I and II, each with a finite number of pure strategies 

(
1

I I
n

  for player I and 
1

II II
m

  for player II). 

o 
ij

e  denotes the payoff to player I when player I uses strategy Ii and 

player II uses strategy IIj. We also denote 
1 2
( , ) ( , )

ij
e i j e e i j= = -  

where e1 and e2 are the payoffs to player I and II. 

o The players can play a pure strategy or a mixed strategy. We say 

that player I adopts strategy p and player II adopts strategy q if 

( ) ( )Player I plays I Player II plays II
i i j j

p q= =   

In that case, the payoff to player I is 

( ) ( )1
1 1

, ,
n m

T
i ij j

i j

e e pe q e
= =

= = =ååp q p q p q  

The normal form representation of the game is simply the matrix ( )ij
e . 

 Maximin Criterion 

o Player II loses what player I wins. So if player I chooses strategy Ii, 

player II will play IIj resulting in the minimum gain to I. Player I 
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can therefore guarantee a gain of at least the lower value of the 

game 

maxmin
L iji j

v e=  

If player II choses IIj, then I will chose Ii that maximises eij. So II 

can ensure that it will note lose more than the upper value of the 

game 

minmax
U ijj i

v e=  

If vL = vU, then this is the solution of the game. 

o In a game with mixed strategies, these become 

maxmin ( , )M
L P Q

v e
Î Î

=
p q

p q   minmax ( , )M
U Q P

v e
Î Î

=
q p

p q  

(Where P and Q are the set of possible mixed strategies). 

Lemma: 
UL

v v£  
 

Proof: For  ,P Q" Î Îp q  

( , ) max ( , )

min ( , ) minmax ( , )
P

Q Q P

e e

e e
¢Î

Î Î¢Î

¢

¢

£

£
p

q pq

p q p q

p q p q
 

This holds for all PÎp , so we might as well choose the 

p that maximises the LHS: 

maxmin ( , ) minmax ( , )
M

P Q Q P
M
UL

v

e e

v
Î Î Î Î¢

¢£

£
q qp p

p q p q
 

  

 Further, the minimax theorem states that 

Theorem (minimax theorem): In a two-person zero-sum 

game where I and II have a finite number of strategies, 

( )* *

max min ( , ) minmax ( , )

,

M M

P Q QL UP
v e e v v

v e
Î Î Î Î

= = = =

=
p q q p

p q p q

p q
 

v is called the value of the game and together with the 

optimal strategies p* and q* is called the solution to the 

game. 

We also define 

Definition (equilibrium pairs): A set of strategies p* and 

q* are equilibrium pairs if for any PÎp  and QÎq  
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( ) ( ) ( )* * * *,, ,e ee £ £qq pp p q  

Two important theorems: 

Lemma: If ( ),p q  and ( ),¢ ¢p q  are equilibrium pairs then 

( ) ( ), ,e e ¢ ¢=p q p q  
 

Proof: We have that 

( ) ( ) ( )
( ) ( ) ( )

, ,,

, , ,

e e

e e

e

e

¢£ £¢

¢ ¢ ¢ ¢£ £

p q

p

p q p q

p q pq q
 

The result trivially follows  
 

Theorem: A pair of stragies ( )* *,p q  in a zero-sum game 

are an equilibrium pair if and only if ( )( )* * * *, , ,ep q p q  is 

a solution to the game. 
 

Proof: If ( )* *,p q  is an equilibrium pair, then the boxed 

statements hold: 

 
Taking the two extremes, these calculations imply that 

L

M

U

Mv v£ . But we know that 
U

M

L

Mv v£ , and so 

( )* *,M M

L U
v v e= = p q  

As such ( )( )* * * *, , ,ep q p q  is a solution to the game. 

 

Conversely, if ( )( )* * * *, , ,ep q p q  is a solution to the game, 

then the boxed statement holds, and for  ,P Q" Î Îp q : 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

*

* * *

* * *

*

,

, min ,

min , maxmin ,

maxmi

minmax ,

minmax , max ,

max

n ,

,

Q P

Q P P

P

Q

Q P Q
M
LQ

U

P

M

e

e

v e

e

e

e e

e

e

e

v

Î Î

Î Î Î

Î

Î

Î Î Î

Î Î

£

£

=

£

£

=

q

q

q p

q

q

p

p

q

p

q q

p q

p q p q

p q p q

p q

p q

p q p q

p q
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Taking the two extremes and the centre, we obtain 

( ) ( ) ( )* * * *,, ,e ee £ £qq pp p q  

So the points are equilibrium points.  

 Dominating strategies 

o If, whatever strategy II chooses, Ii will always result in a lesser or 

equal payoff than Ij, then Ij dominates Ii. Similarly vice-versa. 

o Dominated strategies can be ignored 

Lemma: If a dominated strategy is removed from a 

game, the solution of the reduced game is a solution of 

the original game. 
 

Proof: Suppose I2 dominates I1 and ( )* *, ,vp q  is a 

solution to the reduced game when I1 is removed. It is 

obvious that ( )*,e v³p q  for  Q" Îq . It is also obvious 

that 

 ( )*,  e v P ¢£ " Îp q p  (*) 

where P ¢  is the reduced set of mixed strategies, with 

1
0p = . We simply need to show that this is also true 

for PÎp , where P is the full set of mixed strategies. 
 

To do that, let ( )1 2 3
, , , ,

m
p p p p=p  . We then have 

( )

( )

* * * *

1 1
1 2 1

*

2

* *

1
1 2 1

,

,

m n

m n m

j i ij j
j

m

i j

T

j j i ij j
j i j

j

e e p e

p q pe q

q pe q

e e

= =

= = =

=

= = +

¢=+£

å åå

å åå

p q p q

p q
 

Where ( )1 2 3
0, , , ,

m
p p p p¢ = +p   is a strategy in the 

reduced game. We therefore have that 

( )
( )
( )

( )

*

* *

* *

* *

*

( , ) min ( , )

min ( , ) maxmin ( , )

maxmin ( , ) ,

,

, minmax ( , )

minmax ( , ) max ( , )

max ( , ) ,

M M

L

Q

Q P Q

P Q

Q P

Q P P

P

U

e e

e e

e e

v e v

e e

e e

e e

¢

¢ ¢ ¢

¢ ¢

¢ ¢

Î

Î Î Î

Î Î

Î Î

Î Î Î¢

¢Î

¢ ¢

¢=

¢ ¢ ¢

¢ ¢ =

= =

¢ ¢=

¢ ¢ ¢

¢

£

£

=

q

q p q

p q

q p

q p p

p

p q p q

p q p q

p q p q

p q

p q p q

p q p q

p q p q
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( ) ( )* *,,e e v¢£ £p qp q  

Where the last inequality follows from (*). Thus 

( )*,  e v P£ " Îp q p  

As required.  

o Strategies can also be dominated by mixed strategies, but those are 

harder to find. 

 Solving two-person zero-sum games 

o For 2 × m games, let player I play ( ),1p p= -p  

 Plot the payoff to I against p for all of II’s strategies. 

 At I’s optimal strategy, the lowest value of the payoff will 

be as high as it can be. This is the lowest intersection of 

two of those lines 

 One of these lines will have positive gradient, the other 

negative gradient. A combination of these two lines 

(=strategies) will have 0 gradient. This is the optimal 

strategy for II 

o For m × n games, we want to find vectors p* and q* such that 

( )* *,v e= p q  and 

 
Consider player II’s game: 

 His constraint is ( )*,e v£p q , which can be re-written as 

*

1

 
m

ij j
j

ve iq
=

£ "å  

 His objective is to make v as small as possible. 

His problem is therefore 

* *

11

*, 0,i 1m n :
m

j

m

j
j j ji

j

v e q v q q
= =

£ > =
ì üï ïï ïí ýï ïï ïî þ

å å  

The problem can be stated more simply by writing * /
j j

Q q v= : 

1 1

ma : 1x , 0
m m

j ij j
j j

j
QQ e Q

= =

£
ì üï ïï ïí ýï ïï ïî

³
þ

å å  

( ) ( )* *,, v ee £ £ pp q q

Constraint on player II’s 

optimal strategy 

Constraint on player I’s 

optimal strategy 
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We can then find our solution by noting that 
1

1m

j
j

Q
v=

=å  (this also 

automatically incorporates the last constraint). 
 

We can ensure that v > 0 by adding a constant amount c to every 

payoff, such that 
ij ij

e e c= + . This will not change the equilibrium 

pairs (it’s equivalent to II giving I a present c to play the game) 

and c can then be removed from the value of the solution to obtain 

the value of the original game. 

 

Now, consider the dual problem 

1 1

mi : 1n , 0
m n

j i iij
j i

PP Pe
= =

³
ì üï ïï ïí ýï ïï ïî

³
þ

å å  

If we interpret * /
i i

P p v= , we can re-write this as 

* *

11

*, 0,a 1m x :
n

i

n

i
j i ii

i

v e p v p p
= =

³ > =
ì üï ïï ïí ýï ïï ïî þ

å å  

Thus, the primal LP gives II’s solution, whereas the dual LP gives 

I’s solution. 

o For 2 × 2 games, let ( ),1p p= -p  and ( ),1q q= -q . The solution 

of the game can be found directly from the definition by solving the 

equations 

( ) ( )
* *

* *

, 0 , 0e e
p q= =

= =

¶ ¶
= =

¶ ¶p p p p
q q q q

p q p q  

 

Two-Person, Non-zero-Sum Games 

 Introduction 

o In non-zero sum games, we write the outcome as pairs, and the 

game is specified by two matrices; ( )1
,e p q  and ( )2

,e p q . 

o The players are no longer totally antagonistic to each other – they 

might both be happier with one outcome than with another. 

 Solution concepts – for non-zero-sum games, there is no longer an obvious 

solution concept. Here are two: 

o Maximin-Maximin pairs – each player considers his own game, and 

find his solution to the game. This results in two values for the 
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game, vI and vII, and it is not generally the case that the payoff 

when both players play their maximin strategies against each other 

is ( )I II
,v v . 

 

The minimax-minimax solution concept is generally not considered 

to be ideal, because it assumes that each player tries to maximise 

their own profit as well as minimize their opponent’s profit; these 

may be diametrically opposed objectives. 
 

o Equilibrium pairs – a pair of strategies * PÎp  and * QÎq  is an 

equilibrium pair if and only if for any PÎp  and QÎq  

( ) ( ) ( ) ( )* * * * *

1 1

*

1 2
,, , ,e e ee £ £p q p q pq qp  

There is an important theorem concerning equilibrium pairs: 

Theorem (Nash’s Theorem): Any two-person game 

(zero-sum or non-zero-sum) with a finite set of pure 

strategies has at least one equilibrium pair. 
 

Proof: Let { }( , ) : ,P QS Î= Îp p qq . S is then closed, 

convex and bounded. Also define 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 1

2 2

, max 0, I , ,

, max 0, , II ,

i i

j j

c e e

d e e

= -

= -

p q q p q

p q p p q
 

These are the quantities to be gained by playing a given 

pure strategy instead of the mixed strategy. Define2 

( ) ( )
( ) ( )

1 1

( , ) ( , )
, , ,

1 , 1 ,
f

æ ö÷ç + + ÷ç ÷¢ ¢ ç= = ÷ç ÷ç ÷+ + ÷çè ø

p c p q q d p q
p q p q

c p q d p q
 

f is continuous, and so by the Brouwer fixed point 

theorem, there exists a fixed point such that 

( ) ( )* * * *, ,f =p q p q  

We cannot have ( ) ( )* * *

1 1
, ,

i
e I e>q p q  for all i because 

that would imply the boxed statement below which 

leads to a contradiction: 

                                                 
2 Note that |x|1 = x1 + x2 + … is the L1-norm of x. 
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This means that we have at least one i for which 

( ) ( )* * *

1 1
, ,

i
e I e£q p q , and so at least one i for which 

( )* *, 0
i

c =p q  

Now, because ( )* *,p q  is a fixed point, we have that 

* *¢=p p , and choosing the value of i for which 

( )* *, 0
i

c =p q , we get 

( )* *

1

, 0
n

i
i

c
=

=å p q  

Since ci > 0, this means that ci = 0 for all i. As such, 

for all i 

( ) ( )*

1

**

1
,,

i
e e I³q qp  

And so 

( ) ( )*

1

* *

1
,,  ee P³ " Îp q pp q  

Similarly, we can show that ( ) ( )** *

2 2
, ,e e³ pp q q , and 

so the fixed point is an equilibrium pair.  

 

Finding equilibrium pairs is tricky, since the equations in the proof 

to Nash’s Theorem involve quadratics. For 2 × 2 games, a 

graphical method is useful: 

 Let ( ),1p p= -p  and ( ),1q q= -q . 

 For a particular q, find the p that maximises ( )1
,e p q . Plot 

these on a p–q graph. 

 For a particular p, find the q that maximises ( )2
,e p q , and 

plot that too. 

 The intersections of the two graphs above are the 

equilibrium points. 
 

( ) ( )

( ) ( )

( ) ( ) ( )

* * * *

1 1
1

* * * * *

1 1
1 1

* * * * * * * *

1 1 1
1 1

, ,

, ,

, , ,

n

i i
i

n n

i i i
i i

n n

i i
i i

e p e I

p e I p e

p e e p e

=

= =

= =

=

>

= =

å

å å

å å

p q q

q p q

p q p q p q
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 Cooperation – consider the following game 

1 2

1

2

II II

I (0,0) (1,1)

I (3,1) (1,3)

 

If I and II adopt strategies ( ),1p p= -p  and ( ),1q q= -q  respectively, 

( ) ( )1 2
, 2 3 1 , 2 2 3e q pq e pq p q= - + = - - +p q p q  

The payoff region for this game is as follows: 

 
If, however, we allow the players to cooperate, then they can decide to: 

o Play a strategy that leads to payoff ( )1 1
,u v  with probability a . 

o Play a strategy that leads to payoff ( )2 2
,u v  with probability 1 a- . 

The resulting payoff is 

( ) ( )( )1 1 2 2
, 1 ,u v u vb b+ -  

Thus, the payoff region R for the cooperative game is given by the convex 

hull of the region for the non-cooperative game; ie: the smallest convex 

region that covers the region for the non-cooperative game: 

 
The easiest way of obtaining this region is to draw the convex hull of 

points equivalent to each player adopting one pure strategy. 
 

Here randomisation is used to average over possible outcomes, each of 

which might be mixed strategies. 

1
e

2
e

( )1,3

( )3,1( )1,1

( )0,0

R

1
e

2
e

( )1,3

( )3,1
( )1,1

( )0,0



Operations Research Notes  Page 53 of 77 

  © Daniel Guetta, 2009/2010 

 Bargaining – once we move to a cooperative game, the problem of pre-

play negotiation comes to the fore. First, some definitions: 

Definition (Joint domination): A pair of payoffs (u, v) 

in a cooperative game is jointly dominated by ( ),u v¢ ¢  if 

uu ¢ ³  and vv ¢ ³  and ( ) ( ),,u v u v¢ ¹¢ . 
 

Definition (Pareto optimality): A pair of payoffs (u, v) 

is Pareto optimal if it is not jointly dominated. 
 

It is clear from the diagrams above that a point can 

only be Pareto optimal if it is on the edge of the payoff 

region. 
 

It is clear that the players of the game would only be interested in Pareto-

optimal payoffs. Furthermore, by simply failing to cooperate, each player 

can guarantee themselves a payoff of at least 

( ) ( )I 1 II 2
max min , maxmin ,

P Q Q P
v e v e

Î Î Î Î
= =

p q q p
p q p q  

respectively. Thus, we would expect the solution of the cooperative game 

to lie within the bargaining set (or negotiation set) B 

( ) ( ){ }I II
, , ,  Pareto, |  optimal in v v vB u v u u v R³ ³=  

How do the players choose amongst the members of B?3 Nash suggested 

that there is a special payoff ( )0 0
,u v RÎ  called the status-quo point which 

is the outcome if the participants cannot agree on the transaction. An 

arbitration procedure y  is then a map from that point to another point 

( )* *,u v RÎ  

( ) ( )* *

0 0
( , ), ,u v R u vy =  

Nash suggested that such a procedure should fulfil a number of properties: 
 

Definition (Nash Arbitration Procedure): A Nash 

Arbitration Procedure fulfils the following axioms: 

 1. Feasibility – ( )* *,u v RÎ  

                                                 
3 It is important to remember that we must not make inter-player comparison of payoffs, 

which are measured by their own utilities, not necessarily on the same scales. For example, it 

is not clear that I prefers (4, 1) to (1, 10) less than II prefers (1, 10) to (4, 1). 
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 2. At least as good as status quo – 
0

*u u³ , 
0

*v v³  

 3. Pareto optimality – If ( ),u v RÎ  and *u u³ , 

*v v³ , then ( ) ( )* *, ,u v u v= . 

 4. Symmetry – if R is symmetric, such that 

( ) ( ),, R u Ru vv Î  Î  and if 
0 0

u v= , then 

* *u v= . This assumes that the two players are 

roughly of the same size in power and skill in 

diplomacy. 

 5. Invariance under linear transformations – let R¢  

be obtained from R by the following linear 

transformation 

   , 0u au b v cv d a c¢ ¢= + = + >  

  then if 

   ( ) ( )* *

0 0
( , ), ,u v R u vy =   

  then 

   ( ) ( )* *

0 0
( , ), ,u v R u vy ¢ ¢ ¢ ¢ ¢=  

  This is simply a statement of the fact utilities are 

only defined uniquely up to a linear 

transformations, and we are forbidding 

interpersonal comparison of utilities 

 6. Independence of irrelevant alternatives – if R¢  is 

a subset of R, ( ) ( )* *

0 0
( , ), ,u v R u Rvy = ¢Î , then we 

must also have ( ) ( )* *

0 0
( , ), ,u v R u vy ¢ = . 

 

Axiom 6 is the more controversial. Consider the payoff region P1 with 

status-quo point (0, 0). Then (5, 50) seems a fair solution. Axiom 6 insists 

that if we cut the set of feasibly payoffs down to P2, (5, 50) must still be 

the arbitration solution; this seems very generous to the second player: 

 
Nash found a unique function y  that satisfied these bargaining axioms: 

1
e

2
e

( )0,0 ( )10,0

( )0,100

( )5,50

1
P

1
e

2
e

( )0,0 ( )10,0

( )5,50

2
P
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Theorem (Nash’s Arbitration Procedure): If there exists 

( ),u v RÎ  with 
0 0
,u u v v> >  then consider the function 

( ) ( )( )0 0
,f u v u u v v= - -  

defined over such points. Its maximum occurs at a 

unique point ( )* *,u v , and define 

( ) ( )* *

0 0
( , ), ,u v R u vy =  

If there are no points with 
0

u u>  and 
0

v v> , then 

simply try to maximise one of u and v as much as 

possible to get ( ) ( )* *

0 0
( , ), ,u v R u vy = . 

 

The arbitration function y  thus defined satisfies all the 

Nash bargaining axioms, and is the only one to do so. 
 

The maximin bargaining solution or Shapley solution is obtained by 

applying the Nash arbitration procedure to the status-quo point 

( ) ( )0 0 I II
, ,u v v v= . Consider the following game, with maximin-maximin 

solution ( )1,1 : 

 
The strategy is: 

o Make a diagram of the cooperative payoff region R 

o Plot the status-quo point ( ) ( )0 0 I II
, ,u v v v=  in that region 

o Find the negotiation set (the edges of R to the right and above the 

status-quo point that are also Pareto-optimal). In the case above, 

the negotiation set is shown in bold, and is  

( ){ }
( ){ }7

2

3, | 2 3 12,1

, | 2 8,3

uB u v u v

u v u v u

= + =

È = £+

£ £

£
 

1
e

2
e

( )0,1

( )0,4

( )4,0

( )3,2

( )1,1

( ) ( ) ( )
( ) ( ) ( )

1 2 3

1

11

II II II

I 2,1 3,2 0,4

I 0,1 4,0 2,1
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o The maximin bargaining solution must be in B, so simply maximise 

( ) ( )( )0 0
,f u v u u v v= - -  over that region. For each part of B, this 

involves 

 Substituting for u or v in f, using the equation of the line 

that forms that part of B 

 Maximising 

 Checking that the result lies in B. If not, the result is 

clearly at the edge of the line 

Finally, find the global maximum by comparing the maxima for 

each part of B. 

 

N-Person Games 

 The concept of a maximin-maximin pair seems far-fetched for an N-person 

game, because requiring each player to minimize each of his opponent’s 

payoffs can lead to ambiguities. The idea of an equilibrium pair, however, 

can easily be generalised 

Definition (equilibrium n-tuple): The n-tuple of 

strategies * *

1 2

*, , ,
n

p p p  where player i plays mixed 

strategy *

i
p  is an equilibrium n-tuple if for all other 

strategies 
1 2
, , ,

n
p p p , 

( ) ( )* * *

1

** *

2

*

1 2
, , , ,, , , ,, ,

ii i ni n
ee ³p p p ppp pp     

(An extension of Nash’s Theorem states that any finite n-person non-

cooperative game has at least one equilibrium n-tuple). 
 

N-person games without cooperation are hardly interesting; we simply 

have a large number of equilibrium n-tuples, and the problem reduces to 

deciding which one to adopt. We therefore focus on cooperative games. 

 In an N-person game, we might get cooperation between some but not all 

of the players – we need to examine what coalitions of players might form. 

A coalition S is a subset of { }1,2 ,,N N=  . The worse thing that could 

happen for a coalition is for the rest of the players to form a single 

opposing coalition N/S. We then have a two-person non-cooperative 

game, and we can define 
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Definition (characteristic function): The characteristic 

function of an n-person game assigns to each subset S of 

the players the maximum value ( )v S  that the coalition 

S can guarantee itself by coordinating the strategies of 

its members, no matter what the other players do: 

( ) ( )
/

max min ,
S N S

i
i

P Q
S

v S e
Î Î

Î

= å
qp

p q  

By definition, we take ( ) 0v Æ = . 
 

An important property of v is that it is superadditive 

( ) ( ) ( ) if v S v Tv T TS S³È + Ç = Æ  

(The condition requires that S and T be disjoint coalitions). 
 

In some cases, it doesn’t pay to form any coalition and v is additive; in 

other words, ( ) ( ) ( )v S S v TTS T vÈ =Ç = Æ  + . In such a case, 

( ) ( )1
{ }n

i
v N v i

=
= å , and the game is called inessential. 

 

This concept is most appropriate if the game is constant sum (ie: every 

outcome gives the same total payoff), because when N–S try to maximise 

their combined payoffs, they are indeed minimising the payoff to S. 

However, for other games, the characteristic function is often highly 

pessimistic, because in reality, N–S are not “out to get” S as badly as 

possible – they’re just trying to maximise their profit, which might not be 

the same thing. 
 

For example, consider the “oil game” in which: 

o Country 1 has oil it can use for transport, at a profit of a per barrel. 

o Country 2 can use it for manufacturing, at a profit of b per barrel. 

o Country 3 can use it for food production, at a profit of c per barrel. 

The characteristic function here is as follows: 

Coalition S v(S) Comment 

Æ  0 By definition 

{1} a 
If 2 and 3 form a coalition against 1, they 

cannot force him to sell the oil. 

{2},{3},{2,3} 0 
Because no coalition of buyers can make the 

seller sell them oil 

{1,2}  b Because 1 and 2 can use the oil at a profit b 
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per barrel (1 sells to 2) and 3 would have to 

pay at least b to get it 

{1,3},{1,2,3} c 
Since 1 and 3 can use 1’s oil at a profit of c 

per barrel. 

 

 Now that we have examined coalitions, we need to consider how to share 

out rewards amongst members of a coalition (which, in turn, determines 

which coalitions form). We call “reasonable” share-outs imputations 
 

Definition (imputation): An imputation in an n-person 

game with characteristic function v is a vector 

( )1 2
, , ,

n
x xx=x   satisfying 

( )
1

( )
n

i i
i

x v N x v i
=

= ³å  

We denote the set of all imputations in a game by E(v). 
 

The second condition says everyone must get as much as they could get if 

they played by themselves. The first condition is a Pareto optimality 

condition – the RHS is the most the players can get when they work 

together, so we must have 
1

( )n

i i
x v N

=
å £ . However, if the inequality was 

strict, then by working together they could always share out the rewards 

so that everyone got more. 
 

In an inessential game, there is only one imputation, but for essential 

games, there are lots. In the oil market game, for example 

( ) { }1 2 3 1 2 31 23
( , , ) : , , 0, 0E v x x x x x c x ax x x= + + ³ ³ ³=  

 

Consider two imputations x and y. We have ( )
i i

x v N yå = = å , and so y 

cannot be better than x for everyone. However it is possible that for a 

particular coalition, x is better than y for all its members. Indeed 

Definition (dominated imputation): For (, )E vÎx y , we 

say x dominates y over S (written 
S

>x y ) if 

    ( )
i i i

i S

x y i S x v S
Î

> " Î £å  

(The second condition requires that S has enough payoff to ensure its 

members x). 
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 It is reasonable to assume that only imputations in the core can persist in 

pre-game negotiations 

Definition (The Core): The core of a game v, denoted 

by ( )C v , is the set of imputations which are not 

dominated for any coalition. 
 

The following theorem characterises the core 
 

Theorem: A vector x is in the core if and only if 

( ) ( )
1

     
S

n

i i
i i

vx v N x S S N
Î=

³ " Ì=å å  

 

Proof: Putting { }S i=  for each { }i NÎ , we see that x 

is indeed an imputation. To show it is not dominated, 

suppose there is a coalition S for which 
i i

y x>  for all 

i SÎ . We then have 

( () )
i i i

i i iS S S

y vx S y v S
Î Î Î

> ³ >å å å  

But this violates the definition of a dominated 

imputation. So x must be un-dominated. 
 

Conversely, suppose x is in the core. Since it is an 

imputation, the first condition must hold. Now, imagine 

the second condition does not hold, and define 

( )
( ) ( ) ( )

1

2
\ { }

i S

i S i
S x v S

iN NS v v v S

e

e Ï

Î+ å =

+å = -
 

Then consider the vector 

( )
1

2
{ }

i

i

x i
y

v i i

S

S

e

e

ìï +ïï= íï + Ïî

Î

ïï
 

Now, it is clear that 

 ( )i
y v Nå = , from the definition of 

1
e  and 

2
e  

 ( )i
y v i³ , because x was itself an imputation, 

1
e  is positive since we assume the second 

equation in the Theorem doesn’t hold, and 
2
e  is 

positive by superadditivity 

Thus, y is an imputation. However, it is also true that 
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i i

y x>  for all i SÎ  

 ( )
i iS

y v S
Î

å = , from the definition of 
1
e . 

Thus, y dominates x, which contradicts x being in the 

core. Thus, the second equation in the Theorem must 

hold.  
 

Consider the “oil game” as an example. We found that the set of 

imputations is 

( ) { }1 2 3 1 2 31 23
( , , ) : , , 0, 0E v x x x x x c x ax x x= + + ³ ³ ³=  

We must apply the second requirement in the definition of the core to 

each possible coalition (to save space, I haven’t bothered to include the 

coalitions that lead to redundant results):  

Coalition S v(S) Requirement 

( )
i S i

x v S
Î

å ³  

 

{1,2}  b 1 2
x bx+ ³  (1) 

{1,3} c 1 3
x cx+ ³  (2) 

From the definition of 

E(v) 1 2 3
cx x x+ + =  (3) 

We first note that (2) and (3) imply x2 = 0, which gives x1 + x3 = c. (1) 

then gives x1 > b, and so we’re left with 

( ) ( ){ }, 0, :C v c b caa a= - £ £  

We can interpret this as follows: 1 and 3 form a coalition, and 1 sells oil 

to 3 at a price that is at least b (or else 1 would be better off selling to 2) 

and no more than c (otherwise, there’s no reason 3 should buy it). 

 The main problem with the core is that it often does not exist. The 

nucleolus is an alternative solution concept, that seeks to make the most 

unhappy coalition under it happier than the most unhappy coalition under 

any other imputation. 
 

We define ( ) i iS
x S x

Î
= å , which means that ( ) ( )v S x S-  is a measure of 

how unhappy the coalition S is with the imputation x. We then define 

( )xq  to be the vector of 2n values, arranged in decreasing order, of 

( ) ( )v S x S-  as S varies across possible coalitions (including Æ  and N). 

Definition (The Nucleolus): The nucleolus of a game v, 

denoted by N(v), is given by 
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{ }( ) : ( ) ( )  ( )( ) E v EN v v<= Î " Îx x y yq q  

Where by ( ) ( )<x yq q , we mean that either 

1 1
( ) ( )<x yq q  or ( ) ( )

k k
=x yq q  for 1,2, , 1ik = -  and 

( ) ( )
i i
<x yq q . 

It can be shown that the core exists, and is unique. Furthermore, the 

nucleolus lies within the core, provided it is non-empty, because: 

o For any ( )x C vÎ , ( ) ( ) 0v S x S £-  for all S, so all the entries in 

( )xq  are 0 or negative. 

o This means that this will also be the case for the nucleolus. 

o However, all imputations that give ( )xq  will all entries 0 or 

negative must be in the core. Thus, the nucleolus is in the core. 
 

Consider the oil-market game again. In finding the nucleolus, we only 

need consider imputations in the core ( ) ( ){ }, 0, :C v c b caa a= - £ £ . 

We need to compute ( ) ( )v S x S-  for each possible coalition (to save space, 

I haven’t bothered to include coalitions that lead to redundant results) 

Coalition S v(S) v(S) – x(S) 

{1,2}  b b a-  

{3}  0 ca-  

These two components are candidates for the largest nonzero unhappiness. 

We need the largest of the two to be as small as possible. This occurs 

when they are equal; ( )1
2

b bc ca a a == - +- . So the nucleolus is 

( )1 1
2 2
( ),0, ( )c b c b+ - . 

 We might also look at what each player could reasonably expect to get. 

Shapley’s Axioms: Player i’s expectation of what he 

could reasonably get from a game with characteristic 

function v, denoted ( )
i
vf , should satisfy 

 1. ( )
i
vf  should be independent of the way we label 

players. If p  is an operation representing a 

permutation of the labels, then ( )( )
( )

i i
v vpf p f= . 

 2. The sum of the expectations should equal the 

maximum available from the game 

   
1

( ) ( )n

i i
v v Nf

=
å =  
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 3. If u and v are the characteristic functions of two 

games, u + v is the characteristic function of 

playing both he game together, and f  should 

satisfy: 

   ( ) ( ) ( )i i i
u v u vf f f+ = +  

 

The third of these axioms, especially, is decidedly odd. Nevertheless: 
 

Theorem (Shapley): The only function that satisfies 

Shapley’s axioms is given by the Shapley values 

( ) ( ) ( ) ( )( )
:

1 ! !
( ) \ { }

!i
S Si

S n S
v v S v S i

n
f

Î

- -
= -å  

(The summation is over all coalitions that contain the 

player i). 
 

This expression can be interpreted rather neatly by assuming that players 

arrive in the game randomly. We then have the following: 

o ( ) ( )\{ }v S v S i-  is the extra amount i brings to the coalition S 

when he arrives. 

o ( ) ( )1 ! !S n S- -  is the total number of ways |S| – 1 players could 

have arrived before him, and n – |S| will be able to arrive after. 

o n! is the total number of ways players could actually arrive 

Thus, we simply find the total amount player i brings to every possible 

coalition he could join, weighed by the probability he will indeed join that 

coalition. 
 

This is another solution concept. Note, however, that it results in an 

imputation that is not necessarily in the core. 

 

Market Games 

 Consider a world with two commodities – A and B, say – and that there 

are M A-traders and N B-traders. We assume that a trader with a units of 

A and b units of B has utility ( ),
i

u a b , and we assume this function is 

concave, to factor in the fact that ever trader prefers some combination of 

the two commodities rather than either of the two extremes: 



Operations Research Notes  Page 63 of 77 

  © Daniel Guetta, 2009/2010 

( ) ( ) ( )2 2 2 21 1 1 1
(1 )( , )( , ) , (1 ) ,

i i i
a b u a aba bu b ul ll l- -³ ++  

For simplicity, we also assume every trader has the same u, so we drop 

the subscript i, and we assume that each trader starts with a or b units of 

A or B respectively. 
 

Now, consider a coalition of sA A-traders and sB B-traders. The worse the 

other players could do is not trade with them. As such, the amount of A 

and B they have is constrained by 

A B A B

A B
1 1

s s s s

i i
i i

x s a y s b
+ +

= =

= =å å  

They want to maximise their profits within that constraint, so 

( ) ( )
1A

A

B B B

B

1 , , , ,,
1

max ,
s s s s

s

x y i ix y

s

i

v S u x y
+ +

+

=

= å
 

 

Furthermore, by concavity of (, )u ⋅ ⋅ , we have that 

( ) ( )

( ) ( )
A B

1 2
1 1 2 2

1 2

A B
A B

A B A1 B

2 ,
2

, ,

,

2

,
s s

i i
i

u x y u x y

u x y

x x y y
u

s s
s s u a b

s s s s

+

=

æ ö+ + ÷ç ÷ç£ ÷ç ÷÷çè ø
æ ö÷ç ÷ç £ + ÷ç ÷÷ç +è ø

+

+å
 

This implies, however, that the maximum of the LHS is given by the RHS 

( ) ( ) A B
A B

A B A B

,
s s

s s u a b
s s s

v
s

S
æ ö÷ç ÷ç+ ÷ç ÷÷ç + +è ø

=  

 Consider a [1, N] market game, in which trader A is a monopolist. We 

suspect that he can charge as high a price as he wants, provided it’s still 

worth the other’s time to trade. We can prove this by showing that the 

imputation corresponding to the following description is in the core: 

o Each B-trader having a payoff of at least ( )0,u b , which is what 

they had originally. 

o The A-trader having a payoff of ( ) ( )0,v S Nu b- , which is the most 

that can be gained by the coalition, minus what the B-traders get. 

In fact: 

Theorem: The imputation 

( ) ( ) ( )* ( 1) , 0, , 0, ,
1 1

, 0,
a Nb

N u bu Nu b u b
N N

æ öæ ö ÷ç ÷ç ÷÷ç= + -ç ÷÷ç ç ÷÷ç ÷ç + +è øè ø
x 

lies in the core. 
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Proof: When S does not include 1, it is trivial that 

( )*

i iS
x v SÎå = . When {1} { }S K= È , where K is some 

k of the B-traders, we need to show that 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

1

1 1 ,,
1 1

1 0, 1 ,

0,
1 1

,
1 1 11

i
Kk

v S

a kb
N k u

k k

a kb
N N k

x x

a Nb
u N k u b

N N

a Nb
u

N N
u b k

k k

Î

³

æ ö÷ç ÷+ ³ + ç ÷ç

+

æ ö÷ç ÷- -ç ÷ç ÷ç + +è ø
æ ö÷ç ÷ç ÷ç ÷ç +

÷ç + +è ø
æ ö÷ç ÷+ ³ - + + ç ÷ç ÷ç +ø + ø+è è

å

the last statement holds by the concavity of u, which 

states that the best way to maximise the utility of  

N + 1 people is to ensure that they all get the same. 

Thus, *x  is indeed in the core.  

 Thus far, we’ve looked at something akin to bartering – the two types of 

traders swap goods. Often, however, we need to consider competition 

among a few firms who are producing the same or closely related products. 

These are akin to ,Mé ù¥ê úë û  games; the first type of trader is a producing 

firm, and the second is the consumers, who have money they wish to 

exchange for the product (when M = 2, we call the situation duopoly. 

Otherwise, we call it oligopoly). 
 

There are so many consumers that we no longer consider them as 

individuals, and represent their requirements by one utility function 

( )2 21 1
, , ,, , , ,

M M
p q qp qu p   ; the idea is that they are given the prices pi 

and choose quantities qi. This reduces to a set of price-demand equations 

which connect the demand qi for firm i’s product with the announced 

prices 

( )1
,,

i Mi
q p pf=   

Firm i’s utility is given by its profit 

( ) ( )1
,,

Mi i i i i
e p p qp c q= -  

Where ci is the production cost function for firm i. 
 

As an example, consider a duopoly with ( ) ( )1 1 2 2
0c q c q= =  in which the 

price-demand functions are 

( ) { }
( ) { }

1 1
1 1 1 2 2 13 2

1 1
2 2 1 2

2
1 23

1
2 121 24 2

, max 1 ,0 0 2

0 2, max 1 ,0

q f p p p p

q

p

f p p p p

p

p p

 £ £ +



= = + -

£+ += = - £
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Where the constraints above are necessary to ensure that we can write 

( )
( )

21 1
1 1 2 1 1 1 1 2 13 2

21 1
2 1 2 2 2 2 1 2 24 2

, 0

, 0

e p p p q p p p p

e p p p q p p p p

= - = + -

= - = + -
 

Once we have these equations, we simply need to solve d / d 0
i i

e p = . 
 

Thus far, we can illustrate our feasible region as follows: 

 
 We define the following 

Definition (Cournot Equilibrium): A Cournot 

equilibrium is a vector of prices pc so that for every 

firm , ,1i M=  : 

( ) ( )1 1
, , ,m ,, ,ax

i

c c

i i

c c

M i Mp
p p pe p e p=    

 

Effectively, cp  is an equilibrium n-tuple in an n-person non-coorperative 

game of price competition. Since there is an infinite number of pure 

strategies, we cannot appeal to Nash’s Theorem, but it can be shown that 

under reasonable conditions, a Cournot equilibrium always exists. 
 

Each of the e must be maximised with every other variable held fixed. So 

effectively, we need d / d 0
i i

e p = . 
 

In our particular example, solving 
1 1 2 2
/ / 0e p e p¶ ¶ = ¶ ¶ =  gives 

( ) ( )1 1
1 1 2 2 2 2 1 12 4

1 1p g p p p g p p= = + = = +  

The intersection of those two curves gives the Cournot equilibrium: 

1
p

2
p

1 2 3 4 5

1

2

3

4

5

1
2 12

2p p= +

2
1 23

2p p= +

Zero profit for 1 

Zero profit for 2 
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 However, we note that if firm 1 were to announce its price p1 first, firm 2 

would simply choose ( )2 2 1
p g p= . Realising this, firm 1 would simply 

choose a price p1 to maximise ( )( )1 1 2 1
,e p g p . 

 

Stackleberg introduced this kind of strategy, where firm 1 is the leader 

and firm 2 is the follower. 
 

There are three kinds of Stackleberg strategies 

o If 1 was the leader, it would choose p1 to maximize 

( )( ) ( ) 21 1 1
1 1 2 1 1 1 1 12 4 2

, 1e p g p p p p p= + + -  

We call this solution S1. 

o If 2 was the leader, we would obtain a similar expression and a 

solution S2. 

o The last obtain is for both plays to play as if they were leaders. So 

1 would play p1 to maximize ( )( )1 1 2 1
,e p g p  and 2 would play p2 to 

maximize ( )( )2 1 2 2
,e g p p . The would then get a solution S 

It is informative to plot these strategies together with the associated 

profits (points not accurately plotted, to highlight differences): 

1
p

2
p

1 2 3 4 5

1

2

3

4

5

( )1 1 2
p g p=

( )2 2 1
p g p=

Cournot equilibrium 
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It turns out that the leader does improve over its Cournot equilibrium 

using this technique, but not as much as the follower. If, however, both 

firms simply choose their “leader price”, then they each achieve an 

“intermediate” profit. 

 We can, instead, think of duopoly as a cooperative game. In that case, we 

might wonder what the negotiation set is. This can be done in two steps: 

o Find the maximin values: 

( )
1 2

1 1 1 2
max min ,

p p
M e p p=  ( )

2 1
2 2 1 2

max min ,
p p

M e p p=  

In this case, these are somewhat obvious. 

o Find all Pareto optimal prices; this is, price vectors ( )* *

1 2
,p p  such 

that there are no other ( )1 2
,p p  such that 

( ) ( )* *

1 21 2
, 1,, 2

ii
e p p e i³ =p p  

This can be done by solving the non-linear program 

( ){ } ( ) ( )1 1 2 2 1 2 1 2
 andmax , s.t. ,  ,  feasiblee p p pp c pe p ³  

for every value of c. 

The negotiation set consists of these bold lines: 

 1
p

2
p

( )2 1 2
,e p p

( )1 1 2
,e p p

1
M

2
M

JJ

1
p

2
p

1 2 3 4 5

1

2

3

4

5

2
S

1
S

S

( )2 1 2
,e p p

( )1 1 2
,e p p

C 2
S

1
S S
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One point of the negotiation set that if oft quoted in economic theory is 

the joint maximisation of profit, used as a benchmark to measure the 

possible collusion between the firms. The two firms choose their prices so 

as to maximise 

( ) ( )1 1 2 1 1 2
, ,e p p e p p+  

This is, in fact, none other than the characteristic function ( ){1,2}v . 

 

Evolutionary Games 

 Suppose than some individual uses a (behavioural) strategy x from some 

set of possible strategies, and that on meeting an individual that uses y, 

the payoff is ( ),e x y  to the first individual. No rational thought is 

involved in choose x – instead, the individual whose gene make it use 

strategy x will have offspring with the same gene. If payoffs from strategy 

x are high, then it will produce more offspring using strategy x. 

 Suppose that changes to a strategy arise through a mutation. We look for 

equilibrium point – strategies whose fitness is greater than that of any 

mutant strategy that could arise: 

Definition (Evolutionary stable strategy): Let X be the 

set of strategies. A strategy * XÎx  is an evolutionary 

stable strategy (ESS) if for every *,XÎ ¹y y x  

 ( ) ( )*, ,e e>x x y x  (*) 

where ( ) *1 e e= - +x x y  for sufficiently small 0e > . 
 

Let’s work this definition into a more user-friendly form. First, expand (*) 

( ) ( ) ( ) ( ) ( ) ( )* * * *1 , , 1 , ,e e e ee e e e- + > - +x x x y y x y y  

For (*) to hold, we therefore certainly need ( ) ( )* * *, ,e e³x x y x . If the 

inequality is strict, then (*) will hold for sufficiently small e . If not, we 

also need ( ) ( )*, ,e e>x y y y . This leads to an alternative definition: 
 

Definition (Evolutionary stable strategy): A strategy 
* XÎx  is an ESS if for every *,XÎ ¹y y x  

( ) ( )* **, ,ee > yx xx  

or 
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( ) ( ) ( ) ( )* * **,   and  , , ,ee e e= >x x x yy yx y  
 

An ESS is like a two-person non-zero-sum game. If x* is an ESS, then 

( )* *,x x  is an equilibrium pair for the game. But not every equilibrium 

pair is an ESS. 

 Finding pure ESSs is simple. 
 

In terms of finding mixed ESS, consider a 2 × 2 game  with non-trivial 

payoff matrix 

a b

c d

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
 

Suppose ( ),1x x= -x  is a mixed ESS strategy.  
 

Lemma: For any mixed ESS x 

( ) ( ) { }, : 0,
ii

e iI e i x" Î= >x x x  

 

Proof: We have 

( ) ( ), ,
i i

e x e I=åx x x  

But since x is an ESS, we also have 

( ) ( ), ,
i

e Ie ³x x x  

But since 1
i

xå = , then for every xi > 0 we must have 

( ) ( ), ,
i

e Ie =x x x  

This proves the lemma.  
 

Remark: this implies that there can be no pure ESS 

strategies, or else we would require ( ) ( ), ,
i

e I e>x x x . 
 

Thus, in the case above, we have ( ) ( )1 2
, ,e I e I=x x , and so we simply need 

to set 

( ) ( )1 1ax b x cx d x

b d
x

b c a d

+ - = + -

-
=

+ - -

 

Since x involves all the pure strategies, we have that for this x, 

( ) ( ), ,e e=x x p x  for all p. Thus, we need ( ) ( ), ,e e>x q q q  for all q. To 

show this is the case, note that 

( ) ( ), ( )e d c d q p b d a d b c qé ù= + - + - + + - -ê úë ûp q  
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Consider: 

o If q > x, the bit in square brackets is negative and e increases as p 

decreases. Thus, ( ) ( ), ,e e>x q q q  because x q< . 

o If q < x, the exact opposite is true 

Thus, all 2 × 2 games that are non-trivial (ie: ( ( , ), )a b a c¹ ), there is at 

least one ESS strategy. 

 

Auctions 

 Introduction 

o In a private value model, each bidder knows the value he places on 

the item, but doesn’t know the value placed by other bidders. In a 

common value model, the item’s actual value is the same to all 

bidders, but they have different a priori information about that 

value (eg: a jar of coins). 

o Auctions can be oral or written (bidders submit closed sealed bids 

in writing) 

o The symmetric independent private values model (SPIV) concerns 

the auction of a single item with 

 Risk neutral seller and bidders 

 Each bidder knowing his own valuation of the item, which 

he keeps secret. 

 The valuations modelled as IID random variables. 

o Types of auctions: 

 English auction – bids increase in small increments until 

one bidder remains. Equivalent to the second price sealed-

bid (or Vickrey) auction – winner pays the second highest 

bid. 

 Dutch auction – price decreases continuously until some 

bidder calls stop. Equivalent to first price sealed bid – 

winner pays the bid 

 All pay sealed-bid auction – highest bidder wins, but all 

pay their bids. 

 The Revenue Equivalence Theorem 
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Regret Minimization 

 This section is concerned with a situation in which we repeatedly have to 

make decisions in an uncertain environment. We would like to develop 

algorithms that allow us to play the game with the guarantee that against 

any opponent, we will perform nearly as well as the best fixed action in 

hindsight. 

 Model 

o N available actions { }, ,1X N=   

o At each time step t, an algorithm H selects a distribution  

{ }: 1 ,,t t

i
p i N= =p   

over the n actions and receives information 

{ }: 1 ,,t t

i
i N= =    

and experiences a loss 

1

N
t t t

H i i
i

p
=

= å   

For the sake of simplicity, we will assume that { }0,1t

i
Î  

o The loss of action i by time T is 

1

T
T T

i i
i

L
=

= å   

and the loss of the algorithm by that time is 

1

T
T t

H H
t

L
=

= å   

o Now, insight, the best fixed action will be the one that gives us the 

smallest L. In other words 

min
minT T

ii
L L=  

And defined the external regret of the algorithm H by4 

min

T T

T H
R L L= -  

 We first consider a greedy algorithm which proceeds as follows 

                                                 
4 More generally, the minimum in LT can be taken over a set that does not simply consist of 

all the individual actions; it could consist of various mixed strategies. 
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Greedy Algorithm: The greedy algorithm chooses the 

action which, thus far, has incurred minimum loss: 

 1. Originally, play x1 = 1 

 2. At time t, play 1 1argmint t t
i

i

L Sx - -Î = . If 1tS -  

contains more than one item, choose the one with 

the lowest index 
 

Theorem: The greedy algorithm always has loses which 

satisfy 

( )greedy min
1T TNLL N£ + -  

 

Proof: Consider the set S. At step t, the algorithm 

picks one member of S. A number of things can happen: 

 The algorithm chooses a winning action. The 

action stays in the set, and 
greedy min

t tL L-  doesn’t 

increase. 

 The algorithm chooses a losing action from a 

choice of several. The action leaves the set S, 

and 
greedy min

t tL L-  increases by 1. This can occur a 

maximum of N – 1 times, because the maximum 

size of S is N, and the set needs to be populated 

by more than 1 item for there to have been a 

choice. 

 The algorithm chooses a losing action, but it is 

the only one left in S. 
min

tL  then increases, and 

greedy min

t tL L-  doesn’t increase. 

Clearly, therefore, every time 
min

tL  increases by 1, 

greedy min

t tL L-  might have increased by as much as N – 1 

(or less, if the size of S did not start at N). Thus 

( )( )greedy min min
1 1t t tL L N L- - +£  

(we use 
min

1tL +  because the algorithm may be “in 

between updates” of 
min

tL ). The result follows.  
 

This theorem only imposes a weak limit. 
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 We next consider a randomized weighed majority algorithm which 

proceeds as follows 

Randomized weighed majority algorithm: 

 1. Originally, set 1 11,
i

w w N= =  and play action i 

with probability / 1/t t t

i i
p w w N= = . 

 2. At time t, let 

   
( )1 1

1

1
1

1

0

t t
t i i

t ti
i i

w
w

w
h

h- -

-

ìï - =ïï= íï =ïïî 



 

  and 

   t t

i
w w=å  

  Then play i with probability 

   /t t t

i i
p w w=  

 

Effectively, we are giving each action a weight ( )1
T
iLT

i
w h= -  and 

weighing probabilities proportional to the weights. 
 

Theorem: For 1
2

h £ , the RWM algorithm has losses 

which satisfy 

( )RMW min

ln
1T T N

L Lh
h

£ + +  

With { }ln 1
2

min ,N
T

h =  yields 

RMW min
2 lnT TL L T N£ +  

 

Proof: Our strategy will first be to show that any time 

the algorithm has a large loss, w must drop 

substantially. We then use the fact that 

( ) ( ) min11 max max 1 1
T T
iLT LT

ii i
ww h h+ +³ = - = -  

To achieve our bound on Lmin 
 

So, let’s begin by noting that the expected loss of the 

RWM at time t is 

RMW
1  is losing

action

t tN
t ti i

it t
i i

w w

w w=

= =å å   
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We also note that each losing action will have its 

weight multiplied by ( )1 h- . We find, therefore, that 

( )

1

 was losing
action

 was losing
action

RMW

RMW
1

t

i

t
t i

t

t t

i

t

t

i

t

t

tt

w

w
w

w

w

w

w w

w

w

h

h

h

h

+ = -

= -

= -

= -

å

å





 

We have thus shown that when the algorithm incurs a 

large loss, w drops significantly. 
 

Now, since 1w N= , we can write 

( )RMW

1

1

1
T

T

t

tw N h+

=

= -   

but we know that ( ) min 11
T

TL
wh +- £ . And so 

( ) ( )min

RMW
1

1 1
T

t

L t
T

Nh h
=

-- £    

Taking logarithms 

( ) ( )min R
1

MW
lln 1ln n1T t

T

t

L Nh h
=

- £ + -å   

We can now use the inequality ( )ln 1 zz- £-  

( )min RM
1

W

RMW

ln 1 ln

ln

T

t

T t

T

NL

N L

h h

h
=

- £

£ -

-å 
 

As such 

( )
RMW min

ln 1 lnT T N
L L

h

h h

- -
£ +  

We can now use the fact that ( ) 2ln 1 z z z- £ +-  for 

1
2

0,z é ùÎ ê úë û  

( )RMW min

ln
1T T N

L Lh
h

£ + +  

As expected. 
 

Now, let { }ln 1
2

min ,N
T

h = . Imagine (ln )/N Th =  

RMW min min

ln
lnT T T N

L L L T N
T

£ + +  
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But 
min

TL T£  (since the maximum an action can lose at 

each time step is 1), and so 

RMW min
2 lnT TL L T N£ +  

We need to ensure that 1
2

[0, ]h Î  for the inequality 

2log(1 )z z z- £- +  to hold; thus, if ln 1
2

N
T

³ , we 

simply set 1
2

h = .  

 

As such, we find that for the right choice of h  

RMW RMW min 0
T T T

T

R L L

T T ¥

-
= ¾¾¾¾  

It turns out that there is an analogous algorithm for losses 0,1t

i
é ùÎ ê úë û . 

 Consider, now, the relationship this has to game theory. Consider a two-

person zero-sum game in which player I has strategies 
I

1, ,N  and player 

II has strategies 
II

1, ,N . We assume the game has a loss matrix for 

player I of 
ij

S  (this is equal to 
ij

e-  in our previous notation). We then 

have 

( )
I II

1 1

,
N N

T
i ij j

i i

S p S q S
= =

= =ååp q p q  

Now, let 

( )
( )

I

II

minmax ,

max min ,

v S

v S

=

- =
p q

q p

p q

p q
 

We know that 
I II

vv- £  from before 

 Now, imagine { }I,II  plays algorithm 
{I,II}

H  which plays { , }t tp q  at time t. 

We clearly have that 

( )
( )

I

II

,

,

t t t

H

t t t
H

S

S

=

= -

p q

p q




 

We show that 

Theorem: 

II

I II I

I II

T

T

H

T

T
H

v T R

L vT R

L £- +

£- +
 

 

Proof: Let 

1

tT
j

j
t

q
q

T=

= å  
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There exists an *i  such that 

*

T

i ij
SS

·
£ "pq q p  

(This just means that we can choose the i for which 

*i
S

·
q  is smallest; clearly, the result will be smaller than 

a linear combination of this *i
S

·
q  and other 

?
S ·q ). 

 

We further note that 

*

TT

i i
i

LL
S

T T
S·=  £ "p qq p  

Now 

I
*min I

T T T

iH I
L L R L R+£ £ +  

And so 

I
* I

I

I

II

min

maxmin

T

I

H i

T
L R

T T
R

S
T

R

T

v
T

T

R

L

S

£ +

= +

£ +

= - +

p

q p

p q

p q

 

As required.  
 

It remains to show that a corrolary of this theorem is the 

minimax theorem: 
 

Theorem (minimax): 
II I

v v- =  
 

Proof: Take HI and HII such that 

I II, 0
T T

T

R R

T T ¥
¾¾¾¾  

(for example, use RWM with (log ) /N Th = ). Since 

the game is a zero-sum game, we have 

II I

T TL L

T T
- =  

And so 

II
I I

II I I
I

TT T TL L
v

R

T T T

R

T
v£- = £- +-  

As T  ¥ , we obtain 

II I
v v£-  
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But we know that 
I II

vv- £ . We conclude that 

I II
vv- =  

which proves the minimax theorem.  


