Example of Gomory's Cutting Plane Method

Consider the linear program

$$\min \quad 2x_{_1}+15x_{_2}+18x_{_3}$$

Subject to

$$\begin{array}{l} -x_{\!_1}+2x_{\!_2}-6x_{\!_3}\leq -10\\ x_{\!_2}+2x_{\!_3}\leq 6\\ 2x_{\!_1}+10x_{\!_3}\leq 19\\ -x_{\!_1}+x_{\!_2}\leq -2\\ x_{\!_1},x_{\!_2},x_{\!_3}\geq 0 \end{array}$$

We can solve this problem the dual simplex method algorithm. The final tableau is as follows:

	x_1	x_2	x_3	z_1	z_2	z_3	z_4	
x_1	1	10	0	5	0	3	0	7
z_2	0	5	0	2	1	1	0	5
x_3	0	-2	1	-1	0	$-\frac{1}{2}$	0	$\frac{1}{2}$
z_4	0	11	0	5	0	3	1	5
	0	31	0	8	0	3	0	-23

Which corresponds to the solution

$$\begin{array}{l} x_1=7\\ x_2=0\\ x_3=\frac{1}{2} \end{array} \qquad \qquad \text{Objective function}=23\\ \end{array}$$

Now, imagine that we need x_1 , x_2 and x_3 to be integers. The third row reads

$$\begin{array}{l} -2x_{_{2}}+x_{_{3}}-z_{_{1}}-\frac{1}{2}z_{_{3}}=\frac{1}{2}\\ -2x_{_{2}}+x_{_{3}}-z_{_{1}}-\left|\frac{1}{2}\right|z_{_{3}}\leq\frac{1}{2}\\ -2x_{_{2}}+x_{_{3}}-z_{_{1}}-z_{_{3}}\leq\frac{1}{2} \end{array}$$

If all the variables are integers, we also have that

$$\begin{array}{l} -2x_{_{2}}+x_{_{3}}-z_{_{1}}-z_{_{3}}\leq\left|\frac{1}{2}\right|\\ -2x_{_{2}}+x_{_{3}}-z_{_{1}}-z_{_{3}}\leq0\end{array}$$

We can add this new inequality to our tableau in the form

$$-2x_2 + x_3 - z_1 - z_3 + z_5 = 0$$

Gomory's Cutting Plane Method

	x_1	x_2	x_3	z_1	z_2	z_3	z_4	z_5	
x_1	1	10	0	5	0	3	0	0	7
z_2	0	5	0	2	1	1	0	0	5
x_3	0	-2	1	-1	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
z_4	0	11	0	5	0	3	1	0	5
z_5	0	-2	1	-1	0	-1	0	1	0
	0	31	0	8	0	3	0	0	-23

Inserting this inequality into our tableau, we obtain

The matrix in the body of the tableau is $A_B^{-1}A$. Thus, those columns corresponding to basis variables should give $A_B^{-1}A_B = I$. Looking at the highlighted basis columns above, this is clearly not the case in the x_3 column. We fix this by subtracting the x_3 row from the last row:

	x_1	x_2	x_3	z_1	z_2	z_3	z_4	z_5	
x_1	1	10	0	5	0	3	0	0	7
z_2	0	5	0	2	1	1	0	0	5
x_3	0	-2	1	-1	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
z_4	0	11	0	5	0	3	1	0	5
z_5	0	0	0	0	0	$-\frac{1}{2}$	0	1	$-\frac{1}{2}$
	0	31	0	8	0	3	0	0	-23

 z_5 is negative, and we therefore pivot on that row. The only column with a negative entry in that row is z_3 , so we pivot there.

	x_1	x_2	x_3	z_1	z_2	z_3	z_4	z_5	
x_1	1	10	0	5	0	0	0	6	4
z_2	0	5	0	2	1	0	0	2	4
x_3	0	-2	1	-1	0	0	0	-1	1
z_4	0	11	0	5	0	0	1	6	2
z_5	0	0	0	0	0	1	0	-2	1
	0	31	0	8	0	0	0	6	-26

This solution is both primal and dual optimal, with only integer solution.

$$\begin{array}{ll} x_1 = 4 \\ x_2 = 0 \\ x_3 = 1 \end{array} \qquad \qquad \text{Objective function} = 26 \\ \end{array}$$