Example of Gomory's Cutting Plane Method

Consider the linear program

$$
\min \quad 2 x_{1}+15 x_{2}+18 x_{3}
$$

Subject to

$$
\begin{gathered}
-x_{1}+2 x_{2}-6 x_{3} \leq-10 \\
x_{2}+2 x_{3} \leq 6 \\
2 x_{1}+10 x_{3} \leq 19 \\
-x_{1}+x_{2} \leq-2 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

We can solve this problem the dual simplex method algorithm. The final tableau is as follows:

	x_{1}	x_{2}	x_{3}	z_{1}	z_{2}	z_{3}	z_{4}	
x_{1}	1	10	0	5	0	3	0	7
z_{2}	0	5	0	2	1	1	0	5
x_{3}	0	-2	1	-1	0	$-1 / 2$	0	$1 / 2$
z_{4}	0	11	0	5	0	3	1	5
	0	31	0	8	0	3	0	-23

Which corresponds to the solution

$$
\begin{aligned}
& x_{1}=7 \\
& x_{2}=0 \\
& x_{3}=\frac{1}{2}
\end{aligned} \quad \text { Objective function }=23
$$

Now, imagine that we need x_{1}, x_{2} and x_{3} to be integers. The third row reads

$$
\begin{gathered}
-2 x_{2}+x_{3}-z_{1}-\frac{1}{2} z_{3}=\frac{1}{2} \\
-2 x_{2}+x_{3}-z_{1}-\left\lfloor\frac{1}{2}\right\rfloor z_{3} \leq \frac{1}{2} \\
-2 x_{2}+x_{3}-z_{1}-z_{3} \leq \frac{1}{2}
\end{gathered}
$$

If all the variables are integers, we also have that

$$
\begin{aligned}
& -2 x_{2}+x_{3}-z_{1}-z_{3} \leq\left\lfloor\frac{1}{2}\right\rfloor \\
& -2 x_{2}+x_{3}-z_{1}-z_{3} \leq 0
\end{aligned}
$$

We can add this new inequality to our tableau in the form

$$
-2 x_{2}+x_{3}-z_{1}-z_{3}+z_{5}=0
$$

Inserting this inequality into our tableau, we obtain

	x_{1}	x_{2}	x_{3}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	
x_{1}	1	10	0	5	0	3	0	0	7
z_{2}	0	5	0	2	1	1	0	0	5
x_{3}	0	-2	1	-1	0	$-1 / 2$	0	0	$1 / 2$
z_{4}	0	11	0	5	0	3	1	0	5
z_{5}	0	-2	1	-1	0	-1	0	1	0
	0	31	0	8	0	3	0	0	-23

The matrix in the body of the tableau is $A_{B}^{-1} A$. Thus, those columns corresponding to basis variables should give $A_{B}^{-1} A_{B}=I$. Looking at the highlighted basis columns above, this is clearly not the case in the x_{3} column.

We fix this by subtracting the x_{3} row from the last row:

	x_{1}	x_{2}	x_{3}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	
x_{1}	1	10	0	5	0	3	0	0	7
z_{2}	0	5	0	2	1	1	0	0	5
x_{3}	0	-2	1	-1	0	$-1 / 2$	0	0	$1 / 2$
z_{4}	0	11	0	5	0	3	1	0	5
z_{5}	0	0	0	0	0	$-1 / 2$	0	1	$-1 / 2$
	0	31	0	8	0	3	0	0	-23

z_{5} is negative, and we therefore pivot on that row. The only column with a negative entry in that row is z_{3}, so we pivot there.

	x_{1}	x_{2}	x_{3}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	
x_{1}	1	10	0	5	0	0	0	6	4
z_{2}	0	5	0	2	1	0	0	2	4
x_{3}	0	-2	1	-1	0	0	0	-1	1
z_{4}	0	11	0	5	0	0	1	6	2
z_{5}	0	0	0	0	0	1	0	-2	1
	0	31	0	8	0	0	0	6	-26

This solution is both primal and dual optimal, with only integer solution.

$$
\begin{aligned}
& x_{1}=4 \\
& x_{2}=0 \\
& x_{3}=1
\end{aligned} \quad \text { Objective function }=26
$$

