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Generally Useful R Code 

 

Distributions 

 Normal 

o rnorm(n,m,s) generates n data points from N(m, s2) 

o pnorm(x,m,s)= 2( ( , ) )N m s x£  

o dnorm(x,m,s)= 2( ) if ~ ( , )
X
f x X N m s . If the argument log = 

TRUE is specified, ( )log ( )
X
f x  is returned. 

 Gamma 

o rgamma(n,a, rate=b) generates n data points from ( , )a bG  

o Others as above 

 Uniform 

o runif(n,a,b) generates n data points from U(a, b) 

o Others as above 

 Students’ t 

o rt(n,df=1) generates n data points from a t disrtibution with 

1 degree of freedom (ie: a Cauchy distribution). 

o Others as above 

 Chi-squared 

o rchisq(n,df=5) generates n data points from a chi-squared 

distribution with 5 degrees of freedom. 

o Others as above 

 

Graphics 

 par() is used to modify settings in the current graphics environment. 

Possible settings: 

o mfrow = c(rows, columns) sets the numbers of rows and 

columns of graphs 

o cex.main=s, cex.lab=s, cex.axis=s respectively set the 

title, axes labels and axes font sizes to s 

 plot(x, y) creates a new plot area and plots two vectors against 

each other. Possible settings 

o type = “l” plots a line (by default, individual points are 

plotted) 
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o lwd = 2 makes the line (or points) thicker 

o col = “blue” makes the line blue 

o ylim = c(miny,maxy) sets the limits on the axes [could also 

use range function below] 

o lty = 2 or 3 give different kinds of dashing. 

o main = “title” sets the title to “main” 

 lines(x, y) adds a line to an existing plot. Possible settings as for 

plot. 

 points(x, y) adds points to an existing plot. Possible settings as for 

plot. 

 abline(v=1) adds a vertical line at x = 1, and abline(h=1) adds a 

horizontal line at y = 1. Possible settings as for plot. 

 hist(data) plots a histogram of the input data. Possible settings as 

for plot, as well as 

o freq = FALSE normalises the area of the histogram to 1. The 

default, freq = TRUE, simply plots counts. 

 text(x, y,”text”) adds text to a plot. col and cex are possible 

options for the colour and font size. Note that y = 0 puts the text 

straight on the x-axis. 

 d <- dev.cur sets a handle for the current graphics window. A new 

graphics window can then be created using x11(), and the old 

graphics window can be returned to using dev.set(d). 

 

Data handling 

 plot(density(x)) plots the empirical density of x. Very useful if 

trying to pictorially show the efficiency of various estimators; simulate 

the value of interest a number of times, and plot the density each time 

to see what it looks like. 

 data.frame(a=aData, b=bData) creates a data frame with 

variable a taking values in aData, etc… The data can consist of 

vectors; R will add suffices accordingly. 

 summary(dataFrame) gives all kinds of useful statistics on the items 

in the data frame. 
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 boxplot(dataFrame) plots a box-and-whisker plot showing the 

spread of data in each of the variables in the data frame. 

 quantiles(x, v) finds the v quantile of the data x. For example, if 

v = 0.5, it finds the median. Extremely useful in approximating 

confidence intervals. 

 

Vectors, matrices, etc… 

 Vector numbering starts from 1, not 0. 

 x <- seq(a,b,length=c) fills x with c values between a and b. 

Another possible argument is by=c, which increments by c each time. 

 rep(a,b) produces a vector containing b instances of a. a can be set 

to NA to create an empty array. 

 range(vector) gives a column containing the lowest and highest 

value of a vector. Useful when setting the limits of an axis. 

 rev(x) reverses the input vector. 

 length(x) gives the number of items in a vector. 

 x>2 returns a vector of the same length as x containing TRUE 

wherever the condition is met and FALSE otherwise. Can be used in a 

number of ways 

o x[x > 2] returns a vector containing all items in x greater 

than 2. 

o mean[x > 2] assigns 1 to each component of x greater than 2, 

and 0 to others, and finds the mean of these numbers. 

 apply(matrix, index, <operation>) applies the operation 

<operation> to rows (if index = 1) or columns (if index = 2) of 

matrix. 

 matrix(data, nrow, ncol, byrow = FALSE) creates a matrix 

and fills it with data, column by column (unless byrow = TRUE). 

 t(m) transposes the matrix m. 

 x %*% y performs the matrix multiplication xy. 

 prod(x, na.rm=FALSE) finds the product of the elements in the 

vector x. If na.rm = TRUE, missing values are removed. 

 Numeric(0) creates an empty vector. 
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Control blocks 

 for (i in 1:5) { } loops the item in the braces 5 times. 

 

Other 

 x <- readline(“promt”) prompts the user and inserts their 

response as a string into x. 

 paste(string1,string2,sep=”.”) concatenates the strings in 

the argument, adding . between each string. 

 help(functionName) gives help. 
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Random Number Generation 

 

Assume we have an infinite supply of random numbers U that are distributed 

randomly over [0,1]. We discuss general methods for using these numbers to 

generate random numbers from other, more sophisticated distributions. 

 

Method of Inversion 

If X has a continuous CDF F, then ( ) ~ (0,1)U F X U= 1, and so 1( )X F U-= . 

This is the basis of the method of inversion: 
 

Method of inversion: To generate a sample x  from a 

distribution with CDF F 

   1.  Simulate ~ (0,1)u U  

 2. Set 1( )x F u-=  
 

Proof: Consider that 

( ) ( )1( )X x xF U-£ £=   

since F is a strictly increasing 2 , monotonic and 

continuous function of x, we can write 

( )( )F xU= £  

since U ~ U(0, 1), ?( ) ?P U £ = , and so 

( )F x=  

as desired.  

 

Notes: 

 The inverse CDF relationship exists between any two continuous 

random variables; ( )1 ( )
X Y

X F F Y-= . This method is therefore often 

used with Y = normal distribution. 

 Even when F–1 exists in closed form, it may be more computationally 

intensive to calculate than some alternative methods for generating 

random numbers. 

                                                 
1 To see why, consider that ( ) ( ) ( )1 1( )( ) ( )p P F pF P F F p p--£ £= = =  . 

2 For functions that are not strictly increasing, use a generalised inverse. 
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 When F–1 does not exist in closed form, the method of inversion can 

still be used by solving ( ) 0
X

F x u- =  numerically. 

 

This method can also be used for discrete distributions 
 

Method of inversion (discrete distributions): 

Consider a distribution with levels mj and 

( )
j j

m p= . The CDF is 

1

j

j k k
F p

=
= å  

so that 
1j j j

p F F -= - . To generate a sample x from 

this distribution 

   1.  Simulate ~ (0,1)u U  

 2. Set 
j

x m=  if 
1j j

F u F- < <  
 

Proof: Consider that 

( ) ( )1j j
X j FF U-= = < £   

since U ~ U(0, 1), )( bP a aU b£< = - , and so 

1j j

j

P P

p
-

= -
=

 

as desired.  

 

In practice, the algorithm above can be applied by first simulating u and then 

calculating each ( )
j

m  for each j, until the sum of all probabilities calculated 

is greater or equal to u. 

 

This method can also be used for mixture densities 
 

Method of inversion (mixture distributions) Consider 

a distribution with mixture density 

1

k
i i i

f w f
=

= å  

where the fi are PDFs, wi > 0 and 1
i

wå = . To 

sample from this distribution:  

   1.  Choose I = i with probability wi 

 2. Sample from fI 
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Rejection Sampling 
 

Rejection sampling: Suppose it is difficult to sample 

directly from a density f, but that we have a 

majorising or envelope density g from which it is 

easy to sample and a constant [1, ]M Î ¥  such that 

(( ))f x Mg x x£ " Î   

Or alternatively 

( )
sup

( )x

f x

g xÎ

æ ö÷ç ÷ <¥ç ÷ç ÷çè ø
 

To generate a sample x from the distribution with 

desntiy g:  

   1.  Generate ~y g  and independent ~ (0,1)u U  

 2. If 
( )

( )

f y
u

Mg y
> , return to step 1. 

 3. Return x = y. 
 

Proof: We have 

) ( |  is accepted)

(  and  is accepted)

(  is accep

(

ted)

x Y x Y

Y x Y

Y

X £ = £

£
=

 



 

But we know that 

( )

( )

0

(  is accepted)

( ) d

 = ( ) d

( ) d  d

( )
( ) d

( )

( )

( )

( )
|

( )

( )

( )

1
( ) d

f y

Mg y

f Y

Mg Y

f Y
Y y

Mg Y

f y

Y U

U

Y y y

U g y y

g y u y

f y
g y y

Mg y

f

M

y
M

g

y

y

¥

-¥

¥

-¥

¥

-¥
¥

-¥

¥

-¥

æ ö÷ç ÷= ç ÷ç ÷çè ø
æ ö÷ç ÷ç ÷ç ÷ç= è ø

=
æ ö÷ç ÷ç ÷

£

ç ÷çè ø

=

£

=

=

£ =
ò

ò

ò ò
ò

ò

 





  

Similarly 
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 and ( )

(
( ) d

 is accepted

1
( ) d

)

x

x

x f y
Y Mg y

Y
U g y y

f y y
M

-¥

-¥

æ ö£ ÷ç ÷
æ ö÷ç ÷= ç ÷ç ÷çè ø

=

ç £÷ç ÷ç ÷çè ø
ò

ò

 
 

as desired.  
 

Note that the denominator in the final expression 

normalises the function, so we only need to know f 

up to a multiplicative constant. 

 

Note that the proportion of “accepted” trials is given by 

Area under 1

Area under 

f

g M
p = =  

So we want to choose M as small as possible subject to M > f(x)/g(x). Since 

M always needs to be bigger than the RHS, the smallest value M can take is 

the supremum of the RHS. So the optimal M is given by 

* ( )
sup

( )x

f x
M

g xÎ

æ ö÷ç ÷= ç ÷ç ÷çè ø
 

Sometimes, we may choose a family of enveloping functions characterised by a 

parameter b , say. In that case, minimizing *M  with respect to b  provides 

the best choice of function. 

 

EXAMPLE:  Let (1, )a Î ¥ , and consider sampling from ( ,1)aG  
1

( ) (0, )
( )

xx e
f x x

a

a

- -

= Î ¥
G

 

We may be tempted to choose a majoring function 1( )g x x a-= , 

but that’s no good, because it is not bounded, and therefore is not 

a distribution. Instead, we choose the family 

( ) xg x e b
b b -=  

and we note that 

( )
1

( 1)1
1( )

sup
( ) ( )x

ef x

g x

a
aa

b

b b a+

-
- --

-

Î

æ ö÷ç ÷ç = <¥÷ç ÷ç G÷çè ø
 

So g does indeed work as a majoring function. We also note that 

the minimum of this supremum is attained at * 1
a

b = . 
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EXAMPLE:  Consider sampling from the distribution 
( 1)( ) ( 1) (0, )x exf x e e e x- + -= + - Î ¥  

In this case, choosing ( ) xg x e-=  gives 

( )1 (1 ) 1( )
sup sup ( 1) 1

( )
e x

x x

f x
M e e e e e

g x+ +

- - -

Î Î

= = + - = + -
 

 

 

If f(x) is difficult to compute, then the test in step 2 can be slow to evaluate. 

We can use simple squeeze functions that bracket f. 

 For example, a squeeze function s(y) below f has )( ()s y f y£ . 

 In a given trial, we evaluate s(y) before f(y). If ( ) ( )

( ) ( )

s y f y

Mg y Mg y
u u£  £  

and so we can automatically accept the point without computng f(y). 

 Clearly, we want the area under s to be as large as possible subject to 

)( ()s y f y£ , so that we have a larger chance of accepting points directly. 

 

Ratio of Uniforms 
 

Theorem: Consider a distribution 

( )
( ) and ( ) d

( ) dX

h x
f x h x x

h x x

¥

¥ -¥
-¥

= < ¥
ò ò  

Then for random variables (U, V) sampled uniformly 

distributed over the region 

{ }( , ) : 0 ( / )
h

uv uu hC v£ £=  

The random variable /X V U=  has PDF fX(x). 
 

Proof: Let Z = (U, V) be uniformly distributed on Ch. 

{ }(0 / )

1
( , )

u v uZ h
f u v

A £ £
=   

where A is the area of Ch. Now, let’s apply the 

variable transformation: 

/X V U Y U= =  

U Y V XY = =  

The transformation from Z = (U, V) to W = (X, Y) 

therefore has Jacobian 

/ / 0 1

/ /

u x u y
J y

v x v y y x

¶ ¶ ¶ ¶
= = = -

¶ ¶ ¶ ¶
 



Monte Carlo Inference  Page 11 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

The joint density of W = (X, Y) is then given by 

( )

{ })0 (

( , ) ( , ), ( , )

( , )

y h

W Z

Z

x

f x y f u x y v x y J

f y xy y

y

A £ £

=
=

= 

 

The marginal density of X is given by 

( )
2( )

0
0

( )
( ) d

2 2

h x
h x

X

y y h x
f x y

A A A

é ù
ê ú= = =ê úê úë û

ò  

However, fX is a density, so 

( )
1 ( ) d  d

( ) d

2

2

X

h x
f x x x

A

h x x A

¥ ¥

-¥ -¥
¥

-¥


=

=

= ò
ò

ò
 

So the marginal density of X = V/U is given by 

( )
( )

( ) d
X

h x
f x

h x x
¥

-¥

=

ò
 

as desired.  

 

This method is most useful if Ch can be contained in a rectangle. We therefore 

develop the following theorem: 
 

Theorem: If h(x) and 2 ( )x h x  are bounded, then  

0, ,
h

a b bC
- +

é ù é ùÍ ´ê ú ê úë û ë û  

where 

0

2

2

0

sup ( )

sup ( )

sup ( )

x

x

x

a h x

b x h x

b x h x

Î

£

³

-

+

=

= -

=



 

 

Proof: If ( , )
h

u v CÎ , then 

sup ( ) sup0 ( / ) ( )
x x

hu h v u x h x a
Î Î

< < £ = =
 

 

so u is indeed bounded as predicted. 
 

For the v coordinate, we check two cases: 

 If 0v ³ , then we substitute 0v
u

t = ³  into 
20 ( )v

u
u h£ £  and get 
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2 2 2 2

0

( ) sup0 ( )
t

v t h t t h t b
+

³
£ £ £ =  

Since v is positive, this implies v b+< . 

 If 0v < , a similar trick gives 2 2v b
-

< , and 

implies that v b
-

>  

We have therefore derived both bounds.  

 

In the case were these conditions are met, we have a new method: 
 

Ratio of uniforms: To generate a sample x  from a 

distribution with CDF F 

   1.  Simulate 
1 2
, ~ (0,1)u u U  

 2. Let 

   
1 2

( )u au v b b b u
- + -

= = + -  

  This ensures that (u, v) is uniformly chosen 

from [0, ] [ , ]a b b
- +

´ . 

 3. If 2 ( ) ( , )v
hu

h u Cu v£  Î , then return x = v/u. 

Otherwise, return to step 1. 
 

Analogously to rejection sampling, it may be possible to find sets 

h
C C C

- +
Í Í  for which it is easier to determine the membership of (u, v). 

[ [0, ] [ , ]C a b b+ - += ´  is an example of such an “upper bounding” set]. 

 

EXAMPLE:  Consider sampling from the Cauchy distribution 

2

1
( )

(1 )
f x

xp
=

+
 

Set 

2

1
( ) clearly, ( ) d

(1 )
h x h x x

x
p

¥

-¥
= =

+ ò  

In this case, the exact form of Ch is 

{ }2 2( , ) : ,0 1
h

uC v u vu £ + £=  

h(x) and x2h(x) are both bounded [to see why, consider what 

happens as x  ¥ ]. Now, we calculate 
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2

0

2

0

sup ( ) 1

sup ( ) 1

sup ( ) 1

x

x

x

a h x

b x h x

b x h x

+Î

-
£

+
³

= =

=- =-

=- =



 

As such, our “approximate” region is 

{ }[0,1( ], ,) : [ 1,1]
h

vC u v u Î -= Î  

 

Note that this method can also be used with f(x) = h(x). 

 

EXAMPLE:  Consider sampling from the distribution 
( 1)( ) ( 1) (0, )x exf x e e e x- + -= + - Î ¥  

We use h(x) = f(x). Now, the function is monotonously decreasing, 

and so reaches its maximum at x = 0 [Note: it is important to 

remember that this can be the case – differentiating and setting to 

0 in such a case won’t help at all]. So 

1sup ( ) 1
x

a f x e e
+

-

Î

= = + -


 

Similarly, the only non-positive value the function can have is 0, 

and so 

2

0
sup ( ) 0
x

b x f x
-

£
= - =  

Furthermore, by the triangle inequality a b a b+ £ + , and so 

{ }1 1 3 1
2 2 2 2 2 2

2

2 2

0 0
sup ( ) sup ( 1) 2 ( 1)

x ex

ex x
b x f x x e e e e e

- - - -

+
³ ³

= £ + - = + -  

 

Composition 

Let { }( ; ) :f x q q Î Q  denote a family of densities, and let ( )p q  denote a density 

(or mass) over Q . Then the density 

( ; ) ( ) d  continuous
( )

( ; ) ( )  discrete

f x p
f x

f x pq

q q q q
q q q

Q

ÎQ

ìïòïï= íï åïïî
 

is a mixture density. We can sample x from f(x) as follows 

 Generating q  with density/mass function ( )p q  

 Generating x with density ( ; )f x q  

This is called the method of composition. 
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EXAMPLE:  Consider sampling from the non-central chi-squared distribution, 

with n Î   degrees of freedom and non-centrality parameter 

(0, )l Î ¥ , denoted 2( )
n

c l  

( )
2 2

2

1/2

0
2

( ; (0,, )
2 ! 2

)

n x

n

rr

r r nr

e x e
f x n x

r r

l l
l

+ - --¥

+
=

=
G

Î
+

¥å  

Notice also that the distribution of the Poisson and chi-squared 

distributions are 

( )
( )

2 2

2
2

1

Po( )

2

; ( ; )
! 2

k x

k
k

n

k

e x e
f n f x k

n

l

l c

l
l

- --

= =
G

 

Clearly, therefore, we can generate the above by first generating 

2
~ Po( )R l , and then generating 2

2
~

n R
X c

+
. 

 

EXAMPLE:  Consider sampling from the distribution 
( 1)( ) ( 1) (0, )x exf x e e e x- + -= + - Î ¥  

We note that this can be re-written as 

1 1
( ) x exe

f x e e e
e e

- --
= + ⋅ ⋅  

This is a mixture of exponentials, with 

1/ 1
( ; ) ( )

( 1) /
x

e
f x e p

e e e
q q

q q q
q

-
ìï =ï= = íï - =ïî

 

We therefore generate two random variables, U1 and U2, and 

 If U1 > (1/e), return 
2

log( )U-  

 Else, return 1

2
log( )e U--  

 

Specific distributions 

We now go through a number of commonly used algorithms for standard 

discrete and continuous distributions 

 Normal distribution ~ (0,1)Z N  

o The Box-Muller Method uses 
1 2
, ~ (0,1)U U U  and generates 

1 1 2 2 1 2
2 log( ) cos(2 ) 2 log( ) sin(2 )Z U U Z U Up p= - = -  

This can be proven as follows 

 The joint distribution of U1 and U2 is 

{ }2
21 2 1

, 1 2 ( , ) (0,1)
( , )

uU uU
f u u

Î
=  . 
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 { }2 21
1 1 22

exp ( )U Z Z= - +  and 11
2 2 12

tan ( / )U Z Z
p

-= . 

 We can then find the Jacobian 

1 1 1 2

2 1 2 2

/ /

/ /

U Z U Z
J

U Z U Z

¶ ¶ ¶ ¶
=

¶ ¶ ¶ ¶
 

 This allows us to write 

( )
{ }

1 2 1 2, 1 2 , 1 1 2 2 1 2

2 21
1 22

( , ) ( , ), ( , )

exp ( )/ 2
Z Z U U
f z z f u z z u z z J

z z
p

=

= - +
 

Which is indeed the distribution of N(0, 1). 

o Evaluating trigonometric functions is slow. A faster method uses 

rejection sampling. Generate 
1 2
, ~ ( 1,1)V V U -  and set 

2 2 2

1 2
r V V= + . If 2 1r ³ , reject. Otherwise, deliver 

2 2

1 1 2 22 2

2 log( ) 2 log( )r r
Z V Z V

r r

- -
= =  

This can be proven as follows 

 The random variables V1 and V2 that pass the rejection 

step are distributed uniformly on the unit disk, so 

2
11
2

22

1

{, 1 }2 1
( , )

v vV V
f v v

p + £
=  . 

 We then write 

2

1
cos cosV R R= Q= Q   2

2
sin sinV R R= Q= Q  

 We find the Jacobian for the transformation involving R2 

2

2

212

1 1 2
2 21

2 2
2

cos sin/ / 1

/ / 2sin cos
R

R

RV R V
J

V R V Rq

Q - Q¶ ¶ ¶ ¶Q
= = =

¶ ¶ ¶ ¶Q Q
 

 This immediately gives 

2 2{0 1,

2 1
2 0 },

( , )
R R
f r

p q p
q

Q < £ £ <
=   

So 2R  and 
2p
QQ =  are uniformly distributed on (0, 1]. 

 We can therefore use the Box-Muller method with  

U1 = R2 and U2 = Q . Since ( ) ( ) 1
cos 2 cos /V RpQ = Q =  

and ( ) 2
cos 2 /V RpQ = , the Box-Muller equations become 

exactly as above, in terms of R2, V1 and V2. 

 Exponential distribution ~ exp( )X m : the inverse CDF method is easy 

to implement and considered satisfactory. Note that the inverse CDF is  
1 1( ) log( )F U Um- -= - . 
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 Gamma distribution ~ ( , )X a bG : Note that if ~ ( ,1)Z aG , then 

/X Z b= , so sampling ~ ( ,1)Z aG  is enough. A number of algorithms 

based on rejection methods exist depending on whether 1a >  or 1a < . 

(If 1a = , we have an exponential distribution). 
 

For an inverse gamma, note that 1 1~ ( , ) ~ ( , )XX a b a b--  GG , so 

simply take the reciprocal of gamma draws. 

 Chi-squared distribution 2~X nc : This is a special case of the gamma; 

1
2 2

~ ( , )X nG . 
 

For small n , we can use the Box-Muller method to generate n  

normally distributed variables, square them, and add them together. 

Note that if Z1 and Z2 are two Box-Muller generated variables, 
2 2

1 2 1
2 log( )Z Z U+ =- , and so when n  is even, the sum is simply given 

by ( )/2

1
2 log

i i
Un

=-  . 

 Poisson distribution ~ Po( )X l : A slow but clever way of sampling X 

is to realise that if the number of arrivals in an interval [0, t] is Poisson 

distributed with mean tl , then the time between each Poisson arrival 

is distributed as 1exp( )l- , for which 1 1( ) log( )F U U
l

- = - . 
 

Thus, we simply generate such exponential variables and continuously 

sum them until the sum is greater than 1 – let N be the number of 

random variables required for this to happen. Then N is a realisation of 

X. 

 



Monte Carlo Inference  Page 17 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

Non-parameteric Inference 

 

Given a sample 
1

,,
n

X X  of independent variables with distribution F, we are 

often interested in estimating some parameter ( )Fq q= . Common examples: 

 { }( )
f

xq f=   

 ( )1f
AP Xq = Î  – this is a special case of the above with { }( )

x A
xf

Î
=  . 

 1(1/ 2)Fq -= , the median. 

 

The plugin principle is often used in estimating such values: 

Plugin estimator: The plugin estimator for q  is 

ˆ ˆ( )Fq q=  

Where F̂  is an estimator of F. Often, the empirical 

distribution function (ECDF) ˆ
n

F  is used: 

{ }
1

1ˆ ( )
i

n

n x x
i

F x
n £

=

= å   

in which case we denote the plugin estimate ˆ
n
q . 

 

R-CODE:  The ECDF of a set of points in R can be found using 
ecdf(dataPoints) 

So for example, to plot find the ECDF of the normal distribution, 

based on 10 points, use 
plot(ecdf(rnorm(10,0,1)),verticals=TRUE) 

(The last statement ensures vertical lines are drawn to connect 

the “steps” in the graph). 
 

To then add a line representing the real density, use 
x <- seq(-2.5,2.5,length=1000) 

(this generates 1000 x values between –2.5 and 2.5), and then 
lines(x,pnorm(x,0,1),col=2,lty=2) 

(the last two statements make the line red and dotted). 

 

Using the ECDF, the plugin estimators of the above examples are 

 1ˆ ( )
n in

xq f= å  

 { }
1ˆ

i
n n x A
q

Î
= å   

 ( )
1 1

2 /2
ˆ ( )
n n n

F xq -
é ùê úê ú

= = , where 
((1) )n

X X<<  are the ordered X. 
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These estimators are unbiased, and it can be shown3 that 

{ }1ˆar( ) ar ( )
n

X
n

q f=   

This variance, however, may be very large. In variance reduction, we try to 

reduce the variance of estimators while maintaining other good qualities. 

 

Importance Sampling (IS) 

Importance sampling reduces the variance of our estimator, and also allows us 

to sample from another, simpler distribution. We define the support of a 

function g, 
g
  as { }: ( ) 0

g
y g y= > . 

 

Importance sampling: Suppose we are trying to 

estimate { }( )
f

xq f=  . The density of interest is f, 

and let g denote another density that is easily 

sampled from and such that 

( ) ( ) 0 ( ) 0xf x x gf >  >  

(Or in other words, 
( )| ( )|f x x gf Í  ). 

 

Sample 
1

,,
n

y y  independently from g and consider 

estimators of the form 

1

( )1ˆ ( ) ( )
( )

n
i

g i i i i
i i

f y
w y w w y

n g y
q f

=

= = =å  

where the wi are called importance weights. 
 

Then the estimator ˆ
g
q  is also unbiased, and its 

variance is minimized when 

| |

0

( ) ( )
( ) ( )

( ) ( ) d
f

x f x
g x g x

y f y y
f

f

f
= =

ò
 

 

                                                 
3 We prove this result as follows 

( ) ( ) ( ) { }2
1 1 1ˆar ar ( ) ar ( ) ar ( )

n i in nn
x x Xq f f f= å = å =     

(note that in the last step, we only extra a factor of n from the variance – not n2 – because 

the different items in the sum are independent). 
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Intuitively – the last line shows that we are sampling 

from a region where both f and f  are large; in other 

words, very informative regions. 

 

Proof: We first show that our estimator is unbiased 

{ } { }
{ }

{ }
| |

1

1ˆ ( ) ( )

( ) ( )

( )
( ) ( ) d

( )

( ) ( ) d

( ) ( ) d

( )

g

g

f

n

g g
i

g

f

w Y Y
n

w Y Y

f y
y g y y

g y

y f y y

y f y y

x
f

q f

f

f

f

f

f
q

=

=

=
æ ö÷ç ÷= ç ÷ç ÷çè ø

=

=

=
=

å

ò

ò
ò

 











 

(We were able to change the range of integration in 

the second-to-last step, because in all those members 

of 
g
  that are not members of 

| |f f , the integral 

would have been 0 anyway). 
 

The variance of our estimator is given by 

{ }

{ }
1

1ˆvar var ( ) ( )

1
var ( ) ( )

1 ( )
var ( )

( )

n

g g g
i

g

g

w Y Y
n

w Y Y
n

f Y
Y

n g Y

q f

f

f

=

ì üï ïï ï= í ýï ïï ïî þ

=

ì üï ïï ï= í ýï ïï ïî þ

å

 

So 

{ }

| |

2 2

2 2
2

2

2 2
2

( ) ( )ˆvar ( ) ( )
( ) ( )

( ) ( )
( ) d

( )
( ) ( )

 d
( )

g

f

g g g g

f Y f Y
n Y Y

g Y g Y

f y y
g y y

g y
f y y

y
g yf

q f f

f
q

f
q

ì üï ïæ ö ì üï ïï ï÷ï ï ï ïç ÷= -çí ý í ý÷ç ÷ï ï ï ïçè øï ï ï ïî þï ïî þ

= -

= -

ò

ò

 





 

(We were able to change the range of integration in 

the last step because at any point in 
g
  which is not 

in 
| |f f , the integral is 0 anyway). 
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Clearly, the variance is minimized when the integral 

in the last line above is minimized. By Jensen’s 

Inequality, however, we can find this lower bound: 

| |

22

2

( ) ( )( )
( )

( ) ( )

( ) ( ) d
f

g g

f Y Yf Y
Y

g Y g Y

Y f y y
f

f
f

f

ì ü ì üï ï ï ïæ öï ï ï ï÷ï ï ï ïç ÷çí ý í ý÷ç ÷ï ï ï ïçè øï ï ï ïï ïî þï ïî þ
æ ö÷ç= ÷ç ÷÷çè ø

³

ò

 



 

This bound is obviously achieved when g is as given 

in the theorem.  
 

The only issue is that if we know the integral in the 

expression for g0, we probably know the integral of 

interest anyway! It is furthermore unclear how we 

might sample from g0. The theorem is useful, 

however, in suggesting that we should seek a g 

“close” to g0 from which it is easy to sample. 
 

Another interesting note: if { }( )
x A

xf
Î

=  , then g0 is 

simply the conditional density of X given x AÎ … 

This makes sense; this is where the data is most 

informative (we don’t care about points outside A). 
 

A final point is that if f or g are only known up to a 

normalising constant, then the method can still be 

used with the estimator 

1

1

( )ˆ
n

i i i
g n

i i

w x

w

f
q =

=

å
=

å
 

is asymptotically unbiased, because  

{ }( ) ( ) / ( ) 1
g g
W f Y g Y= =   

so as n  ¥ , 1 1
in

w å . Short of such an 

asymptotic situation, the estimator above will always 

exhibit some (small) bias. However, choosing g 

correctly will still give us a small variance estimator. 

This is the bias-variance tradeoff. 
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This method can be used to estimate the CDF F by allowing f  to take two 

arguments. 

{ }

1
{ } ,

11 1

( , )ˆ ˆ( )

( , )

( )

i

i

x

n n
i i i i

g y x g nn n
ii i i

y

i

i

w y x w
x F x

w

x

w

yf

f
q

£

=
£

== =

å
= =

å

=

=
å

å 


 

This can easily be worked out as follows 

 Sample yi from g [a uniform distribution, for example]. Let y(i) be the ith 

ordered part of the sample. 

 Work out the weights, normalise them – call the normalised weights w . 

 Let ( ) ( ), (1) (1)
ˆ
g n

F y w y=   

 Thence, ( ) ( ) ( ), ( 1) , ( ) ( 1)
ˆ ˆ
g n i g n i i

F y F y w y+ += +   

 

Sometimes, it is useful to retain a sample from f rather than an estimate of a 

parameter. This can be achieved by sampling with replacement from 
1

,,
n

y y  

with a discrete distribution proportional to 
1

,,
n

w w . This is called sampling 

importance re-sampling (SIR). 

 

R-CODE:  The following function 
sample(y, num, replace=TRUE, prob=w) 

Samples num items from the vector y, with replacement, and 

places a probability w on each item. 

 

EXAMPLE:  Suppose that X has Cauchy distribution, with density 

2

1
( )

(1 )
f x x

xp
= Î

+
  

and cumulative density 
1 1

2
( ) arctan( )F x x

p
= +  

and we want to estimate ( 2)Xq = > . In other words, we have 

{ 2}
( )

x
xf >=  . 

 

We want g to be as close as possible to 
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( )

( )( )

2
1

{ 2} (1 )

1 1
2

{ 2}2

2

( 2 | ) ( )
( | 2)

2

1 arctan(2)
1

arctan2 1

x x

x

f x X x f X x
f X x X

X

x

p

p

p

> +

>

> = =
= > =

>

=
- +

=
- +






 

A sensible choice seems to be 2
2

{ 2}
( )

xx
g x >=  , which is easy to 

sample from by inversion [the factor of 2 is to ensure the 

distribution is normalised]. 
 

We then sample yi from g. In this case, every value we sample is 

greater than 2, and so  ( ) 1xf = . As such, the IS estimator is 

simply 

( )
2

2
1

( )1ˆ
( ) 2 1

n
i i

g i i
i i i

f y y
w w

n g y y
q

p=

= = =
+

å  

Consider the variance of this estimator 

{ } ( )
2

2

2

2

2

{ 2}

2

1

2

4

2 2 2 2

2

2 2 22

2

2

1ˆvar var

1
var

4

1 2

4 (1 )

1

2 (

2 1

1 )

1 1

1

 d

 

41

d

0

n

g g g
i

g

i

i i

i

i

i

i

i

i

x

y

yn

n

y

n y y

y

n

y

y

x

y

n

x

q

p

p

p

q

q

p

q
p

q

p

>

=

¥

-¥

¥

ì üï ïï ïï ï= í ýï ïï ïï ïî þ
ì üï ïï ï= í ýï ïï ïî þ

ì üï ïï ï= í ýï ï+ï ïî þ
ì üï ïï

+

+

-

ï= í ýï ï+ï ïî þ
æ ö÷ç ÷= + -ç ÷ç ÷çè ø

-

å

ò

ò



 
Furthermore, 

{ }

{ }
{ }

{ 2}

{

1

2}

2

1ˆvar var

1
var

( 2) 1
1

0

1
(1 )

( 2)

i

n

f n f
i

Xf

xn

n

n

n

X X

q

q

q q

>

>

=

ì üï ïï ï= í ýï ïï ïî þ

=

é ù= ⋅ -ê ú< +ë

= -

> û⋅

å 



 
 

Feeding in the true value of 1 1
2

arctan2
p

q = - , we find that the 

independence sampler is a large improvement. 
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Control variates 

Definition (Control variates): Suppose Y is an 

unbiased estimator of q . C is a control variate for Y 

if it is correlated with Y and its mean 
C

m  is known. 
 

Control variates: Suppose Y is an unbiased estimator 

of q , and C is a control variate for Y. Then 

( )
C

Y Y Cb b m= - -  

is also unbiased for q , and its variance is minimized 

when 

{ }
{ }

*
cov ,

var

Y C

C
b b= =  

at which point 

{ } ( ) { } { }2

*
var 1 var varY Y Yb r £= -  

where { }corr ,Y Cr = . 
 

Proof: It is pretty obvious that Yb  is unbiased. We 

then have 

{ } { }
{ }
{ } { }( ){ }
( ){ } ( ){ }

{ }{ }{ }
{ } { }

2

2 22

2

var var

var

2

var var 2 cov{ , }

C

C

C

C

Y Y C

Y C

Y C

Y C

Y C

Y C Y C

b b bm

b

q b bm

q b m

b q m

b b

= - +

= -

= - + - +

= - + -

- - -

= + -



 


 

Differentiating with respect to b  and setting to 0, we 

obtain the results above.  

 

Note that even if cov(Y, C) is not known, there is an optimal b  that relies 

only on the size of the covariance. Furthermore, the ideas can be extended to 

more than one control variate as follows: 

( ) ( )
11 1 kC k k C

Y C CY bb m m= - - - - -   
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EXAMPLE:  We return to the Cauchy example of the last section, in which we 

were estimating ( 2)Xq = > . A different approach would be to 

use the estimator 

( )
2

0

1 1
0 2 ( ) d

2 2
X f x xq = - < < = -ò  

We can estimate the integral using Monte-Carlo integration. In 

this case, we use 
{ (0,2)}

( )
x

xf Î=  , and 

1
{ (0,2)}2

~ (0,2) ( )
x

g U g x Î =   

We then generate 
1
, ,

n
y y  independently of g. Every one of these 

values will be between 0 and 2, and so ( ) 1xf = . The IS estimator 

of the integral based on g is then 

1
1 12

( )1 2
( )

n n
i

i
i i

f y
f y

n n= =

=å å  

and so our estimator of q  will be 

1

1 2
( )

2

n

i
i

f y
n

q
=

= - å  

A Taylor Expansion of f suggests the following improved 

estimator: 

( )2 2

1

1 2
( ) [ ]

2

n

i i i
i

f y y y
n

q b
=

= - - -å   

This is clearly of control variate form, with 

2

1

2 n

i
i

C y
n =

= å  

The variance of this estimator is minimised at 

{ }
{ }

*
cov ,

var

Y C

C
b b= =  

Now remember that the different yi are independent. Thus 

{ } { }2

2
2

2

2 2

24

2

2

1

cov ,

( )
(1

cov ( ),

4 1
cov ,

(1

) (1 )

)

4

i in

Y

Y C f y y

n Y
n Y

n
Y

Y Yp

p

p

æ ö æ ö÷ ÷ç ç÷ ÷-ç ç÷ ÷ç ç

= å å
ì üï ïï ï= í ýï ï+ï ïî þ

ì üï ïï ï=
÷ ÷çç + +è ø

í ýï ïïî è ø ïþ
  

 

Remembering Y is uniformly distributed, the above are relatively 

simple to calculate. Similarly 
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{ }
1

222 4var var
n

in
i

n
y Y

=

ì üï ïï ï =í ýï ïï ïî þ
å  

We find 

{ }
{ }

{ }
{ }

2

21

(1 )

2

cov ,cov , 45 7
1 arctan2

64 6var var

Y
YY C

C Y

p

p
+ æ ö÷ç ÷= = -ç ÷ç ÷çè ø

 

Finding the actual variance of the estimator involves similar steps. 

 

Antithetic variables 

Antithetic variables: Suppose 
1
q̂  and 

2
q̂  are two 

estimators of q  with the same expectation. We say 

they are antithetic variables if they are negatively 

correlated. 
 

We then consider estimators formed as a convex 

combination of 
1
q̂  and 

2
q̂  

( )1 2
(0,1)ˆ ˆ ˆ1lq lq l q l Î= + -  

We have 
1 2

ˆ ˆ ˆ( ) ( ) ( )lq q q= =   . The variance of the 

estimator is minimized by 
2

* 2 1 2
2 2

1 2 1 2
2

s rs s
l

s s rs s

-
=

+ -
 

at which point it takes value 

( ) ( )
*

2 2 2
1 2

2 2
1 2 1 2

1
ˆvar

2l

s s r
q

s s rs s

-
=

+ -
 

Where 2

1 1
ˆvar( )s q= , 2

2 2
ˆvar( )s q=  and  

1 2
ˆ ˆcorr( , )r q q= . 

 

 

Proof: We have 

( ){ }
( ) ( )

( ){ } ( ){ }
( )( ){ }

1 2

2

1 1 2 2

2 2
2 2

1 1 2 2

1 1 2 2

2 2 2 2
1 2 1 2

2 2 2 2

1 2 1 2

ˆ ˆ ˆvar( ) var 1

ˆ ˆ(1 )

ˆ ˆ(1 )

ˆ ˆ2 (1 )

ˆ ˆ(1 ) 2 (1 )cov( , )

(1 ) 2 (1 )

lq lq l q

l q m l q m

l q m l q m

l l q m q m

l s l s l l q q

l s l s l l rs s

= + -
ì üï ïï ïé ù= - + - -í ýê úë ûï ïï ïî þ

= - + - -

+ - - -

= + - + -

= + - + -
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Differentiating with respect to l  and setting to 0, we 

obtain the results above.  
 

Note: the computational cost of computing *
ˆ
l
q  is 

twice that of computing each of the individual 

estimators, but we get a significant reduction in 

variance. 

 

The method is especially useful when used with the following theorem. (Note: 

a non-degenerate distribution is one for which there is no a Î   such that 

{ }( )
x a

F x
³

=  )  

Theorem: Let F be a non-degenerate distribution 

function and ~ (0,1]U U , then 

{ }1 1cov ( ), (1 ) 0F U F U- - - <  
 

 

Proof: Let 

{ } { }1 1( ) (1 )F U F Uq - -= = -   

Observe that 
1 1 ((1 ) )uu FF q q-  < -- >  

We have 

{ }
( )( ){ }

( ){ }

1 1

1 1

1 1

1 ( )
1 1

0
1

1 1

1 ( )

cov ( ), (1 )

( ) (1 )

( ) (1 )

( ) (1 )  d

( ) (1 )  d

F

F

F U F U

F U F U

F U F U

F u F u u

F u F u u

q

q

q q

q

q

q

- -

- -

- -

-
- -

- -

-

-

= - - -

= - -

é ù= - -ê úë û
é ù+ - -ê úë û

ò
ò


  

We want to try and get an upper bound for this 

quantity; ie: find the largest it could ever be. To do 

that, we note that 

 The quantity in the square brackets is positive 

in the first integral. 

 Thus, if we replace 1( )F u-  by a constant equal 

to the largest value it can take in that range 

of integration, we get an upper bound. 
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 Since 1( )F u-  is a non-decreasing function, the 

largest value it can take in the range of the 

first integral is ( )1 1 ( )F F q- - . 

 So the first integral is smaller than 

( )
1 ( )

1 1

0
1 ( ) (1 )  d

F

F F F u u
q

q q
-

- -- - -ò  

The quantity in the square brackets is negative in 

the second integral, and a similar argument applies. 

Together, these imply that 

{ }
( ){

}
( )
( ){ }

1 1

1 ( )
1 1

0

1
1

1 ( )

1
1 1

0
1

1 1

0

cov ( ), (1 )

1 ( ) (1 )  d

(1 )  d

1 ( ) (1 )  d

1 ( ) (1 ) d

0

F

F

F U F U

F F F u u

F u u

F F F u u

F F F u u

q

q

q q

q

q q

q q

- -

-
- -

-

-

- -

- -

-

< - - -

+ - -

= - - -

= - - -

=

ò

ò

ò
ò

 

Our covariance is therefore negative.  
 

Effectively, the method of inversion provides two correlated samples; one 

based on U and one based on 1 – U. This method is useful when we have an 

estimator of the form 1
1

ˆ ( )n

i in
g yq

=
= å , and the yi can be simulated by 

inversion. 

 

EXAMPLE:  Back once again to the Cauchy distribution, we return to our 

estimator of the form 

2
1

1 2 1

2 (1 )

n

i i
n y

q
p=

= -
+

å  

where 
1

, ~ (0,2), IID,
n

y Uy  . An antithetic variable estimator 

based on this is simply 

2 2
1

1 2 1 1 1 1

2 2 2(1 ) (1 (2 ) )

n

i i i
n y y

q
p p=

= - +
+ + -

å  

 

EXAMPLE:  Consider that 

1
2

0
1  d

4
u u

p
- =ò  
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This means that a Monte-Carlo estimator of p  is 

2

1

1
ˆ 4 1

n

i
i

U
n

p
=

= -å  

Where Ui are independent U(0,1) random variables. An estimator 

based on the method of antithetic variables is 

{ }2 21 1
AV 2 2

1

1
ˆ 4 1 1 (1 )

n

i i
i

U U
n

p
=

= - + - -å  

Now, note that 

( )

2

2
1

2

1
ˆar( ) ar 4 1

16
ar 1

n

i
i

i

U
n

U
n

p
=

æ ö÷ç ÷= -ç ÷ç ÷çè ø

= -
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And 

( ) { }
( ) ( )

( )
( ) ( )

2 21 1
AV 2 22

1

2 2

2 2

2 2 2

1
ˆar ar 4 1 1 (1 )

4
ar 1 ar 1 (1 )

2 ov 1 , 1 (1 )

4
2 ar 1 2 ov 1 , 1 (1 )

n

i i
i

i i

i i

i i i

U U
n

U U
n

U U

U U U
n

p
=

é ù
ê ú= - + - -ê ú
ë û

é
= - + - -êêë

ù+ - - - úúû
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Note that there is no factor of n in front of the covariance because 

the Ui are independent and therefore uncorrelated with each other. 

Thus, cross terms vanish from the covariance. 

 
As such 

( ) ( )
( )

( )
( )

2

2

2 2 2

AV

2

2 2

2

1 2 2

0 16

1
3 16

2 ar 1 2 ov 1 , 1 (1 )ˆar( ) 1

ˆar( ) 4 ar 1

ov 1 , 1 (1 )1
1

2 ar 1

1 1 (1 )  d1
1

2 (1 )

0.140

i i i

i

i i

i

U U U

U

U U

U

u u u p

p

p
p

é ù- + - - -ê úê úë û=
-

ì üï ï- - -ï ïï ïï ï= +í ýï ïï ï-ï ïï ïî þ
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Non-parameteric Inference 

 

Monte-Carlo Tests 

Let 
1

,,
n

X X  be independent with distribution function F, and suppose we 

want to use a statistic 
1

( , , )
n

T T X X=   to test 

0 0

1 0

: against

:

H F F

H F F

=
¹

 

If small values of T represent departure from H0, then a test of size (0,1)a Î  

would reject H0 if <T ca , where ca  is the tha  quantile of T. 

 

If the null distribution of T is unkown, however, we way not be able to 

compute ca . In a Monte Carlo test of approximate size a , we estimate ca  as 

follows: 

1. Choose a large B Î  . 

2. For each { }1, ,k BÎ  , associate an a , namely / ( 1)k Ba = + , and 

restrict the choice of a  to those values. 

3. For each { }1, ,k BÎ  , assume H0 is true, and simulate a random 

sample of N variables 
* *

1
, for 1, , ,

nk k
X k BX =   

4. For each { }1, ,k BÎ  , compute ( )* *

1

*, ,
kk nk

T T X X=   

5. Let *

( )k
c Ta º , where *

( )k
T  is the kth item when the *

k
T  are ordered. 

 

Since the critical point is random, the critical region is “blurred” 

Theorem: Assume that under H0, T has density f0 

supported on an interval. Then the MC test has 

exact size a . 
 

 

Proof: The size of the test is (by definition) 

( )*

( ) 0
|  true

k
T T H< . We can condition on the value 

of T: 

( ) ( )
( )

* *

( ) ( ) 0

*

( ) 0

| ( ) d

( ) d

k k

k

T T T T T t f t t

T t f t t

¥

-¥
¥

-¥

< = < =

= >

ò
ò
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Note, however, that ( )*

( )k
T t>  is just the 

probability that less than k of the T* are < t, so 

( ) ( )( )
{ }

* *

( )

1

0 0
0

bin , (

( 1 (

)

) )

k

k B rB r

r
r

T t B T t k

C F t F t
- -

=

> =

= -

£ <

å

  
 

Note that this last line assumes the T* have the same 

distribution as T. It is therefore not acceptable to 

obtain the X* using the jackknife or bootstrap.  

 

Feeding this back into our integral 

( ) { }

{ }

1
*

( ) 0 0 0
0
1

0

( ) 1 ( ) ( ) d

1  d

k B rB r

k r
r
k B rB r

r
r

T T C F t F t f t t

C u u u

-¥ -

-¥
=
-¥ -

-¥
=

< = -

= -

åò

åò


 

(The last line uses the existence of a density). Since 

the sum is finite: 

{ }

{ }

1

0
1

1 1

0

1  d

1  d

k B rB r

r
r
k B rB r

r
r

C u u u

r ur C u u u

- ¥ -

-¥
=
- ¥ -- -

-¥
=

= -

= -

åò

å ò
 

Replacing the factorials in the binomial coefficients 

with gamma functions, we see that this equivalent to 

taking ( ){ }, 1 / ( 1)r B r r Bb - + = + , which gives 

1
1

0 1

1

k

r

r
r

B
k

B
a

-
-

=

=
+

=
+

=

å

 

As required.  

 

The hard part of the process above is step 3; simulating random samples 

under H0. This can be done using resampling methods, which involve the use 

of samples taken from a single observed sample, and can be used when very 

little is known about the underlying distribution. We study two such 

methods… 
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The Jackknife 

The jackknife involves subsampling without replacement from an observed 

sample. It involves the use of leave-one-out data sets and is most often used to 

estimate such quantities as the variance or bias of an estimator. 

 

We first develop some notation. Let 
1

,,
n

X X  be a sample of independent 

variables with distribution F, and let ( )Fq q=  be a parameter of interest. Let 

1
,ˆ ˆ ( , )n

n

n X Xq q=   be an estimator of q  with variance v, and for , ,1i n=   

let 1 1

( ) 1 11
ˆ ˆ ( , , , , , )

i i

n n

i n
XX X Xq q - +

- -
- =    be an estimator based on all the 

variables in the sample save one. 

 

Jackknife estimator of variance: The jackknife 

estimator of variance is given by 

( )
2

1 1

jack ( ) (av)
1

1 ˆ ˆˆ
n

n n

i
i

n
v

n
q q- -

-
=

-
= -å  

where 

1 1

(av) ( )
1

1ˆ ˆ
n

n n

i
in

q q- -
-

=

= å  

 

Motivation: We can motivate this definition by 

considering a linear statistic of the form 

1

1ˆ ( )
n

i
i

X
n

q m a
=

= + å  

for some function a . 
 

In this case 

1

( )

1ˆ ( )
1

n

i j
ij

X
n

q m a
¹

-
-

= +
- å  

and so 

1

(av)
1

1

1 1ˆ ( )
1

1 1
( )

1

n
n

j
i j

n

j
i j

i

i

X
n n

X
n n

q m a

m a

-

=

=

¹

¹

= +
-

= +
-

å å

åå
 

note that the sum involves every ( )
i

Xa  exactly n – 1 

times, because we sum from i = 1  n, leaving out 

one item each time. We can therefore write it as 
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1

1
( )

n

i
i

X
n

m a

m a
=

+

º

=

+

å  

Where a  denotes the average of ( )
i

Xa . 
 

We can now write: 

( )
2

1
jack ( 1)

1
2

1

2
1 ,

2

2

1 ˆˆ

1 1
( )

1

1 1
( ) ( )

( 1)

2
( )

1

n
n

i

n

j
i j

n

j k
i

i

i

i

j k

j
j

n
v

n

n
X

n n

n
X X

n n

X
n

q m a

a a

a a

a
a a

-
-

=

= ¹

= ¹

¹

-
= - -

æ ö- ÷ç ÷= -ç ÷ç ÷÷ç -è ø
æ- ç= ççç -è

ö÷÷- + ÷÷÷- ø

å

å å

å å

å

 

We now combine the outer and inner sums as follows: 

 The first sum is hard! We can decompose it 

into two parts: 

o First, we’ll get terms of the form 
2( )

i
Xa . We’ll get n – 1 of each of those, 

because we sum from i = 1  n, 

leaving out one item each time. 

o We’ll then gets terms of the form 

( ) ( )
i j

X Xa a . We’ll get n – 2 of each one 

of those, because we sum from i = 1  

n, and we miss out two items each time 

( ( ) ( )
i j

X Xa a  and ( ) ( )
j i

X Xa a ). 

 The second sum is exactly as we saw above – 

once we combine the two sums, each ( )
i

Xa  

appears n – 1 times. 

 a  is a constant, and so simply needs to be 

multiplied by n. 

Overall, we now get: 
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}

2 2

2

2

21 2 1

( 1) ( 1)
1

2 ( 1) 2

1
1

21 2 1
1( 1)

1

2 2

2 21 2 1
1( 1)

1

( ) ( ) ( )

( )

( ) ( ) ( )

2

( ) ( ) ( )

n
n n n

i j in n n
i i

n
n

in
i

n
n n

i j in nn
i i

n
n n

i j in nn
i

j

i

j

j

X X X

X n

X X X

n n

X X X n

a

a a a

a a

a a a

a a

a a a a

¹

¹

- - -

- -
=

-

-
=

- -
--

=

- -
--

=¹

ìïï= +íïïî
üïï- + ýïïþ

ìïï= +íïïî
- +

ìïï= + -í

å å

å

å å

å å

2 2

2

2 21 2 1

( 1) ( 1)
1 1

( ) ( )
n n

n n
i in n n

i i

X X na a a- -

- -
= =

üïïýï ïï ïî þ
ì üï ïæ öï ï÷ï ïç ÷= + -çí ý÷ç ÷ï ïçè øï ïï ïî þ

å å

 

In the last step, consider the fact that the first term 

contributes 
2

2

( 1)

n

n

-

-
 lots of 2( )

i
xaå , whereas the second 

term contributes 
2

1

( 1)n-
 lots of it. Together, these 

make 

2 2 2

2 1 1 1

1( 1) ( 1) ( 1)

n n

nn n n

- -
+ = =

-- - -
 

Which is indeed what we need, from the second-to-

last line. Finally, we write 

( )2jack
1

1
ˆ ( )

( 1)

n

i
i

v X
n n

a a
=

= -
- å  

 

Now, we also have 

( )
1

2
1

1ˆvar var ( )

1
var ( )

n

i
i

n

i
i

X
n

X
n

q m a

a

=

=

æ ö÷ç ÷= +ç ÷ç ÷çè ø
æ ö÷ç ÷= ç ÷ç ÷çè ø

å

å
 

Since the Xi are independent, we can write 

( ) ( )

{ }

2
1

2

2
1

1ˆvar var ( )

1
( )

n

i
i
n

i
i

X
n

X
n

q a

a a

=

=

=

æ ö÷ç= - ÷ç ÷è ø

å

å
 

 

Taking the expectation of 
jack

v̂  above, we see that it 

is indeed an unbiased estimator of v in this case. This 

results only holds true for a linear statistics, but 
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many smooth statistics can be well approximated by 

linear statistics.  

 

Jackknife estimator of bias: The jackknife estimator 

of bias is given by 

 ( )( )1
jack (av)

ˆ ˆbias 1 n nn q q-= - -  
 

Motivation: We cannot use the same linear statistic 

as we did in the last proof, because the bias of that 

statistic is in fact 0. Instead, we need to the 

quadratic statistic 

( )2
1 1 1

1 1ˆ ( ) ,
n n n

i i j
i i j

X X X
n n

q m a b
= = =

= + +å åå  

as an estimator of 

1 1 2
{ ( )} { ( , )}X X X a bq m a b m+ == + + +   

 

We first note that 

1

( ) 2
,

1 1ˆ ( ) ( , )
1 ( 1)j

n

i i i j
i j k i

X X X
n n

q m a b-

¹ ¹
- = + +

- -
å å  

Now consider finding the average of each of the 

terms above 

 1 1 1
11 1

) ( )( n

i j iin n n i j i
XX aa

- -¹ = ¹S S= S . Looking 

at the sums, we find that each ( )
i

Xa  is 

summed over n – 1 times. So we can re-write 

this simply as 1
1

( )N

i in
Xa

=
å . 

 2 2
1 1

,
1

( 1) ( ) ,11
( , ) ( , )n

j k i i j i inn jn j k i
X X X Xb b¹ ¹- = -

S S= S

We can split the second sum into two parts: 

o Those terms where i = j. There are 

( 1)n -  such terms, which gives 
1

( 1)
( , )

i j i jn n
X Xb

=-
S . 

o Those terms where i j¹ . We can 

simply write those ( , )
i j i j

X Xb¹S . The 

sum above involves n – 2 lots of this 

sum (n from the outer sum, –2 to 
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exclude each of the subscripts being 

equal to i). 

 

Thus, all in all, we can write (we omit the arguments 

of a  and b  to save space): 

2

1 1 2 1
(av) ( 1)( 1)

n̂ n
n n n

j
n n

i i i jj

q m a b b- -
-

=¹
-

¹

= + + +å å å  

It follows that 



2

1
jack (av)

2 1
( 1) 2( 1)

1 1

ˆ ˆbias ( 1)( )

1
( 1)

n n

n n
n

n nn n
i i j ij j

n

n
n

q q

b b b

-

-
= = =¹

-
-

= - -
æ ö÷ç ÷= - + -ç ÷ç ÷çè ø

å å åå

The last term, however, can be split as follows 

2 2

1 1
2

1 1

1 n n

n n
i j i j i jn

b b b
= = ¹=

= +åå å å  

And so 



2 2 2

2

2 2 2

2 2

1
jack (av)

2 1 1 1
( 1)( 1)

( 2) ( 1) ( 1)

( 1) ( 1)

1 1

( 1)

ˆ ˆbias ( 1)( )

( 1)

( 1)

n n

n
n nn n n n

i i j

n n n n n

n n n n
i i j

n

j

j

j
n n

i i j

n

n

n

q q

b b

b b

b b

¹

¹

¹

-

-
--

=

- - - - -

- -
=

-
=

= - -
æ öé ù ÷ç é ù ÷= - - + -çê ú ÷ê úç ë û ÷ë ûçè ø
æ öé ù é ù ÷ç ÷= - +çê ú ê ú ÷ç ÷ë û ë ûçè ø

= - +

å å

å å

å å

 

Taking expectations 

( ) { }
{ }

{ } { }
{ }
( )

2

2

1 2

1 1

1
1 1 1 2

1
1

1
jack

(

1

1

1)
( , )

( , )

( , ) ( , )

( , )

ˆbias

bias ( 1)
n n

n

n

n

n

X X

X X

X X X X

X X b

n n

n

b

b

b b

b

q

-

é ù= -ê úë û
é ù= -ê úë û

=

= - -

+

 


 


 

As expected.  

 

The jackknife can also be used to generate B = n “samples” from 
1

,,
n

X X  

by missing out a single element from each sample. However, if n is small, B 

will be small, and in the context of a Monte Carlo test, this will severely limit 

the possible choices of significance level a . 
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The Bootstrap 

The non-parametric bootstrap is another form of resampling which involves 

forming samples with replacement from observed samples. 
 

Consider a set of independent random variables ( )1
, ,

n
X XX =  , with 

distribution function F, of which we have a realisation 
1

,,
n

x x . We are 

interested in the distribution of a root or pivot ( );
n

R X F , which we denote 

( )
n

K F . Such a “root” could include any statistic ( )
n

T X , but also quantities 

like { }1ˆ
( )n

F
X X

s
- . 

 

Our strategy will be to use a different distribution function F̂  that 

approximates F, and then estimate ( )
n

K F  by ˆ( )
n

K F , as follows 
 

Bootstrap estimator: We estimate ( )
n

K F  by ˆ( )
n

K F , 

which we find as follows 

   1.  Draw B independent bootstrap samples, each of 

size n 

   ( )* * *

1
, , 1, ,

b b bn
X X X b B= =   

  where each of the X* are independently drawn 

from the distribution F̂ . 

 2. Approximate ˆ( )
n

K F  by the ECDF of 

   ( ){ }* ˆ; : , ,1
n b

R X F b b=   

In general, B = 100 or B = 200 is often sufficient to 

estimate a variance or quantile, but B = 1000 is 

recommended to estimate the entire distribution. 
 

Notes: The question of how to choose F̂  remains. 

 In a parametric model { }:Fq q= ÎQ , the 

parametric bootstrap uses ˆF̂ F
q

= , where q̂  is 

the MLE of q . 

 The non-parametric bootstrap simply uses the 

ECDF ˆ
n

F  of ( )1
, ,

n
X XX =  . In that case, 

step 1 above simply involves taking a re-

sample of size n with replacement from 
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1
,,

n
x x , with equal probability placed on 

each expression. 
 

Notes: If Ni denotes the number of times xi appears 

in the bootstrap sample, then the vector ( )1
,,

n
N N  

(note that N+ = 1) has a one-to-one mapping with 

the (2n – 1) binary tuple that contains N1 ones, 

followed by a zero, followed by N2 ones, etc… There 

are 2 1n

n
C-  such tuples, and this is therefore the 

number of bootstrap samples. 
 

Furthermore, ( )11~ Multi ,; ,
i n n

N n  , and so 

( )1 1
1

! 1 !
, ,

! !

n

n n n
n

n n
N n N n

n n n n

æ ö÷ç ÷= = = £ç ÷ç ÷çè ø



  

So the most likely sample is the original data, with 

probability n!/nn. 

 

R-CODE:  The bootstrap samples themselves can be taken using 
X.star <- matrix(NA, nrow=B, ncol=n) 
For(b in 1:B) { 

X.star[b,] <- sample(x, n, replace=TRUE) 
} 

Where x contains our data, n is the number of data items, and B 

is the number of bootstrap samples we want to take. 

 

We cover a few examples to clarify this concept: 

1. Finding a confidence interval for 
1

{ }
F

Xm =   

An analytic approach would be to define the root  

( ) ( )1
( ; ) 0, ar ( )d

n F
R X F n X N Xm= -    

and then to estimate4 

                                                 
4 To prove this result, consider that the ECDF of *

1
X , and associated density, are 

{ }
1

1ˆ ( )
i

n

n x x
i

F x
n £

=

= å   { }
1

1ˆ ( )
i

n

n x x
i

f x
n =

=

= å    

and so 

( ) { }
*

1
1 1

1 1ˆ ( ) d  d
i

n n

n ix x
i i

X xf x x x x x x
n n=

= =

= = = =å åò ò   

and similarly 
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* 21
ˆ1 1

ar ( ) ar ( ) ( )
F iF n

X X x x= = å -   

and finally estimating the (1 )a-  confidence interval as 

2 21 1
2 2

, ,
,

z z
x x

n n

s a s a
é ù
ê ú

- +ê ú
ê ú
ê úë û

 

Where 2,
z
s a

 denotes the upper a  point of a 2(0, )N s  distribution. 

 

In reality, however, we do not know the distribution of the root. We 

therefore use the following bootstrap method: 

 Fix a large B such that 1
2

( 1)Ba +  is an integer. 

 For each, b, generate independent bootstrap samples *

b
X  by 

re-sampling, and compute 

( ) ( )* * *ˆ;
b n b n b

R R X F n X X= = -  

 Approximate the (1 )a-  confidence interval as 

( ) ( )2 2

* *

[1 ][ 1] [ 1]
,

B B
x R x Ra a- + +

é ù
- +ê ú

ê úë û
 

 

More generally, the bootstrap confidence intervals for a parameter 

2(0, )N s  are often based on the root ( ) ( );
n

R X F n q q= - , where q   

is an estimator of q . These are called percentile intervals. 

 

2. Estimating { }ar ( )
F

Xq , where ( )Xq  is an estimator of ( )Fq q=   

Our step should be to try and calculate the non-parametric 

bootstrap estimator { }*
ˆar ( )
nF

Xq  analytically, then we apply the 

following algorithm 

 Generate B independent bootstrap samples *

b
X  (by re-

sampling) 

 For each bootstrap sample, calculate * *( )
b b

Xq q=   

 Approximate { }*
ˆar ( )
nF

Xq  by 

( )* * * *

1

2

1

1
where 

1

1B

b

B

b b
iB B

q q q q
= =

-
-

= åå      

                                                                                                                                            

( ) { }
* 2 2 2

1
1 1

1 1ˆar ( ) ( ) d ( )  d ( )
i

n n

n ix x
i i

X x x f x x x x x x x
n n=

= =

= - = - = -å åò ò   
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3. Estimating the bias of ( )Xq , an estimator of ( )Fq q=  

The bias of q  is 

{ } { }(ias )b ( )
FF

X Xq q q= -   

the non-parametric bootstrap estimator of the bias is 

{ } { }* *
ˆ ˆ

ˆ ˆ ˆ( ) ( ) where ( )bias
n nFF n

X X Fq q q q q- ==   

If we cannot compute this expression directly, we can apply the 

following algorithm instead: 

 Generate B independent bootstrap samples *

b
X  (by re-

sampling) 

 For each bootstrap sample, calculate * *( )
b b

Xq q=   

 Approximate ˆ )bias (
nF
q  by 

( )*

1

1 ˆ
B

b
bB
q q

=

-å   

 

4. Estimating the distribution of the sample median, ( )1 1
2

F-  

In this case, the distribution can be calculated analytically. Let x(j) 

be the jth ordered statistic of 
1

,,
n

x x , the original sample. Let also 
*ˆ

n
F  be the empirical distribution function of a given bootstrap 

sample. Then 

( ) *
( )

1
2

* 1 1 1
( )2 2{ }

1

ˆ ( )
i j

n

n j X x
i

k n k
n

k n

F x n

n j n j
k n n

-

£
=

-

é ù=ê úê ú

æ ö÷ç é ù÷£ = ³ç ÷ê úç ê ú÷çè ø
æ öæ ö æ ö-÷ç ÷ ÷ç ç÷ç ÷ ÷= ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç çç ÷ç è ø è øè ø

å

å

  
 

Effectively, this simply the probability of our bootstrap sample 

containing more than n/2 items which are < x(j) [each with 

probability j/n]. The sum above is over all the possible number of 

“more than n/2” items. From this, we have, for j = 2, …, n 

( ) ( ) ( )* 1 * 1 * 11 1 1
( ) ( ) ( 1)2 2 2

ˆ ˆ ˆ( ) ( ) ( )
n j n j n j

F x F x F x- - -
-= = £ - £    

and 

( )
1
2

* 1 1
(1)2

1 1ˆ ( )

k n k
n

n
k n

n n
F x

k n n

-

-

é ù=ê úê ú

æ öæ ö æ ö-÷ç ÷ ÷ç ç÷ç ÷ ÷= = ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç çç ÷ç è ø è øè ø
å  
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We now consider a final interesting example in which the nonparametric 

bootstrap fails. Consider 
1

, ~ 0, ( , ]
n

X UX q , and define the root 

( )
( )( )

;
n

n

n X
R X Fq

q

q

-
=  

where ( )1
ma , ,x

nn
X X X=  . 

 

We first find the distribution of ( );
n

R X F  

( ) ( )

( )
1

n

x

F n F n

n x x
R x X e

n n

q -
æ ö æ ö- ÷ ÷ç ç÷ ÷> = < = - ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

   

So ~ Exp(1)
n

R . Note, however, that if we use ˆ
n

F  as our distribution, then our 

best estimator of 
( )n

xq = , and so 

( ) ( )*

( ) ( )*

( )

ˆ,
n n

n n

n

n x X
R X F

x

-
=  

And so 

( ) ( )
( )

( )
( )

*
ˆ ( ) ( )

( )

( )

th

( )

1

0

bootstrap sample

1 bootstrap sample

1 element in sample

1
1 1

1

n n n nF

n

n

n

n

n

R X x

x

x

x i

n

e-

= = =

= Î

= - Ï

é ù= - ¹ê úë û
æ ö÷ç ÷= - -ç ÷ç ÷çè ø
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Clearly, therefore, the asymptotic distribution of the nonparametric bootstrap 

here does not tend to that of the root. 

 

Let us consider, instead, the parametric bootstrap, which uses the MLE of 

( )
ˆ

n
xq = : 

( ) ( )*

( )*
ˆ

ˆ
,

ˆ
n

n

n X
R X F

q

q

q

-
=  

Now 

( )
ˆ ˆ

*

( )

ˆ( )
1

n

x

F n F n

n x x
R x X e

n nq q

q -
æ ö æ ö- ÷ ÷ç ç÷ ÷> = < = - ç ç÷ ÷ç ç ÷÷ çç è øè ø

   

Which does indeed tend to the distribution of the root. 
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Note the key difference between ˆ
n

F , which picks each value with equal 

probability, and ˆF
q
, in which the probability of picking values in an interval 

depends on the value itself. 
 

This behaviour is due to the non-standard asymptotics of the uniform 

distribution. 



Monte Carlo Inference  Page 42 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

Bayesian Inference 

 

Bayes’ Theorem states that 

( | ) ( )
( | )

( | ) ( ) d

L p

L p
p =

ò
x

x
x

q q
q

q q q
 

Where 

 ( | )p xq  is the posterior distribution of q  

 ( | )L x q  is the likelihood 

 ( )p q  is the prior on q . 

 

EXAMPLE:  Consider an auto-regressive (times-series) model of order k, in 

which we observe data ( )1
, ,

N
x x=x  , which, for t > k + 1 is 

generated by the process 

2

1

~ (0, )
k

t r t r t t
r

x a x Ne e s-
=

= +å  

We can express this as 

k k
X= +x a e  

Where 

 ( )1
, ,

T

k k N
xx +=x   

 Xk is an (N – k) × k matrix with ( )
k ij k i j

X x + -= . 

 ( )1
, ,

k
a x=a   

 ( )1
, ,

N

T

k
ee +=e   

 

We then have 

( )
( )

( ) ( ) ( )1
2

1
2 2

( )
2

1 1
| , exp

22

T

k k k k kn k
L X I Xs s

ps

-

-

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
x a x a x a  

We might place the following priors on a and 2s  

( )

2

1

2

1

/

2 /

2

2

~ ,

1 1
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2(2 )

~ InverseGamma( , )
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We are interested here in calculating marginal summary statistics for q . For 

example, the posterior expectation 

{ }( ) ( ) ( | ) dp f f p= ò xq q q q  

Recall that, using Monte-Carlo integration, we can approximate 

{ } 1
1

1
( ) ( ) , , ~ ( | )

n

i n
inp f f p
=

» å xq q q q q  

Unfortunately p  may be difficult to sample from, since it is often high 

dimensional and of unfamiliar form. We resolve this problem as follows: 

 We construct a Markov chain (0) (1), ,q q  which has p  as its stationary 

distribution. In other words, such that 

( )(0), ? (? | ) 0 as t tp-   ¥xq  

Where ( ) ( )(0 ) 0)) ( (, ? ? |tt = =q qq  . 

 We run the chain until it reaches equilibrium. 

 Further realisations can be regarded as a dependent sample from p . 

This method is called Markov Chain Monte Carlo. We consider various 

methods to construct such a chain. 

 

The Gibbs Sampler 
 

Gibbs Sampling: Imagine the random vector we are 

sampling has p dimensions, and distribution ( )p q . 

The Gibbs sampler samples from this distribution as 

follows: 

   1.  Begin in some arbitrary state 

( )(0) (0)

1

(0),,
p

q q=q  . 

 2. At time t, in state ( )tq , update the state vector 

one components at a time: 

   

( 1) ( )

1 1 1
~ ( |t tq p q q+ ( )

( 1

(

) ( 1

)

2

) ( )

2 2 1 2

, )

~ |

, ,

( ,

t

p

t t t

t q

q p

q

q q q+ +


( ) ( )

3

( 1) ( 1) ( 1) ( )

1 1

, , , )

~ ( | , , ,

t t

p

t t t t

p p p p

q q

q p q q q q+ + +
-



 )

 

 3. Collect a total of T samples. 

 4. Discard the first b samples as “burn-in”. 

 5. Treat { }( )

1

T
t

t b= +
q  as a dependent sample from p . 
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The distribution of one component conditional on another is called the full 

joint conditional distribution. 

 

EXAMPLE:  Consider the AR model from above. The full joint conditions for a 

and 2s  are 

( ) ( )

( ) ( )

1
2

1
2

1
2

2

( )2

( ) 12

( )2

2 2 2

2

2 1 /
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1
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2
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And 
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2 2

2

1

( | , ) ( | , ) ( )

1
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Since we want a quadratic in a, we write 

( )
( )

{ }
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( )

2

1

2 1

2 1

1 1

1
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With 
1 2 1 2 1( )T T

k k a k k a a
X X Xs s- - - - -S = +S = S +Sxm m  

 

The Gibbs sampler can be used to great effect when 

 There is some missing data 
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 The likelihood is difficult to use in its native form, but easy to use 

when conditional on some unobserved data (which we can treat as 

“missing” data). 

 

In both the cases above, we can explicitly calculate ( )obs miss
, |L y y q . We then 

simulate q  and ymiss together using a Gibbs sampler, with 

( )miss obs obs miss
( , | ) , | ( )L y yy py qp q qµ  

 

Of course, in reality, the distribution we are interested in is 

obs miss obs miss
( | ) ( , | ) dy y y yp q p q= ò  

The values of q  returned by the Gibbs sampler, however, have precisely that 

distribution, because by ignoring the values of ymiss that the Gibbs sampler 

returns, we are effectively “integrating over” ymiss. 

 

EXAMPLE:  Consider a group of N animals, each assigned to one of four 

categories 

( )1 2 3 4
, , ,y y y y  

with probabilities 

( )2 1 1
4 4 4 4

, , ,q q q q+ - -  

The likelihood is then multinomial 

( ) ( ) ( ) ( )1 2 3 42 1
4 4 4

|
y y y y

L q q qq
+

+ -µy  

Suppose we place a Beta( , )a b  prior on q . Then 

( )
( ) ( ) ( )
( ) ( )1 2

1 2 3 4

3
4

1 12 1
4 4

1 1

4

( | )

(1 )

| ( )

2 1

y y y

y y

y

y y

L p

aq

b a

bq q

q q

q q

p q

q q

q
+

+ - -+ -

+ - + -

-

µ

µ

µ + -

yy

 

This is hard to sample from. 

 

Consider, instead, splitting our data into the following five groups 

( )1 2 3 4
, , , ,y z z y y y-  

With probabilities 

( )1 1 1
2 4 4 4 4
, , , ,q q q q- -  

We then have 



Monte Carlo Inference  Page 46 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 31

1

1 2 3
1 4

4! 1 11
!( )! 2

111
2

1
4 4

4

4

( , | ) | ,

)

)

1

(

(

1
y z

N
z y z

y z z y

z y y

z

y

yy y

L z p

C

z

a bq q q

baq

p q

q q

q q

q q

-

-
- + + -+
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-µ

-

µ

µ

-

yy

  

[Note – it is important, in this case, to keep the factor of / 4q  

intact, because getting rid of the ¼ would imply getting rid of a 

factor of 1/4z. Since, however, we will be needing the distribution 

of z, this is not legitimate]. 

 

And so 

( )4 2 3
| , ~ Beta ,z z y y yq a b+ + + +y  

 

Finding the joint conditional for z is slightly harder. Here are two 

ways to do it 

1. Note that 

( ) ( )1
1 1

2 4
( , | )

y z zy

z
Cz qp q

-
µy  

This looks like a binomial, but ½ and q /4 don’t sum to 1. 

We’ll therefore try and find something we can multiply 

both of them by to get something that does sum to 1. 
1
2 4

1
4 2

? ? 1

1 4
?

2

q

q q

+ =

= =
+ +

 

And so 
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1 2

2 2
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y z zy

z
Cz q

q q
p q

-

+ +
µy  

As such 

( )1 2
| , ~ Bin ,z y q

q
q

+
y  

2. Or, we can simply note that once q  is known, the 

conditional probability of an observation being in z given 

it’s in y1 is 

( )
( )

4

1
21 4

2

z

y

q

q

q
q

= =
Î

+ +Î




 

Which yields the same result. 

 

The Metropolis-Hastings Algorithm 
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The Gibbs sampler is a special case of the Metropolis-Hastings (MH) 

algorithm. The algorithm basically samples values from an “approximate” 

distribution and then “corrects” these so that they asymptotically behave as if 

they came from the stationary distribution. 

 

The Metropolis Hastings (MH) algorithm: 

   1.  Begin with some arbitrary state (0)q . 

 2. Simulate ( )~ ( , )tqf q f ; q is our “approximate 

transition probability” from (0)q  to f . 

 3. Let 

   ( )
( )

( )

( ) ( )

( | ) ( , )
, min 1,

( | ) ( , )

t
t

t t

q

q

p
a

p

æ ö÷ç ÷= ç ÷ç ÷çè ø

x

x

f f q
q f

q q f
 

 4. Set ( 1)t+ =q f  with probability ( )( ),ta q f , or 

else reject it and set ( 1) ( )t t+ =q q . 

So the Markov transition Kernel for the chain is 

given by 

( ) 
Staying, if it We neither moveMoving forward to

so happened that to any state in ,some 
 was already nor do we remain

there

, ( ) ( )( , )d 0
H H BB

BB
B

B r I

Î
Î

= + +ò
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q qq f f q


   

Where 
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H
q

r
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= - ò x
x x

q f q f q f

q q




 

This leads to values that behave as if they come from 

( )p q . 
 

Proof: First, note that 
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This implies that 

( , ) d ( , ) d( ) ( )

( ) 1 ( )
H Hx x

x y x y x xx y

y r y

p p

p
" "

=
é ù= -ê úë û

ò ò 
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With this key result in hand, we are now ready to 

prove our theorem. Effectively, we want to show that 

if we sample x from the stationary distribution, the 

probability of the Markov chain moving us from x to 

any element in B is the same as the probability of 

being in B under the posterior distribution. In other 

words, we want to show that 

( ) ( , ) d ( ) d
Hx B

x x B x y yp p
"

=ò ò  

To do that, consider 
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( ) ( , ) d ( ) ( )  d

( ) ( ) ( ) ( ) d

(

d  d
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We can now use our previously derived result for 

( ) ( , )
x H

x x yp
"

ò  , which gives 

( ) ( , ) d

( ) 1 ( )  d ( ) ( ) d

( ) d

H

B
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B

B

x x B x

y r y y x r x x

y y

p
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p
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ò
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As required.  
 

Note: A great advantage of the MH algorithm over 

Gibbs sampling is that we do not need to know the 

normalisation constant of p . Also, we do not need to 

know any of the joint conditionals. 

 

The acceptance function might be easier to understand when written as 

follows 

( )
( )

( )

( ) ( )

( | ) ( , )
, min 1,

( | ) ( , )

t
t

t t

q

q

p
a

p

æ ö÷ç ÷= ¸ç ÷ç ÷÷çè ø

x

x

f q f
q f

q f q
 

This makes it clearer that it is indeed in the form (actual density / proposal 

density) that we saw in importance sampling. 

 



Monte Carlo Inference  Page 49 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

Note that when the proposal distribution q is symmetric, it is called a 

symmetric (or Metropolis) proposal. In that case, ( , ) ( , )q q=f q q f  and so the 

acceptance probability reduces to 

( | )
( , ) min 1,

( | )

p
a

p

ì üï ïï ï= í ýï ïï ïî þ

x

x

f
q f

q
 

 

There are a number of possible choices for the proposal distribution q. Here 

are two common examples: 

 Random-Walk (RW) Metropolis 

Here, we specify 

~ f= + z zf q  

Common choices for f may include a uniform distribution or a 

multivariate normal. The distribution is often – but not always – 

chosen to be symmetric. In RW metropolis, we are effectively 

choosing our new value to be close to the current one, the reasoning 

being that when the stationary distribution has been reached, we’re 

more likely to spend longer at points of high density.  

 Independence Sampler 

Here, the candidate observation is drawn independently of the 

current state, so that ( ), ( )q g=q f f . The corresponding acceptance 

probability can be written 

( ) ( | )
( , ) min 1, ()

( ) ()g

w p
a w

w

ì üï ï ⋅ï ï= ⋅ =í ýï ï ⋅ï ïî þ

xf
q f

q
 

This is precisely the importance weight function that would be used 

in importance sampling, given observations from g being used to 

sample from p . 

 

Theorem: The Gibbs sampler is a special case of the 

Metropolis Hastings algorithm. 
 

Proof: Suppose we have a current estimate of our 

parameters ( )1
, ,

p
q q=q  . We break each iteration of 

the MH algorithm into steps, each of which update a 

single value of q . 

1. Start by setting (0) =q q . Set t = 1. 
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2. Propose a new value f  for a single component 

t
q , so produce a new vector 

( )( 1) ( 1) ( 1) ( 1)

1 1

(

1

) , , , , ,t t t t

p

t

t t
q q f q q- - - -

- +=q    

with proposal density 
( 1) ( 1) ( 1)

(

( (

)

)

( )

)( , ) ( | () |, , )t t t

t t

t t

t t
q p f p q- - -

- -
= =x xq qq q  

Where ( 1) ( 1) ( 1)

( ) 1
, ,t t t

t t
q q- - -

- =q ( )( 1), , t

p
q - . Denote 

3. Accept the proposal with acceptance 

probability ( 1) ( )( , )tta -q q . 

a. If it is accepted, keep ( )tq . 

b. Otherwise, keep the previous iteration 
( ) ( 1)t t-¬q q . 

 

All we need to do is to show that the acceptance 

probability in this case is always 1. In that case, the 

algorithm above is equivalent to the Gibbs sampler. 

Now, { }( 1) ( )( , ) min 1,t

t

t Aa - =qq , where 
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Note, however, that ( 1)

(

( )

( ) )

tt

t t-
-

-= qq , so 
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(To go from the first line to the second line, use 

Bayes’ Theorem on conditional p  probabilities). As 

required.  

 

It is generally accepted that if one wants T independent samples from p , but 

must instead resort to obtaining T depend samples (eg: via MCMC), then 
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somehow, the resulting effective sample size (relative to independent sampling) 

is less than T, due to the autocorrelation of the chain. 

 

Radford Neal defined 

Effective sample size due to autocorrelation: (for 

marginally scalar samples) 

1
1

ESS( )
1 ˆ )2 (T

T

r-
=S

=
+

q
 

 

Where (̂ )r   is the sample autocorrelation at lag  : 

(̂ )
(̂ )

(̂0)

g
r

g
=

  

where 

( )( )( ) ( )

1

( )

1

1
(̂ )

1

T
t t

t
T

t

t

T

T

g q q q q

q q

-
+

=

=

= - -
-

=

å

å




  

 

Model uncertainty 

So far, our algorithms have considered fixed parameter spaces. What if, 

however, there is some uncertainty as to which model is the “correct” one 

from a set 
1
, , }{

k
  ? We can include the model as an additional 

parameter to be estimated 

| ) ( | , ) ( , ) (( , )L p pp µx x q qq
  
     

The idea is then to construct a Markov chain that is able to move between 

different models, and has stationary distribution p , to generate samples 

( )

(

1

( ) ),{ }t

Tt

t

t

=q


 .  

 

Using these samples, here are two examples of statistics we might be 

interested in calculating: 

1. The posterior probability of each model 

( )
1

) ( )( |

( | ) (
|

)
i i

i k

i i i

L

L p

p
p

=S
=

x

x
x

 


 
 

where 

)( | , ) d( |( )|
i i ii i i

L pL= ò xx q q q
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This can be calculated, using ( )

(

1

( ) ),{ }t

Tt

t

t

=q


 , as 

( ) { }( )

1

1
ˆ |

t
i

i

T

tT
p

=
=

= åx 
 

  

2. Estimates concerning the parameters themselves, based on the 

distribution 

1

( | ) ), |( | ) (
i i

k

i

p p p
=

= å x xxq q    

We can calculate such statistics by simply ignoring the model part of 

our Markov chain. For example 

( ) ( )

( )

1

2
( )

1

1
( )

1 ˆv

ˆ

ar

T
t

i
T

t

i

T

T

=

=

==

= -

å

å

q q

q q

q

q


 

Of course, this only works if q  is a statistic that is common to all the 

models (for example, the mean – see the example below). 

 

The algorithm we use to generate our desired Markov Chain is called the 

reversible jump algorithm (some written as RJ-MCMC). 
 

Reversible-Jump Monte Carlo: 

   1.  Given a model  , update the parameters q


 

using MH or GS. 

 2. Reversible jump (RJ)-step: with probability 

( )P ¢   [which must be chosen], propose 

to replace the model   with a new model ¢ . 

This proposal can be accepted or rejected. 
 

The RJ step is complicated because it involves proposing new parameters ¢q


 

for the new model. Imagine the move we are proposing is 

{ } { }, , ¢
¢q q

 
   

 

Our approach will be to choose 

( ) ( ),
, ,g¢ ¢

¢ =u uq q
  

 

Where 
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 g is a known, deterministic, bijective function 5  between ( ),uq


 and 

( ),¢ ¢uq


. 

 u and ¢u  are vectors chosen such that  

( ) ( )dim dim dim dim ¢
¢+ = +u uq q

 
 

In other words, it “matches” the dimensions of the parameters. Either 

one or both of u and ¢u  will be 0, depending on the size of the models. 
 

If dim( ) dim( )¢ >q q
 

, u is nonzero. We choose it by sampling from a 

proposal density 
,

( )q ¢ u
 

 

We then accept the move with probability ( ) { }, min 1,Aa ¢ =q q
 

 

( ) ( )
( ) ( ) ( )

Model ratio Proposal ratio
( | , ) ( | ) ( )

( | , ) ( | ) ( )

, | ) ( , )

, | ,

(

( )

L p p

L p p

A
P q g

P q

p

p

¢ ¢

¢

æ ö¢ ¢ ¢ ÷ç ÷ç ÷=ç ÷ç ÷÷çè ø

¢ ¢¢ ¶
⋅

¢
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¶

x

x

ux u

x u u

q q

q q

q q
q q 

 

 

 

 

  

  

 

  
 

Note that 

( )
( )
( )
( , )( , ) ( , )

( , ), ( , )

i

jijij

g ¢¢
æ ö æ ö ¢¶¢¶ ¶÷ç ÷ç÷ç ÷ç= =÷ç ÷÷ ç ÷ç ÷ ÷ç ¶¶ ¶÷ç è øè ø

uu u

uu u

qq q
qq q

 

 

 

Where ( ),uq


 is the vector formed by combining q


 and u. 
 

Further note that the reverse move from { } { }, ,¢ ¢ q q
 

   is fully 

defined by g—1 and ( ) { }1, min 1,Aa ¢
-=q q

 
. 

 

EXAMPLE:  Suppose that we observe data x which are IID, but where the 

distribution is unknown; either Exp( )l  or Gamma( , )a b , with all 

parameters unknown 6 . We let ( )Exp  and ( )G  be the prior 

probability on each model, and let the priors on the parameters be 

1 1 2 2 3 3
~ Gamma( , ) ~ Gamma( , ) ~ Gamma( , )a b a b a bl a b  

Let’s find posterior distributions 

 

Exponential model 

                                                 
5 A bijective function f from a set X to a set Y has the property that for every y in Y, there is 

exactly one x in X such that f(x) = y and no unmapped element exists in either X or Y. 
6  This example is really quite silly, because Gamma(1, ) ~ Exp( )l l , but it’s useful for 

demonstration. 
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[Reminder: we need all the constants in the original distribution, 

because l  is something we’ll want the distribution of!] 

( ) ( ) ( )

( )

11

1

1

1 1

| ,Exp exp exp

( | ) ( | ,

|

E

~ Gamma ,

xp) ( )
x bn

i

a

n
n

i

e

n a

L x x

x

L

b

p
l l

l l l l l

p l

l

l l l +

+

- -+ -

=

+

= - = -

ß

µ µ

+ +



x

x

x x
 

Gamma Model 

[Reminder: we need all the constants in the original distribution, 

because a  and b  are things we’ll want the distribution of later! 

The Bayes’ factors, however, integrate out the relevant variables 

by definition, and so can be ignored] 

( ) ( ) ( )

( ) ( )
( )

( )

3

2

1 ( 1)

1

3

3 3

1( 1)

1

| , ,G exp exp
( ) ( )

( | , ) | , ,G ( ) exp
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n

n
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n
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µ

x
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x
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x ( )2
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At each step, the first two distributions can be sampled from 

using a GS or the MH algorithm. We given an example for a  and 

b . The latter can be sampled from using a simple Gibbs sampler. 

The former needs MH: 

 Start with a value of (0)a  

 Sample ( 1)tb +  from ( )( )

3 3
Gamma ,t n a x ba ++ +  

 Simulate f  from 3 4
4 3

[ , ]U a a  (this is our proposal density). 

 Calculate the acceptance probability 

( ) ( )

( )

( ) 3 4
4 3

( ) ( )3 4

4 3
3 4

( )
4

4 3
4 33

( ) 1

( )

( ) ( ) 1

,

,

( | , )
, min 1,
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t

t
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t

t t
A
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a

p f b
a f

p a b
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With probability A, set ( 1)ta f+ = , and with probability  

1 – A, set ( 1) ( )t ta a+ = . 

 

We can now consider the RJ step. In each case, we will “propose” 

to move with probability 1 (so (Exp Gamma)P   

(Gamma Exp) 1P=  = ). 

 

Let us now consider the move from Exp to Gamma. We must deal 

with the augmentation of the parameter space, from ( ) ( , )l a b . 

 The target parameter space is larger, so we set 0u ¢ = , and 

we sample ~ Gamma( , )u g d . 

 We define our function g so that the mean of the original 

Exp distribution and of the resulting Gamma distribution 

is the same. This gives 

( , ) ( , )g u u ul a b l = =  

 We then have 

/ / 0 1( , )
/ /( , )

u
u

u uu

a l aa b
b l b ll

¶ ¶ ¶ ¶¶
= = =

¶ ¶ ¶ ¶¶
 

 

The probability of accepting the model move is then given by 

{ }min 1,A , where 

( )
( ) ( ) ( )

11
( )

G Exp, , | ) ( , )

| ) Exp G ,

( | G, , ) ( ) ( ) (G)

(

(G

(Exp,

( | ,Exp) p( ) Ex ) u
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L
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P q u
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L p p u

u eg g d
g

p
p l

l l

a b a b
l

a b a b
d - -

G

 ¶

 ¶
=

=

x

x

x
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The reverse step is defined by 1 ,) ( , /( , ) uu gl a b a l b a-  = ==  

and probability A—1. 

 

EXAMPLE:  Suppose that we observe data x which are IID, but where the 

distribution is unknown; either Exp( )l  or Pareto( , )a b , with all 

parameters unknown. We let ( )Exp  and ( )Par  be the prior 

probability on each model, and let the priors on the parameters be 

~ Gamma( , ) ~ Exp( ) ~ Exp( )a bl a m b n  



Monte Carlo Inference  Page 56 of 71 

  This version © Daniel Guetta, 2010 

Based on lectures by R. Gramacy, Lent 2010 

Let’s find posterior distributions 

 

Exponential model 

( ) ( ) ( )

( )

1

1

| ,Exp exp exp

( | ) ( |

| ~ Gamm

,Exp) ( )
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n
n
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Pareto Model 

The Pareto distribution comes with an additional complication, in 

that it is imperative that 0 xa< £ . Thus 
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Once again, the first distribution is not in standard form, and 

therefore requires an MH sampler. We can use a symmetric 

random walk MH algorithm as follows: 

 Given an a , generate ua a¢ = + , where 2~ [0, ]u U s  

 Automatically reject a¢  if 
min

(0, ]xa¢ Ï  

 Otherwise, accept it with probability 

( )
( )

exp( | , )
min 1, min 1,

( | , ) exp

n

n

b

b

a map a b
p a b a ma

æ ö¢ ¢æ ö -¢ ÷ç÷ ÷ç ç÷ = ÷ç ç÷ ÷ç ç÷ç ÷-è ø ÷çè ø

x

x
 

 

We can now consider the RJ step. In each case, we will “propose” 

to move with probability 1 (so (Exp Par)P   

(Par Exp) 1P=  = ). 
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Let us now consider the move from Exp to Pareto. We must deal 

with the augmentation of the parameter space, from ( ) ( , )l a b . 

 The target parameter space is larger, so we set 0u ¢ = , and 

we sample ~ Exp( )u g . 

 We define our function g so that the mean of the original 

Exp distribution and of the resulting Parto distribution is 

the same. This gives 

( )( 1)
( , ) , 1u

u
g u u

l
l a b

+
 = = +  

 We then have 

2 2
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The probability of accepting the model change is then given by 

{ }min 1,A , where 
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Sequential Importance Sampling 

Sequential importance sampling is an alternative to MCMC for sampling from 

high-dimensional distributions. It helps with the problem of estimating good 

proposal/importance distributions by building them sequentially. 
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To motivate the concept, first consider a target distribution ( )p q  and a 

proposal distribution ( )g q . Denoting 
( ) 1

,,
jj

q q
-

=q ( ), ,
p
q We can write 

these as 

( )

1

1 1 2 2

2 1 )

1

(

( | )

( ) (

( ) ( ) ( | )

) ( | ) ( | )
p p p

p p

g gg g q
p p q p q q p q

q q q -

-

=
=

q q
q q




 

And we can write the importance weights as 

1 2

1 1 2 2

1 )

( )1

(
( ) ( | ) ( | )

(
( )

( ) ( | ) | )
p p

p p p

w
g g gq q

p q p q q p q

qq
-

-

=q
q

q




 

Writing ( )1
, ,

kk
q q=q  , we can define a partial weight 

1
1 1

1

( | )
( ) ( )

( | )
k k

k k k k
k k k

w w
g

p q
q

-
- -

-

=
q

q q
q

 

When we include the entire vector, ( ) ( )
p p

w w=q q . Using this method is 

advantageous for two reasons 

 We can stop generating further components if the partial weight gets 

too small (this will, however, lead to bias). 

 We can use the marginal distribution 
1

( | )
k k

p q
-

q  to help us in 

designing 
1

( | )
k k k

g q -q . 

 

The only problem is that the decomposition of p  is very difficult; it requires 

1
( ) ( ) d d

k k p
qp p q += òq q   

Which is as difficult (or harder than) the initial problem. 
 

Sequential importance sampling: Suppose we can find 

a sequence of “auxiliary distributions”, which need 

not be normalised, such that 

( ) 1, , 1

( ) (

)

)

(
k

p p

k

p

k
k pp p

p p
» = -
=

q
q q
q 

 

The SIS method is then defined as the following 

recursive procedure 

   1.  Draw ( )1
~ |

k k k k
gq q -q , and let ( )1

,
k k k

q-=q q . 

 2. Compute the incremental weight 

   
1 1 1

( ) 1

( ) ( | )
k k

k
k k k k k

u
g

p
p q- - -

=
q
q q

 

 3. Let 
1k k k

w w u
-

=  
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Note: An important special case arises when we can 

build gk using 
k

p ; ie: 

( ) ( )1 1
| |

k k k k k k
g q p q

- -
=q q  

in that case, 

1

1 1

( )

( )
k k

k
k k

u
p
p

-

- -

=
q
q

 

 

We often obtain several samples ((1) ), , Tq q  in parallel. Each of the partial 

samples ( )

1
{ }t T

k k t=
= q  are called particles or streams when properly weighed 

by the collection of weights ( )

1
{ }t T

k k t
w

=
= . 

 

As k increases, the variance of the importance weights also increases, which 

decreases the overall effective sample size. To fix this problem, we can use re-

sampling 
 

Resampling: Periodically, randomly, or dynamically 

(for example, when the ESS) is low, perform the 

following two steps: 

   1.  Sample a new set of steams 
k
¢  from 

k
 , with 

replacement and with weights 
k
 . 

 2. Assign equal weights (

1

) /t

k

T

t
w T

=
S  to each of the 

steams in 
k
¢ . (It is also common to set the 

weights to 1/T). 
 

Notes: Resampling can result in few unique; this is 

known as particle depletion. Enrichment or 

diversification methods involving kernel smoothing 

and MCMC have been developed as a remedy. 
 

SIS is part of a broader class of Sequential Monte 

Carlo (SMC) methods, which are popular for 

inference in state space models, and are commonly 

encountered when dealing with time series data. 
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EXAMPLE:  Suppose the auxiliary distributions are only known up to a 

normalising constant. Denote the normalised distributions by 
k

p  

and the un-normalised distributions by 

( ) ( ) 1, ,
k k k k k

q Z k pp= =q q   

The incremental weights take the form 

1 1 1 1 1 1 1

( ) ( )

( ) ( | ) ( ) ( | )
k k k k k

k
k k k k k k k k k k k

q Z
u

q g Z g

p
q p q- - - - - - -

= =
q q

q q q q
 

and final weight takes the form 

2 1 1 1 1
(

(

) | )

)

(

p
p p p

p p
p p pi

Z
w u

gZ g

p

qq -=

= =
q

q
 

Thus, the sample average of ( )

1
{ }t T

p t
w =  gives an unbiased estimate 

of 
1

( ) /
p p

w Z Z= . 
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Classical Inference 

 

Classical inference involves maximising a likelihood ( | )L x q  to obtain 

estimates q̂  for the parameters. It will often be more convenient to consider 

minimising ( | )L- x q . 

 

Simulated Annealing 

Sometimes, this can be done analytically, but often, numerical algorithms are 

required. Some, called absolute descent algorithms try to move downhill until 

they can get no lower. Unfortunately, these algorithms are susceptible to 

getting stuck at subsidiary maxima. Consider, instead, an algorithm that 

proposes a move from q f  such that 

 If ( ) (f f£f q) , the move is accepted (absolute descent) 

 If ( ) (f f>f q) , the move is accepted with probability a  

The problem with this method is that it does not present any obvious place to 

“stop”. One approach would be the run the algorithm for a fixed time (but 

then it’s unclear when to stop). 
 

Another approach, which is adopted by simulated annealing, is to decrease a  

at each step. Eventually, the system freezes, to what we would hope is the 

global optimum. 
 

More specifically , suppose we want to minimise the function ( )f q , and let 

{ }
{ }

exp ( )/
( )

exp ( )/  d

( )
exp

T

ff

f T T

T
b

ì üï ïï ïµ -í
-

ýï ïï ïî
=

þ-ò
q q

q
q q

 

The parameter T is called the temperature. Clearly, bT is a distribution that 

favours smaller values of ( )f q . As 0T  , smaller values of ( )f q  are 

increasingly preferred. 
 

Ideally, we would like to sample from b0, but this is a point mass of the 

unknown minimising value q̂ . Instead, simulated annealing works by 

simulating from a series of bT for a decreasing sequence of temperatures: 
 

Simulated Annealing (SA): 

   1.  Take an initial temperature T0 and a starting 

value 
0
q . 
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 2. Propose a new state f  with density ( , )q q f  [a 

typical choice is random-walk Metropolis, with 

= + zf q ]. 

 3. Accept the move with probability 

{ }( , ) min 1,Aa =q f , with 

   
( ) ( , )

( ) ( , )
T

T

b q
A

b q
=

f f q
q q f

 

 4. Repeat steps 2 and 3 until the chain reaches 

equilibrium. 

 5. Check for a stopping criterion. A common 

criterion is to stop if no moves were accepted at 

this temperature. 

 6. Lower the temperature T and return to step 2. 
 

Notes: When maximising a likelihood, we typically 

set ( ) ( | )f L=- xq q  or ( ) log ( | )f L=- xq q . In the 

latter case, 
1/

( | )( )
T

T
Lb é ùµ ê úë ûx qq . 

 

The overall Markov chain is inhomogeneous because 

the target distribution changes over time. 
 

The ideal proposal distribution q for the MH sampler 

still depend on the temperature T – the lower T, the 

closer we’d expect to be to the minimum, and the 

lower the variance of q. For this reason, Gibbs 

Sampling is preferred to standard distributions, since 

no proposal distribution is needed. 

 

EXAMPLE:  Consider trying to find the mode of a distribution comprised of a 

mixture of normals: 

( )
(

)

2 2

1 1 2 2

2 2

1 1

2 2

2 2

( ) log ( | , , , )

log 0.6 ( | 8, 0.5 )

0.4 ( | 8, 0.9 )

f m L m

N m

N m

m s m s

m s

m s

= -

= - = - =

+ = =

 

And so 
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1/

1 2

1 2
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m m
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f f

s s
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For fixed T, sampling from bT will require MH. 

 

EXAMPLE:  Consider, now, the AR(k) example. If, once again, we let 

( ) log ( | )f L=- xq q , we get: 

( )

( ) ( )

2 2 22
2

2
2 2

12
1

1
( , ) exp ( )

2

1
exp

2

N k

T
T k

N k N
kT

t r r t r
t k

b X
T

x a x
T

s s
s

s
s

-
-

-
-

= -
= +

æ ö÷ç ÷µ - -ç ÷ç ÷çè ø
æ ö÷ç ÷= - -Sç ÷ç ÷çè ø

å

a x a

 

Finding the full conditionals 

 For 2s  

( ) ( )22 2 2
12

1

1 1
( , ) exp

2

N k N
kT

T t r r t r
t k

b x a x
T

s s
s

-
-

= -
= +

æ ö÷ç ÷µ - -Sç ÷ç ÷çè ø
åa  

And so 

( )22
1

1

1
( , ) ~ InvGamma 1,

2 2

N
k

T t r r t r
t k

N k
b x a x

T T
s = -

= +

æ ö- ÷ç ÷+ -Sç ÷ç ÷çè ø
åa  

 And for a 

{ }

( ) ( )

2

2

2 2

1 1

1

1

2

1
( | ) exp ( ) ( )

2

1
exp 2

2

1
exp 2

2

1
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2
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T
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T T T
T k k k

T T

T

b X X
T
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N
T

s
s

s s
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-

-
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æ öS ÷ç ÷ç ÷ç ÷÷çè ø

a x a x a

a
a a x

a a a

a a

m
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Where 

1

2 2

T T
k k k

X X X

T Ts s
- S

S = =
x

m  

Note that as 0T  , the variance tends to 0, but the mean 

is unchanged. 

 

Both can be sampled using a Gibbs sampler. 
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Model Selection Using Simulated Annealing 

We can also use simulated annealing to do model selection. For example, to 

use Akaike’s information criterion, we set 

( )
( ) ( )( )

) 2 log ( | ) 2dim

, exp /

( ,

,
T

L

g

f

f T

= - +

= -

x q

q q

q
  

 

 

 
 

Of course, we now require inter-dimensional jumps, and so RJ-MCMC must 

be used. 

 

EXAMPLE:  Consider, now, the AR(k) example. Use 

( ) ( )

2 2

22 2

2

) log ( | , )

1
( , , ) exp

2

( , ,
k k

N k

T
T k

k
L k

k
b k

f

X
TT

k s

s s

s

s

-
-

= - +
ì üï ïï ïµ - - -í ýï ïï ïî þ

a x a

a x a
 

Now suppose we wish to jump from 1k k + . In terms of 

parameters, we’re going from 

{ } { }2 2

1
( , ), ,

k k
g u s s+=a a  

And we generate u ~ q. The Jacobian is the identity, since the 

mapping g is the identity. 
 

The proposed move is then accepted with probability 

{ }min 1,Aa = , where 

( )
2

1

2

( , , 1) ( 1 )

( , , ) 1 ( )
T k

T k

b k P k k
A

b k P k k q u

s

s
+

+ + 
=

 +

a

a
 

Now, we saw in the previous example how to work out 

( )2

1
| , , 1

T k k
b ks+ +a a ; it’s a normal distribution, given by 

( ) ( )2

12
1 2

1 1

, , 1
| , , 1

( , , 1) d

T k

T k k

T k k

b k
b k

b k a

s
s

s

+

+

+ +

+
+ =

+ò
a

a a
a

 

It seems sensible to use this as our proposal distribution q. Using 

that and ( )( 1 ) 1P k k P k k+  =  + , the acceptance probability 

reduces to 
2

1 1

2

( , , 1) d

( , , )

T k k

T k

b k a
A

b k

s

s
+ ++

=
ò a

a
 

ie: the ratio of the marginal distributions of the unchanged 

parameters under each model. 
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Expectation Maximisation 

Expectation minimisation is a method that is used when the likelihood is not 

defined explicitly, but is known in the form 

1 2
( ) ( , ) d or ( ) ( | ) ( ) df g f g g= =ò òz z z z zq q q q  

 

An obvious situation in which this occurs is where we have known data, 

contained in the vector x, and missing data, contained in the vector z. In that 

case, the likelihood we want to maximise is 

( | ) ( | , ) ( ) dL L f= òx x z z zq q  

 

Expectation Maximisation (EM): 

   1.  E-Step – given x, calculate the expectation of 

the complete data log-likelihood as a function of 

the current estimate of q  

   

{ }
{ }( )

( (

,

( )

) )( , | ) | ,

( , | )

( , | ) ( | , ) d

( | )

t

t

t

tQ

f

=

=

=

=ò
x

x z x

x z

x z z x z
q

q q

q

q q

q

q

q 






  

  if the log-likelihood is linear in the join 

sufficient statistics of [x,z], then this step 

simply involves finding the expectation of z 

given x and ( )tq and feeding it into  . 

 2. M-Step – find ( 1)t+q  with maximises ( )( | )tQ q q  
 

Theorem: Every step of the EM algorithm increases 

the log likelihood. That is 
( 1 )) (( | ) ( | )t t+ ³ xx qq   

with equality if and only if 
( 1) ( ) ( ) ( )( | ) ( | )t t t tQ Q+ =q q q q  

 

Proof: The likelihood of the complete data can be 

factorised as 

( , | ) ( | ) ( | , )L L f=x z x z xq q q  
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(To understand why this expression makes sense, we 

can view L as a sort of “prior on x”). And so 

( , | ) ( | ) log ( | , )

( | ) ( , | ) log ( | , )

f

f

= +
= -

x z x z x

x x z z x

q q q
q q q

 
 

 

Taking expectations of both sizes over the 

distribution of ( )| tz q  gives 

( ) ( )( | ) ( | ) ( | )t tQ H= -x q q q q q  

where 
( ) ( )

( ) ( )

( | ) ( , | ) ( | , ) d

( | ) log ( | , ) ( | , ) d

t t

t t

Q f

H f f

=

=
ò
ò

x z z x z

z x z x z

q q q q

q q q q


 

Now, the difference between ( )( | )tx q  and 
( 1)( | )t+x q  is given by 

{ }
{ }

( 1) ( )

( 1) ( ) ( 1) ( )

( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( ) ( ) ( 1) ( )

( | ) ( | )
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t t

t t t t
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t t t t
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Q H
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H H

+

+ +

+

+

-

= -

- +

= -

+ -

x xq q
q q q q

q q q q

q q q q

q q q q

 

 

Now: 

 The EM algorithm maximises Q, and so 
( 1) ( ) ( ) ( )( | ) ( | ) 0t t t tQ Q+ - >q q q q . 

 Jensen’s Inequality gives that 
) ( ) ( )( (| ) )( |t tt HH £ q qq q . 

Overall, therefore, the likelihood increases.  
 

Note: The EM algorithm is therefore a “hill-

climbing” technique. It is guaranteed to find local 

maxima. Global maxima can be sought by running 

the algorithm with many different starting values. 

 

EXAMPLE:  Suppose we have a series of data 
1

,,
n

x x  from some mixture 

distribution 

1 2
( ) ( ) (1 ) ( )f x f x f xa a= + -  

For example, UK heights were f1 corresponds to men, f2 

corresponds to women, and 2( ) ( , )
i i
f x N m s= . 
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The full likelihood function for these data is 

{ }1 2
1

( | ) ( ) (1 ) ( )
n

i i
i

L f x f xa a
=

= + -x q  

Maximising this, however, is extremely nasty. 
 

Instead, let 

1
1 if ~ ( )

0 otherwise
i

i

x f x
z

ìïï= íïïî
 

The likelihood conditional on this variable is then 

{ } { }1

1 2
1

( | , ) ( ) (1 ) ( )i i
n z z

i i
i

L f x f xa a
-

=

= -x zq  

This is much simpler to maximise. 

 

Let’s first consider the E-step. zi can only be equal to 0 or 1, so 

1

1 2

( | , ) 1 ( 1 | , ) 0 ( 0 | , )

( 1 | , )
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ˆ

( ) (1 ) ( )

i i i

i

i
i

i i
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z
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z
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a
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= ´ = + ´ =
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x x x

x

q q q
q

  
  

(This is evident from the form of the likelihood, which makes it 

clear that z is a Bernoulli random variable.) 

 

Now the M-step. We have that ( ) ˆ| |( , )) (tQ = x zq q q  

{ } { }1 1 1 2
1
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i i
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and 
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and finally 
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and so 
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Thus, our algorithm simply involves finding z in each case (at the 

E-step) and then finding values for the other parameters (at the 

M-step). 

 

 

 

 

 

 

 

 

 

 

 
 


