Survival Data

Part III Course, Lent 2010

Revision Notes

Daniel Guetta

guetta@cantab.net

Introduction

Introduction

- Survival data is time-to-event analysis
o At most one event per subject
o Highly positively skewed data
o Censoring/truncation of data
- $T \geq 0$ is a random variable which contains the time-to-event. $T=0$ is the well-defined start.
- Types of missing data:
o Censoring (left/right) refers to a situation in which we only know that an event happened before/after a certain time.
o Truncation (left/right) refers to a situation in which, if an event happened before/after a certain time, we have no information about that event.
- It is important for missing data to be uninformative - in other words, the distribution of potential times $T>t$ for uncensored individuals is the same as for an individual censored at t, all other things being equal.

Notation and Distributions

- Notation
o Let there be n individuals
o Let x_{i} be either the observed event time or the time of censoring.
o Let $v_{i}=1$ for observed events and 0 for censored events.
o Let a_{j} be only those times at which an event occurs.
- Distributions
o Density $f(t \mid \theta)$, such that $\mathbb{P}(a<T<b)=\int_{a}^{b} f(t \mid \theta) \mathrm{d} t$
o Survivor function $F(t \mid \theta)=\int_{t}^{\infty} f(t \mid \theta) \mathrm{d} t$, probability of suriviing more than t. Note that $f(t)=-F^{\prime}(t)$.
o Hazard is given by

$$
\begin{aligned}
h(t \mid \theta) & =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(t<T \leq t+\Delta \mid T>t, \theta)}{\Delta} \\
& =\lim _{\Delta \rightarrow 0} \frac{1}{\mathbb{P}(T>t \mid \theta)} \cdot \frac{\mathbb{P}(t<T \leq t+\Delta \mid \theta)}{\Delta} \\
h(t \mid \theta) & =\frac{f(t \mid \theta)}{F(t \mid \theta)}
\end{aligned}
$$

o Integrated hazard is given by

$$
\begin{aligned}
& H(t \mid \theta)=\int_{0}^{t} h(u \mid \theta) \mathrm{d} u \\
&=\int_{0}^{t} \frac{-F^{\prime}(u \mid \theta)}{F(u \mid \theta)} \mathrm{d} u \\
&=-\log (F(t \mid \theta))-\log (1) \\
& H(t \mid \theta)=-\log (F(t \mid \theta)) \\
&=\exp (-H(t \mid \theta))
\end{aligned}
$$

- Note that if $F(t)$ is a survivor function, then
o $F(\lambda t), \lambda>0$ is also a survivor function (accelerated-life family).
o $F(t)^{k}, k>0$ is also a survivor function (proportional hazards family).
- Two specific distributions

o Exponential distribution

- $f(t)=\rho e^{-\rho t}$
- $F(t)=e^{-\rho t}$
- $h(t)=\rho$
- $H(t)=\rho t$

o Weibull Distribution

- $f(t)=k \rho(t \rho)^{k-1} \exp \left\{-(\rho t)^{k}\right\}$
- $F(t)=\exp \left\{-(\rho t)^{k}\right\}$
- $\quad h(t)=k \rho^{k} t^{k-1}$
- $H(t)=(\rho t)^{k}$
- Consider that if two Weibull distributions have the same k but different ρ (say ρ and $c \rho$), then

$$
\begin{gathered}
F(t)=\exp \left\{-(c \rho t)^{k}\right\}=\exp \left\{-\left(\rho t^{\prime}\right)^{k}\right\} \\
F(t)=\exp \left\{-(c \rho t)^{k}\right\}=\exp \left\{-c^{k}(\rho t)^{k}\right\}=\left[\exp \left\{-(\rho t)^{k}\right\}\right]^{c^{k}}
\end{gathered}
$$

Thus, the two distribution belong to the same proportional hazards and accelerated life family.

Inference

Parametric inference

- If an individual is observed at x_{i}, then $f\left(x_{i} \mid \theta\right)$ is contributed to the likelihood. If an individual is censored at x_{i}, then $F\left(x_{i} \mid \theta\right)$ is contributed (since all we know is that the time is greater than x_{i}).

$$
\begin{gathered}
L(\boldsymbol{x}, \theta)=\prod_{i=1}^{n}\left\{f\left(x_{i} \mid \theta\right) \mathbb{I}_{\left\{v_{i}=1\right\}}+F\left(x_{i} \mid \theta\right) \mathbb{I}_{\left\{v_{i}=0\right\}}\right\} \\
\ell(\boldsymbol{x}, \theta)=\sum_{i=1}^{n}\left\{v_{i} \log f\left(x_{i} \mid \theta\right)+\left(1-v_{i}\right) \log F\left(x_{i} \mid \theta\right)\right\}
\end{gathered}
$$

Using $f=h F$ and $F=\exp (-H)$, we obtain

$$
\ell(\boldsymbol{x}, \theta)=\sum_{i=1}^{n}\left\{v_{i} \log h\left(x_{i} \mid \theta\right)-H\left(x_{i} \mid \theta\right)\right\}
$$

The MLE which maximises this is denoted $\hat{\theta}$.

- Let
o Θ be the p-dimensional space in which the MLE $\hat{\theta}$ lives
o Let $\tilde{\theta}$ be the MLE if we constrain θ to $\Theta_{0} \subseteq \Theta$, a q-dimensional subspace of Θ.
Wilks' Lemma then tells us that

$$
\text { If } \theta_{\text {real }} \in \Theta_{0} \text { then } 2[S(\hat{\theta})-S(\tilde{\theta})] \sim \chi_{p-q}^{2}
$$

Thus
o We accept the null hypothesis $\theta_{\text {real }} \in \Theta_{0}$ if

$$
S(\hat{\theta})-S(\tilde{\theta}) \leq \frac{1}{2} C_{p-q, 1-\alpha}
$$

o A confidence region for a given θ_{0} (ie: if Θ_{0} contains a single element) is given by

$$
\left\{\theta_{0}: S(\hat{\theta})-S\left(\theta_{0}\right) \leq \frac{1}{2} C_{p-q, 1-\alpha}\right\}
$$

- For example, for the exponential distribution $f(t \mid \theta)=\theta e^{-\theta t}$ and $F(t \mid \theta)=e^{-\theta t}$ so $h(t)=\theta$ and $H(t)=\theta t$. Thus

$$
\ell(\boldsymbol{x}, \theta)=\log \theta \sum_{i=1}^{n} v_{i}-\theta \sum_{i=1}^{n} x_{i}
$$

And so

$$
\hat{\theta}=\frac{\sum v_{i}}{\sum x_{i}}=\frac{\text { Number of observed events }}{\sum x_{i}}
$$

Note also that $\ell^{\prime \prime}=-\frac{1}{\theta^{2}} \sum_{i=1}^{n} v_{i}$. This is a measure of how much information is present in the sample; note that it's proportional to the number of death's we observe - not the number of individuals.

Non-Parametric inference

- Recall that a_{j} are the times at which failures actually occur.
- The Kaplan-Meier estimate of $F(t)$ is constructed by assuming that the number of members that survive in a time between a_{j-1} and a_{j} is binomial variable with probability of survival $1-q_{j}$. It then estimates q_{j} as $\hat{q}_{j}=d_{j} / r_{j}$, where
o d_{j} is the number of observed deaths at $t=X_{j}$ (not including censored observations)
o r_{j} is the size of the "risk set" (ie: number of patients known to be still alive) just before time X_{j}
The estimate of the probability of surviving longer than t (ie: not having died before t) is

$$
\hat{F}(t)=\prod_{j: a_{j} \leq t}\left(1-\hat{q}_{j}\right)=\prod_{j: a_{j} \leq t}\left(1-\frac{d_{j}}{r_{j}}\right)
$$

(Computationally, we divide time into bands each of which contains a single observed time, and do the above).

- To estimate the error, we can use the rule for "propagation of errors" [we let $\hat{X}=\mathbb{E}(X)$]:

$$
\begin{aligned}
\operatorname{Var}\{u(X)\} & \approx \mathbb{V a r}\left\{u(\hat{X})+u^{\prime}(\hat{X})(X-\hat{X})\right\} \\
& =\left[u^{\prime}(\hat{X})\right]^{2} \operatorname{Var}(X)
\end{aligned}
$$

Now, we perform the following steps
o We begin by estimating the survival distribution as a sequence of binomials (ie: we ignore the r_{j} are random variables). We then have

$$
\mathbb{V a r}\left(\hat{q}_{j}\right)=\mathbb{V a r}\left(\frac{d_{j}}{r_{j}}\right)=\frac{1}{r_{j}^{2}} \mathbb{V a r}\left(d_{j}\right)=\frac{1}{r_{j}^{2}} r_{j} q_{j}\left(1-q_{j}\right)=\frac{q_{j}\left(1-q_{j}\right)}{r_{j}}
$$

o We then use the formula for propagation of errors to get

$$
\operatorname{Var}\left\{\log \left(1-\hat{q}_{j}\right)\right\} \approx\left(\frac{1}{\mathbb{E}\left(1-\hat{q}_{j}\right)}\right)^{2} \operatorname{Var}\left(\hat{q}_{j}\right)=\frac{q_{j}}{r_{j}\left(1-q_{j}\right)}
$$

o We then write

$$
\log \{\hat{F}(t)\}=\sum_{i=1}^{n} \log \left(1-\hat{q}_{j}\right)
$$

From which we immediately obtain

$$
\operatorname{Var}(\log \{\hat{F}(t)\})=\sum_{j: a_{j} \leq t} \frac{q_{j}}{r_{j}\left(1-q_{j}\right)}
$$

o Finally, we apply the rule of propagation of errors again, to find

$$
\begin{aligned}
\mathbb{V} \operatorname{ar}\{\hat{F}(t)\} & =\operatorname{Var}\left\{e^{\log \{\hat{F}(t)\}}\right\} \\
& \approx\{F(t)\}^{2} \sum_{j: a_{j} \leq t} \frac{q_{j}}{r_{j}\left(1-q_{j}\right)}
\end{aligned}
$$

Greenwood's Formula for the variance is then given by

$$
\begin{aligned}
\hat{\mathbb{V}} \operatorname{ar}\{\hat{F}(t)\} & =\{\hat{F}(t)\}^{2} \sum_{j: a_{j} \leq t} \frac{\hat{q}_{j}}{r_{j}\left(1-\hat{q}_{j}\right)} \\
& =\{\hat{F}(t)\}^{2} \sum_{j: a_{j} \leq t} \frac{1}{r_{j}} \frac{d_{j}}{r_{j}-d_{j}} \\
& =s_{0}^{2}
\end{aligned}
$$

And a confidence interval for $F(t)$ is $\left[\hat{F}(t)-\Phi s_{0}, \hat{F}(t)+\Phi s_{0}\right]$

- Unfortunately, the confidence interval above can go beyond the interval $[0,1]$. Two solutions exist to this
o Use a transformation. Two possibilities
- log transformation

We know from above that

$$
\mathbb{V} \operatorname{ar}(\log \{\hat{F}(t)\})=\sum_{j: a_{j} \leq t} \frac{q_{j}}{r_{j}\left(1-q_{j}\right)}=s_{1}^{2}
$$

and so we obtain the following confidence interval for $F(t):$

$$
\left[\hat{F}(t) e^{-\Phi s_{1}}, \hat{F}(t) e^{\Phi s_{1}}\right]
$$

This works for $F(t)$ near 0 , but may get into trouble for $F(t)$ near 1.

- $\log (-\log)$ transformation

Using the propagation of variance formula, we get

$$
\operatorname{Var}(\log \{-\log [\hat{F}(t)]\})=\frac{1}{[\log \hat{F}(t)]^{2}} \sum_{j: a_{j} \leq t} \frac{1}{r_{j}} \frac{d_{j}}{r_{j}-d_{j}}=s_{2}^{2}
$$

And we obtain the following confidence interval

$$
\left[\hat{F}(t)^{\exp \left[\Phi s_{2}\right]}, \hat{F}(t)^{\exp \left[-\Phi s_{2}\right]}\right]
$$

This is guaranteed to be between 0 and 1 .
o Use the likelihood directly: another approach is to find the likelihood L which corresponds to an arbitrary value z of $\hat{F}(t)$.

To do this, first recall that we construct the KM estimate by assuming that our survivor function takes the form

$$
F(t)=\prod_{j: a_{j} \leq t}\left(1-q_{j}\right)
$$

Where the q_{j} have to be estimated. For a given set of q_{j}, the corresponding likelihood is

$$
\begin{gathered}
L(\boldsymbol{q} \mid \boldsymbol{d}, \boldsymbol{r}) \propto \prod_{\text {all events }} q_{j}^{d_{j}}\left(1-q_{j}\right)^{r_{j}-d_{j}} \\
\ell(\boldsymbol{q} \mid \boldsymbol{d}, \boldsymbol{r})=\sum_{\text {all events }} d_{j} \log q_{j}+\left(r_{j}-d_{j}\right) \log \left(1-q_{j}\right)
\end{gathered}
$$

If the q are unconstrained, this likelihood is maximised by setting $\hat{q}_{j}=d_{j} / r_{j}$, as we do in the KM estimate.

However, if we insist on constraining $F(t)=z$, then we need to use Lagrange multipliers to maximise the likelihood. This involves finding a λ such that

$$
\sum_{\text {all events }} d_{j} \log q_{j}+\left(r_{j}-d_{j}\right) \log \left(1-q_{j}\right)-\lambda\left\{\log z-\sum_{j: a_{j} \leq t} \log \left(1-q_{j}\right)\right\}
$$

is maximised when the constraint is satisfied. This gives

$$
q_{j}=\left\{\begin{array}{cl}
\frac{d_{j}}{\lambda+r_{j}} & j: a_{j} \leq t \\
d_{j} / r_{j} & j: a_{j}>t
\end{array}\right.
$$

(Note that only values for $X_{j} \leq t$ are affected, since $F(t)$ - which we are constraining - only involves these values).

Our strategy for interval estimation is then as follows

- Choose a λ
- Work out the q_{j}
- Using those, we can work out $F(t)$ and L
- Repeat for various values of λ, and use the values obtained to construct a likelihood graph of L against $F(t)$ Since there is effectively only one parameter here (λ), then

$$
2[\ell(\hat{F}(t))-\ell(z)] \sim \chi_{1}^{2}
$$

where $\hat{F}(t)$ is the KM estimate of $F(t)$ and z as another value. Thus, to find a confidence interval for $\hat{F}(t)$, we use the graph to find the values z whose likelihoods are at most $\frac{1}{2} C_{1,1-\alpha}$ away from the maximum likelihood.

Empirical Inference

We now consider a different kind of non-parametric way to estimate the survivor function. We do this by constructing an empirical likelihood, and finding the F that maximise it subject to

1. $F(u) \geq F(v)$ if $u<v$
2. $1 \geq F(t) \geq 0$
3. $F(0)=1$ (not essential, but aids exposition; implies no events at $t=0$). Four common kinds of contributions to the likelihood are

- $i^{\text {th }}$ individual right censored at x_{i} adds $F\left(x_{i}\right)$
- $i^{\text {th }}$ individual with event at x_{i} contributes $F\left(x_{i}-\right)-F\left(x_{i}\right)$, where

$$
F\left(x_{i}-\right)=\lim _{\Delta \rightarrow 0} F\left(x_{i}-\Delta\right)
$$

- $i^{\text {th }}$ individual left censored at $x_{i}\left(\mathrm{ie}: T \leq x_{i}\right)$ adds $1-F\left(x_{i}\right)$
- $i^{\text {th }}$ individual censored in the interval $\left[x_{i}^{L}, x_{i}^{U}\right.$) (ie: $\left.x_{i}^{L}<T \leq x_{i}^{U}\right)$ adds

$$
F\left(x_{i}^{U}\right)-F\left(x_{i}^{L}\right)
$$

To find the likelihood, we multiply all the contributions together and maximise. Note that the generic term is in the form $[F(b)-F(a)]$. If there is no term involving a $-F(b)$, this means that we should increase $F(b)$ indefinitely, subject to condition 1 above. An immediate consequence, together with condition 3 above, is that $F(0)=1$.

We can use this methodology to re-derive Kaplan Meier:

- All terms will be of the form $F\left(x_{i}-\right)-F\left(x_{i}\right)$ or $F\left(x_{i}\right)$.
- Now, note that
o There will never be a - sign in front of $F\left(x_{i}\right)$, and so

$$
\begin{aligned}
& \hat{F}\left(x_{i}-\right)=\hat{F}(\text { latest event }) \\
& \quad \Rightarrow \hat{F}\left(a_{j}-\right)=\hat{F}\left(a_{j-1}\right)
\end{aligned}
$$

o If, at a time x_{i}, there is no event but a censored observation, then there will never be a sign in front of $F\left(x_{i}\right)$, and so

$$
\begin{aligned}
& \hat{F}\left(x_{i}\right)=\hat{F}(\text { latest event }) \\
& \Rightarrow \hat{F}\left(x_{i}\right)=\hat{F}\left(a_{j: a_{j} \max } \leq x_{i}\right)
\end{aligned}
$$

This implies that we only need to consider event times, and that the function is constant except at event times.

- We write $c_{j}=r_{j}-d_{j}-r_{j+1}$ for the number of censored events in the interval $\left[a_{j}, a_{j+1}\right)$.
- The likelihood can then be written as

$$
L=\prod_{\text {all events }}\left[F\left(a_{j-1}\right)-F\left(a_{j}\right)\right]^{d_{j}}\left[F\left(a_{j}\right)\right]^{c_{j}}
$$

Writing $F_{j}=F\left(a_{j}\right)$, we can write this as

$$
L=\prod_{\text {all events }}\left[F_{j-1}-F_{j}\right]^{d_{j}}\left[F_{j}\right]^{c_{j}}
$$

The exponent on the second term is effectively the number of censored events between a_{j} and a_{j+1}.

- Taking logs, and then differentiating

$$
\begin{gathered}
\ell=\sum_{\text {all events }} d_{j} \log \left(F_{j-1}-F_{j}\right)+\sum_{\text {all events }} c_{j} \log F_{j} \\
\frac{\partial \ell}{\partial F_{j}}=-\frac{d_{j}}{\hat{F}_{j-1}-\hat{F}_{j}}+\frac{d_{j+1}}{\hat{F}_{j}-\hat{F}_{j+1}}+\frac{c_{j}}{\hat{F}_{j}}=0
\end{gathered}
$$

- This is a third-order recurrence relationship. It simplifies greatly if we start with \hat{F}_{g}. Consider that $d_{g+1}=0$. The recursion relation for \hat{F}_{g} is then

$$
-\frac{d_{j}}{F_{g-1}-F_{g}}+\frac{c_{j}}{F_{g}}=0 \Rightarrow \hat{F}_{g}=\frac{c_{g}}{c_{g}+d_{g}} \hat{F}_{g-1}
$$

(If $c_{g}=0, \hat{F}_{g}=0$. This makes sense; since the last term in the likelihood is $\left[F_{g-1}-F_{g}\right]^{d_{g}}$, we want to make \hat{F}_{g} as small as possible).

- Now, consider that we can re-write our expression for \hat{F}_{g} as

$$
\hat{F}_{g}=\frac{r_{g}-d_{j}}{r_{g}} \hat{F}_{g-1}=\left(1-\frac{d_{j}}{r_{g}}\right) \hat{F}_{g-1}
$$

Note also that if $\hat{F}_{j+1}=\left(1-\frac{d_{j+1}}{r_{j+1}}\right) \hat{F}_{j}$, then

$$
\begin{aligned}
& -\frac{d_{j}}{\hat{F}_{j-1}-\hat{F}_{j}}+\frac{d_{j+1}}{\hat{F}_{j}-\hat{F}_{j+1}}+\frac{c_{j}}{\hat{F}_{j}}=0 \\
& -\frac{d_{j}}{\hat{F}_{j-1}-\hat{F}_{j}}+\frac{d_{j+1}}{\hat{F}_{j}-\left(1-\frac{d_{j+1}}{r_{j+1}}\right) \hat{F}_{j}}+\frac{c_{j}}{\hat{F}_{j}}=0 \\
& -\frac{d_{j}}{\hat{F}_{j-1}-\hat{F}_{j}}+\frac{r_{j+1}}{\hat{F}_{j}}+\frac{c_{j}}{\hat{F}_{j}}=0 \\
& -d_{j} \hat{F}_{j}+r_{j+1} \hat{F}_{j-1}^{j-1}-r_{j+1} \hat{F}_{j}+c_{j} \hat{F}_{j-1}{ }^{j}-c_{j} \hat{F}_{j}=0 \\
& \hat{F}_{j}=\frac{r_{j+1}+c_{j}}{d_{j}+r_{j+1}+c_{j}} \hat{F}_{j-1} \\
& \hat{F}_{j}=\frac{r_{j}-d_{j}}{r_{j}} \hat{F}_{j-1} \\
& \hat{F}_{j}=\left(1-\frac{d_{j}}{r_{j}}\right) \hat{F}_{j-1}
\end{aligned}
$$

Thus, by induction, this is true for all j. Since we have assume that $\hat{F}_{0}=1$, this is our familiar Kaplan-Meier estimate.

Note that this all ties in to our earlier discussion of deriving confidence intervals for the KM estimator. Consider that

- Constraining $F(t)=z$ is equivalent to constraining $\log F_{k}=\log z$, where k is chosen to be the event just before t.
- The quantity to maximise is then

$$
\ell=\sum_{\text {all events }} d_{j} \log \left(F_{j-1}-F_{j}\right)+\sum_{\text {all events }} c_{j} \log F_{j}+\lambda\left(\log F_{k}-\log z\right)
$$

Interestingly, this just looks like we've added an extra λ censored individuals at time a_{k}. This makes the recurrence relation easy to intuitively adapt

$$
\begin{array}{ll}
j>k & \hat{F}_{j}=\left(1-\frac{d_{j}}{r_{j}}\right) \hat{F}_{j-1} \\
j \leq k & \hat{F}_{j}=\left(1-\frac{d_{j}}{r_{j}+\lambda}\right) \hat{F}_{j-1}
\end{array}
$$

We start at $\hat{F}_{k}=z$ to obtain those terms with $j>k$, and we start with $\hat{F}_{0}=1$ for those $j \leq k$, choosing λ such that $\hat{F}_{k}=z$.

- As ever, the confidence intervals are then found using

$$
\left\{z: 2(\hat{\ell}-\tilde{\ell}(z)) \leq C_{1,1-\alpha}\right\}
$$

Where $\hat{\ell}$ is the maximum \log-likelihood and $\tilde{\ell}(z)$ is the constrained likelihood.

The Log-Rank Test

We now consider a situation in which we want to compare the survival performance of two groups. It is not a good idea to compare the groups at a particular time t because

- We are usually interested in the complete time spectrum rather than in individual points
- Comparing specific time points could lead to multiple testing problems
- We might be tempted to choose specific time points a posteriori to suit our hypothesis
The log-rank test is a nonparametric test that takes all observations into account. It is most powerful when used on non-overlapping survival curves (ie: where the curves belong to the same proportional hazards family, $\left.\left(F_{j}^{(0)}\right)^{k}=F_{j}^{(1)}\right)$. In fact, this test can be shown to be the score test for proportional hazards.

Consider two groups $i \in\{0,1\}$, with observed/censored times $X_{j}^{(i)}$. At time X_{j}, there are $r_{j}^{(i)}$ individuals at risk in group i, of which $d_{j}^{(i)}$ are observed to fail. The survivor function at X_{j} is $F_{j}^{(i)}$ in group i, and our null hypothesis is

$$
H_{0}: F_{j}^{(0)}=F_{j}^{(1)} \quad \forall j
$$

Our strategy in the log-rank test is to construct a contingency table for every time a_{j} at which a failure is observed, which looks like this

Time a_{j}	Group 0	Group 1	Total
Fails	$d_{j}^{(0)}$	$d_{j}^{(1)}$	d_{j}
Not-fails	$r_{j}^{(0)}-d_{j}^{(0)}$	$r_{j}^{(1)}-d_{j}^{(1)}$	$r_{j}-d_{j}$
\# risk set	$r_{j}^{(0)}$	$r_{j}^{(1)}$	r_{j}

Now consider - under the null hypothesis, the probability of failing is the same for both groups. Using the hypergeometric distribution, the expectation and variance of the upper-left-hand cell should then be

$$
\begin{gathered}
\mathbb{E}=r_{j}^{(0)} \frac{d_{j}}{r_{j}} \\
\operatorname{Var}=\frac{d_{j}\left(r_{j}-d_{j}\right) r_{j}^{(0)} r_{j}^{(1)}}{r_{j}^{2} /\left(r_{j}-1\right)}=s^{2}
\end{gathered}
$$

The deviation from what we expect is therefore given by

$$
z_{j}=d_{j}^{(0)}-\frac{d_{j}}{r_{j}} r_{j}^{(0)}
$$

And the log-rank statistic is given by

$$
\frac{1}{s} \sum_{j=1}^{N} z_{j}
$$

should be compared with the standard normal distribution.

Other versions weigh the z_{j} by r_{j}.

Modelling

We may be interested in modelling the effect of explanatory variables on the survival probabilities. The setup is as follows

- Individual i has explanatory variables $\boldsymbol{z}^{(i)}=\left(z_{1}^{(i)}, \cdots, z_{p}^{(i)}\right)$
- Our model has parameter set $\boldsymbol{\theta}=\left(\begin{array}{ll}\boldsymbol{\beta} & \boldsymbol{\psi}\end{array}\right)^{T}$, where $\boldsymbol{\beta}$ are "interesting" parameters relating to the \boldsymbol{z}, and $\boldsymbol{\psi}$ are the nuisance parameters.

Accelerated life modelling

Here, we start with a baseline survivor $F_{0}(t, \psi)$, and we model the survivor of the $i^{\text {th }}$ individual by

$$
F\left(t, \boldsymbol{z}^{(i)}, \boldsymbol{\beta}, \boldsymbol{\psi}\right)=F_{0}\left(\phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right) t, \boldsymbol{\psi}\right)
$$

This, however, is very rarely used.

Proportional Hazards Modelling

Here, we start with a baseline hazard $h_{0}(t, \boldsymbol{\psi})$, and we model the hazard of the $i^{\text {th }}$ individual by

$$
h\left(t, \boldsymbol{z}^{(i)}, \boldsymbol{\beta}, \boldsymbol{\psi}\right)=\phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right) h_{0}(t, \boldsymbol{\psi})
$$

Possible forms of the function ϕ are as follows (note that it must be positive)

$$
\phi(\boldsymbol{z}, \boldsymbol{\beta})=\left\{\begin{array}{l}
e^{\beta^{T} z} \\
1+e^{\boldsymbol{\beta}^{T} z} \\
\log \left(1+e^{\beta^{T} z}\right)
\end{array} \leftarrow\right. \text { Cox regression }
$$

We now consider the likelihood inference for $\boldsymbol{\beta}$.

- We first use an invariance argument to show that the order in which the events happen is sufficient for $\boldsymbol{\beta}$

0 If we transform the timescale from $t \rightarrow u$ with $t=g(u)$ and g monotonically increasing and differentiable), then

$$
h\left(t, \boldsymbol{z}^{(i)}, \boldsymbol{\beta}, \boldsymbol{\psi}\right)=\phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right) h_{0}(g(u), \boldsymbol{\psi}) g^{\prime}(u)
$$

o Clearly, only the baseline hazard changes. Thus, the timescale is irrelevant to the proportionality factor.

- Now, consider a situation in which we have no censoring and no ties.
o Label the individuals $1, \cdots, n$, and let π_{j} be the $f^{\text {th }}$ individual to fail, at time a_{j} ($\boldsymbol{\pi}$ is a permutation of the n individuals).
o The risk set at that time is $R_{j}=\left\{\pi_{j^{\prime}}: j^{\prime} \geq j\right\}$
o The probability of individual i failing at t is proportional to that individual's hazard at t. Now, we know that individual π_{j} is the only one from the risk set R_{j} to have failed at a_{j}. The probability of that happening was therefore

$$
\frac{\phi\left(\boldsymbol{z}^{\left(\pi_{j}\right)}, \boldsymbol{\beta}\right) h_{f}\left(\boldsymbol{a}_{j}, \boldsymbol{\psi}\right)}{\sum_{i \in R_{j}} \phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right) h_{g_{j}}\left(\boldsymbol{a}_{j}, \boldsymbol{\psi}\right)}=\frac{\phi\left(\boldsymbol{z}^{\left(\pi_{j}\right)}, \boldsymbol{\beta}\right)}{\sum_{i \in R_{j}} \phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right)}
$$

o Thus, the probability that we observe the sequence that we did indeed observe is

$$
\prod_{j=1}^{n} \frac{\phi\left(\boldsymbol{z}^{\left(\pi_{j}\right)}, \boldsymbol{\beta}\right)}{\sum_{i \in R_{j}} \phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right)}
$$

This partial likelihood for $\boldsymbol{\beta}$ can be maximised. Some software exists to do this efficiently, especially for Cox regression. (The likelihood is "partial" because it does not use all the data available - but we showed, from our invariance argument, that it is nevertheless sufficient).

- Dealing with censoring - we use exactly the same expression as above, but we only include the non-censored observations in the product. For example, if the individuals are censored in the order 3 (4) 12 , we would obtain the following likelihood

$$
\frac{\phi_{1}}{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}} \frac{\phi_{1}}{\phi_{1}+\phi_{2}} \frac{\phi_{2}}{\phi_{2}}
$$

(Note that this is the sum of the likelihoods for 3412,3142 and 3124).

- Dealing with ties - consider the example $3,4=2,1$ (ie: 4 and 2 fail at the same time). Several options:
o Assume there is a real order, and sum the likelihoods.

$$
\frac{\phi_{3}}{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}}\left(\frac{\phi_{4}}{\phi_{1}+\phi_{2}+\phi_{4}} \frac{\phi_{1}}{\phi_{1}+\phi_{2}}+\frac{\phi_{1}}{\phi_{1}+\phi_{2}+\phi_{4}} \frac{\phi_{4}}{\phi_{2}+\phi_{4}}\right) \frac{\phi_{2}}{\phi_{2}}
$$

This is called the exact partial likelihood, but it can get computationally very expensive.
o We consider the tie as genuine, and consider the probability of choosing this group of 2 events out of all the possible groups of two events we could have chosen

$$
\frac{\phi_{3}}{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}} \frac{\phi_{4} \phi_{1}}{\phi_{4} \phi_{1}+\phi_{1} \phi_{2}+\phi_{2} \phi_{4}} \frac{\phi_{2}}{\phi_{2}}
$$

This should only be used if the data is truly discrete.
o We consider a mixture of individuals

$$
\frac{\phi_{3}}{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}} \frac{\phi_{4} \phi_{1}}{\left(\phi_{1}+\phi_{2}+\phi_{4}\right)\left(\phi_{2}+\frac{\phi_{1}}{2}+\frac{\phi_{4}}{2}\right)} \frac{\phi_{2}}{\phi_{2}}
$$

This is called the Efron approximation.

Residuals

We define:

- The Cox-Snell residual is defined as follows

$$
y_{i}=\hat{H}_{i}\left(x_{i}\right)=\phi\left(\boldsymbol{z}^{(i)}, \boldsymbol{\beta}\right) H_{0}\left(x_{i}, \boldsymbol{\psi}\right)=-\log \hat{S}_{i}\left(x_{i}\right)
$$

where x_{i} is the failure time of individual i. Note that for uncensored data, $y_{i} \sim \operatorname{Exp}(1)$. We can prove this as follows:

Note that if $U=H_{T}(T)$, and F_{U} and F_{T} are the survival functions of U and T, we have:

$$
F_{U}(u)=\mathbb{P}(U>u)=\mathbb{P}\left(H_{T}(T)>u\right)
$$

H_{T} is increasing and has an inverse, and so

$$
\begin{aligned}
F_{U}(u) & =\mathbb{P}\left(T>H_{T}^{-1}(u)\right) \\
& =F_{T}\left(H_{T}^{-1}(u)\right) \\
& =\exp \left(-H_{T}\left(H_{T}^{-1}(u)\right)\right) \\
& =\exp (-u)
\end{aligned}
$$

This is the survivor function for an exponential distribution.

- If the individual is right-censored with recorded time x_{i} and real time $t_{i}^{*}>x_{i}$, then we obviously have that $\hat{H}_{i}\left(x_{i}\right)<\hat{H}_{i}\left(t_{i}^{*}\right)$. Our strategy will therefore be to add something to the Cox-Snell residuals for censored values to correct for this discrepancy.

Remember, further, that the exponential distribution is memory-less. Thus, $\quad \hat{H}_{i}\left(x_{i}\right) \sim \operatorname{Exp}(1) \Rightarrow \hat{H}_{i}\left(t_{i}^{*}\right)-\hat{H}_{i}\left(x_{i}\right) \sim \operatorname{Exp}(1) \quad, \quad$ and \quad therefore $\mathbb{E}\left\{\hat{H}_{i}\left(t_{i}^{*}\right)-\hat{H}_{i}\left(x_{i}\right)\right\}=1$. Thus, it seems like a sensible amount to add is

1. We define the modified Cox-Snell Residuals:

$$
y_{i}^{\prime}=\left(1-v_{i}\right)+\hat{H}\left(x_{i}\right)
$$

These simply add 1 to censored observations. These are therefore genuinely $\operatorname{Exp}(1)$ distributions, regardless of censoring and $\mathbb{E}\left(y_{i}^{\prime}\right)=1$.

- The Martingale residual is defined as

$$
y_{i}^{\prime \prime}=1-y_{i}^{\prime}=v_{i}-\hat{H}\left(x_{i}\right)
$$

This has expectation 0 . It can be thought of as the number of "observed" events at $x_{i}(1$ or 0$)$ minus the number of "expected" events.

Counting Processes

$N(t)$ is a counting process if

- $N(t)$ is a non-negative integer
- $N(s)<N(t)$ if $s<t$
- $\mathrm{d} N(t)=N(t)-N(t-) \in\{0,1\}$, where $N(t-)=\lim _{\delta \rightarrow 0} N(t-\delta)$
- $\mathbb{E}(N(t))<\infty$

We write \mathcal{H}_{t} for the filtration of a counting process - all that is known at time t (in particular, this includes the values of random variables known up to and including time t).

We define an intensity $\lambda(t)$ and integrated intensity $\Lambda(t)$ as follows

$$
\begin{array}{cl}
\mathbb{P}\left(N(t+\delta)-N(t-) \mid \mathcal{H}_{t-}\right) & \approx \lambda(t) \delta \\
\mathbb{P}\left(\mathrm{d} N(t) \mid \mathcal{H}_{t-}\right)=\mathrm{d} \Lambda(t) & \Lambda(t)=\int_{0}^{t} \lambda(t) \mathrm{d} t
\end{array}
$$

Since $\mathrm{d} N(t)$ can only take values in $\{0,1\}$, this is equivalent to

$$
\mathbb{E}\left(\mathrm{d} N(t) \mid \mathcal{H}_{t-}\right)=\mathrm{d} \Lambda(t)
$$

Now, we require $\Lambda(t)$ to be predictable with respect to \mathcal{H}_{t} (ie: we require it to be known given \mathcal{H}_{t-1}) - effectively, this means it must be continuous. That said, we can write

$$
\mathbb{E}\left(\mathrm{d} N(t)-\mathrm{d} \Lambda(t) \mid \mathcal{H}_{t-}\right)=0
$$

Defining $M(t)=N(t)-\Lambda(t)$, the above clearly show that $\mathbb{E}\left(\mathrm{d} M(t) \mid \mathcal{H}_{t-}\right)=0$. Thus, M is a martingale, and we can write the Doob-Meyer decomposition:

$$
N(t)=\Lambda(t)+M(t)
$$

In other words, the counting process can be decomposed into a martingale and an increasing compensator function.

Relation to Survival Analysis

Survival analysis can be seen as a counting process. The counting variable for individual i whose time-to-event is the random variable T_{i} is

$$
N_{i}(t)=\mathbb{I}_{\left\{t \geq T_{i}\right\}}
$$

Now

$$
\mathrm{d} \Lambda_{i}(t)=\mathbb{E}\left(\mathrm{d} N_{i}(t) \mid \mathcal{H}_{t-}\right)=\text { In risk set } \times \text { Hazard }=Y_{i}(t) h_{i}(t)
$$

Where $Y_{i}(t)=\mathbb{I}_{\{T \geq t\}}$.
When we consider all n individuals, we can construct a new counting process consisting of the sum of each individual counting process

$$
N_{+}(t)=\Lambda_{+}(t)+M_{+}(t)
$$

The summed compensator can be written as

$$
\Lambda_{+}(t)=\int_{0}^{t} \sum_{i=1}^{n} Y_{i}(u) h_{i}(u) \mathrm{d} u
$$

If all the individuals are exposed to the same hazard, this becomes

$$
\Lambda_{+}(t)=\int_{0}^{t} Y_{+}(u) h(u) \mathrm{d} u=\int_{0}^{t} Y_{+}(u) \mathrm{d} H(u)
$$

Where $H(u)$ is the integrated hazard.

The Nelson-Aalen Estimator of $\boldsymbol{H}(\boldsymbol{t})$

The Doob-Meyer decomposition of the counting process can be written in differential form as

$$
\mathrm{d} N_{+}(t)=\mathrm{d} \Lambda_{+}(t)+\mathrm{d} M_{+}(t)
$$

We saw, however, that conditional on past history, the martingale has expectation 0 . So an estimate of H can be obtained using

$$
\mathrm{d} N_{+}(t)=\mathrm{d} \Lambda_{+}(t)
$$

When the hazard is the same of every individual, this becomes

$$
\begin{gathered}
\mathrm{d} N_{+}(t)=Y_{+}(t) \mathrm{d} H(t) \\
\mathrm{d} \hat{H}(t)=\frac{\mathrm{d} N_{+}(t)}{Y_{+}(t)} \\
\hat{H}(t)=\int_{0}^{t} \frac{\mathrm{~d} N_{+}(t)}{Y_{+}(t)}
\end{gathered}
$$

Now, let's consider each part of this estimator

- $\mathrm{d} N_{+}(t)$ is 1 at any time at which an event happens, but 0 otherwise.
- $Y_{+}(t)$ is simply the size of the risk set at t, r_{t}.

Thus, the Nelson-Aalen estimator is

$$
\hat{H}(t)=\sum_{j: a_{j} \leq t} 1 / r_{a_{j}}
$$

Censored data poses no problem - if an individual fails in between times a_{j} and a_{j+1}, it is included in all risk sets up to a_{j} but none thereafter. Similarly, if failure occurs at a time a_{j}, it is included in that risk set but none thereafter.

We find the variance of the estimator as follows

- $\mathrm{d} N_{+}(t)$ is (locally) a Poisson variable, with mean and variance $\mathrm{d} \Lambda_{+}(t)$. Thus, $\hat{\operatorname{Var}}\left(\mathrm{d} N_{+}(t)\right)=\mathrm{d} \hat{\Lambda}_{+}(t)=\mathrm{d} N_{+}(t)$. As such

$$
\hat{\operatorname{Var}}(\mathrm{d} \hat{H}(t))=\hat{\mathbb{V}} \operatorname{ar}\left(\frac{\mathrm{d} N_{+}(t)}{Y_{+}(t)}\right)=\frac{\mathrm{d} N_{+}(t)}{\left[Y_{+}(t)\right]^{2}}
$$

- Integrating in this case is paramount to adding lots of independent bits, so

$$
\hat{\operatorname{Var}}(\hat{H}(t))=\int_{0}^{t} \frac{\mathrm{~d} N(t)}{\left[Y_{+}(t)\right]^{2}}=\sum_{j: a_{j} \leq t} \frac{1}{r_{j}^{2}}=[s(t)]^{2}
$$

- Confidence intervals can be worked out using the normal distribution

$$
\left[\hat{H}(t)-\Phi^{-1} s(t), \hat{H}(t)+\Phi^{-1} s(t)\right]
$$

But better results can be obtained by first taking log transforms, and nothing that by the propagation of variance formula,

$$
\hat{\mathbb{V}} \operatorname{ar}\{\log \hat{H}(t)\} \approx\left(\frac{s(t)}{\hat{H}(t)}\right)^{2}
$$

Thus, a confidence integral for $\log \hat{H}(t)$ is

$$
\left[\log \hat{H}(t)-\Phi^{-1} \frac{s(t)}{\hat{H}(t)}, \log \hat{H}(t)+\Phi^{-1} \frac{s(t)}{\hat{H}(t)}\right]
$$

Which gives

$$
\left[\hat{H}(t) \exp \left\{-\Phi^{-1} \frac{s(t)}{\hat{H}(t)}\right\}, \hat{H}(t) \exp \left\{\Phi^{-1} \frac{s(t)}{\hat{H}(t)}\right\}\right]
$$

There are a number of ways to handle ties at a_{j}

- A natural way is to simply assume $\mathrm{d} N\left(a_{j}\right)=2$ at that point. The estimate is then

$$
\cdots+\frac{1}{r_{j-1}}+\frac{2}{r_{j}}+\frac{1}{r_{j+1}}+\cdots
$$

Unfortunately, the resulting estimate for $\hat{H}(t)$ for $t>a_{j}$ is not the same as would be obtained by substituting two distinct event times $a_{j} \pm \Delta$ and letting $\Delta \rightarrow 0$.

- In the second method, we actually assume that one event happens before the other. The estimate is then

$$
\cdots+\frac{1}{r_{j-1}}+\frac{1}{r_{j}}+\frac{1}{r_{j}-1}+\frac{1}{r_{j+1}}+\cdots
$$

Nelson-Aalen and Kaplan-Meier

If we let $\hat{H}_{\mathrm{NA}}(t)$ be the Nelson-Aalen estimator of $H(t)$ and $\hat{S}_{\mathrm{KM}}(t)$, be the Kaplan-Meier estimate of $S(t)$, we can come up with a "Kaplan-Meier estimator of integrated hazard":

$$
\hat{H}_{\mathrm{KM}}(t)=-\log \left\{\hat{S}_{\mathrm{KM}}(t)\right\}
$$

and a "Nelson-Aalen estimator of the survivor function"

$$
\hat{S}_{\mathrm{NA}}(t)=\exp \left\{-\hat{H}_{\mathrm{NA}}(t)\right\}
$$

For reasonably-sized risk sets, these are close to each other.

Nelson-Aalen and Proportional Hazards

In proportional hazards modelling, we assume that

$$
h_{i}(t)=\phi\left(z^{(i)}, \beta\right) h_{0}(t) \Rightarrow H_{i}(t)=\phi\left(z^{(i)}, \beta\right) H_{0}(t)
$$

It sometimes helps to have an estimate of H_{0}. Let's use the equation for the compensator again:

$$
\begin{gathered}
\Lambda_{+}(t)=\int_{0}^{t} \sum_{i=1}^{n} Y_{i}(u) \phi\left(z^{(i)}, \beta\right) h_{0}(u) \mathrm{d} u \\
\Lambda_{+}(t)=\int_{0}^{t} \sum_{i=1}^{n} Y_{i}(u) \phi\left(z^{(i)}, \beta\right) \mathrm{d} H_{0}(u) \\
\mathrm{d} \Lambda_{+}(t)=\sum_{i=1}^{n} Y_{i}(t) \phi\left(z^{(i)}, \beta\right) \mathrm{d} H_{0}(t)
\end{gathered}
$$

Once again, we assume $\mathrm{d} \Lambda_{+}(t)=\mathrm{d} N_{+}(t)$, and this gives

$$
\begin{gathered}
\sum_{i=1}^{n} Y_{i}(t) \phi\left(z^{(i)}, \beta\right) \mathrm{d} \hat{H}_{0}(t)=\mathrm{d} N_{+}(t) \\
\mathrm{d} \hat{H}_{0}(t)=\frac{\mathrm{d} N_{+}(t)}{\sum_{i=1}^{n} Y_{i}(t) \phi\left(z^{(i)}, \beta\right)} \\
\hat{H}_{0}(t)=\int_{0}^{t} \frac{\mathrm{~d} N_{+}(t)}{\sum_{i=1}^{n} Y_{i}(t) \phi\left(z^{(i)}, \beta\right)}
\end{gathered}
$$

