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Introduction 

 

Introduction 

 Survival data is time-to-event analysis 

o At most one event per subject 

o Highly positively skewed data 

o Censoring/truncation of data 

 T > 0 is a random variable which contains the time-to-event. T = 0 is 

the well-defined start. 

 Types of missing data: 

o Censoring (left/right) refers to a situation in which we only 

know that an event happened before/after a certain time. 

o Truncation (left/right) refers to a situation in which, if an event 

happened before/after a certain time, we have no information 

about that event. 

 It is important for missing data to be uninformative – in other words, 

the distribution of potential times T > t for uncensored individuals is 

the same as for an individual censored at t, all other things being equal. 

 

Notation and Distributions 

 Notation 

o Let there be n individuals 

o Let xi be either the observed event time or the time of censoring. 

o Let vi = 1 for observed events and 0 for censored events. 

o Let aj be only those times at which an event occurs. 

 Distributions 

o Density ( | )f t q , such that ( ) ( | )d
b

a
a T b f t tq< < = ò  

o Survivor function ( | ) ( | ) d
t

F t f t tq q
¥

= ò , probability of 

suriviing more than t. Note that ( ) ( )f t F t¢= - . 
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o Hazard is given by 
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o Integrated hazard is given by 

( )
( )

0

0

( | ) ( | ) d

( | )
 d

( | )
log ( | ) log(1)

( | ) log ( | )

t

t

H t h u u

F u
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F t

H t F t

q q

q
q
q

q q

=

¢-
=

= - -

= -

ò
ò  

And so ( )( | ) exp ( | )F t H tq q= -  

 Note that if F(t) is a survivor function, then 

o ( ), 0F tl l >  is also a survivor function (accelerated-life family). 

o ( ) , 0kF t k >  is also a survivor function (proportional hazards 

family). 

 Two specific distributions 

o Exponential distribution 

 ( ) tf t e rr -=  

 ( ) tF t e r-=  
 ( )h t r=  
 ( )H t tr=  

o Weibull Distribution 

 { }1( ) ( ) exp ( )k kf t k t tr r r-= -  

 { }( ) exp ( )kF t tr= -  

 1( ) k kh t k tr -=  

 ( ) ( )kH t tr=  

 Consider that if two Weibull distributions have the same 

k but different r  (say r  and cr ), then 

{ } { }
{ } { } { }
( ) exp ( ) exp ( )

( ) exp ( ) exp ( ) exp ( )
k

k k

c
k k k k

F t c t t

F t c t c t t

r r

r r r

¢= - = -

é ù= - = - = -ê úë û
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Thus, the two distribution belong to the same 

proportional hazards and accelerated life family. 
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Inference 

 

Parametric inference 

 If an individual is observed at xi, then ( | )
i

f x q  is contributed to the 

likelihood. If an individual is censored at xi, then ( | )
i

F x q  is 

contributed (since all we know is that the time is greater than xi). 

( ){ }
{ }

{ 1

1

}
1

{ 0}
( , )

( , ) log ( | ) (1 )log (

( |

| )

| )
i i

n

i
n

i i i

i

i

i

i

v v
L

v

f x F x

f x v F x

q

q q q

q q= =
=

=

=

= + -

+

å

x

x

 
 

Using f hF=  and exp( )F H= - , we obtain 

{ }
1

( , ) log ( | ) ( | )
n

i i i
i

v h x H xq q q
=

= -åx  

The MLE which maximises this is denoted q̂ . 

 Let 

o Q  be the p-dimensional space in which the MLE q̂  lives 

o Let q  be the MLE if we constrain q  to 
0

Q ÍQ , a q-dimensional 

subspace of Q . 

Wilks’ Lemma then tells us that 

2

a 0re l
ˆIf  2 t (he )(n ) ~

p q
S S cqq q -
é ù-ê úë ûÎ Q   

Thus 

o We accept the null hypothesis 
0real

q Î Q  if 

,1
ˆ( ) (

1
)

2 p q
CS S aqq - -£-   

o A confidence region for a given 
0
q  (ie: if 

0
Q  contains a single 

element) is given by 

,0 0 1
ˆ: ( ) (

1

2
)

p q
S S C aq q q - -

ì üï ïï ï-í ýïï
£

ïïî þ
 

 For example, for the exponential distribution ( | ) tf t e qq q -=  and 

( | ) tF t e qq -=  so ( )h t q=  and ( )H t tq= . Thus 

1 1

( , ) log
n n

i i
i i

v xq q q
= =

= -å åx  

And so 
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Number of observed eventsˆ i

i i
x

v

x
q

å
=

å
=

å
 

Note also that 
2

1
1

n

i i
v

q =
¢¢ = - å . This is a measure of how much 

information is present in the sample; note that it’s proportional to the 

number of death’s we observe – not the number of individuals. 

 

Non-Parametric inference 

 Recall that aj are the times at which failures actually occur. 

 The Kaplan-Meier estimate of ( )F t  is constructed by assuming that 

the number of members that survive in a time between aj – 1 and aj is 

binomial variable with probability of survival 1 – qj. It then estimates qj 

as ˆ /
j j j

q d r= , where 

o dj is the number of observed deaths at t = Xj (not including 

censored observations) 

o rj is the size of the “risk set” (ie: number of patients known to 

be still alive) just before time Xj 

The estimate of the probability of surviving longer than t (ie: not 

having died before t) is 

( )
: :

ˆ ˆ( ) 1 1
j j

j

j
j a j at t j

d
F t q

r£ £

æ ö÷ç ÷ç= - = - ÷ç ÷ç ÷çè ø
   

 

(Computationally, we divide time into bands each of which contains a 

single observed time, and do the above). 

 To estimate the error, we can use the rule for “propagation of errors” 

[we let ˆ ( )X X=  ]: 

{ } { }
( )

2

ˆ ˆ ˆar ( ) ar ( ) ( )( )

ˆ( ) ar

u X u X u X X X

u X X

¢» + -

é ù¢= ê úë û

 


 

Now, we perform the following steps 

o We begin by estimating the survival distribution as a sequence 

of binomials (ie: we ignore the rj are random variables). We then 

have 

( ) 2 2

(1 )1 1
ˆar( ) ar ar( ) (1 )j

j

d j j

j j j j jr
jj j

q q
q d r q q

rr r

-
= = = - =    

o We then use the formula for propagation of errors to get 
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( ){ } ( )
2

1
ˆ ˆar log 1 ar

ˆ(1 ) (1 )
j

j j

j j j

q
q q

q r q

æ ö÷ç ÷ç- » =÷ç ÷ç - -÷çè ø
   

o We then write 

{ }
1

ˆ ˆlog ( ) log(1 )
n

j
i

F t q
=

= -å  

From which we immediately obtain 

{ }( )
:

ˆar
(

og
)

l (
1

)
jj a

j

t j j

q

r
F t

q£

=
-å  

o Finally, we apply the rule of propagation of errors again, to find 

{ } { }{ }
{ }

ˆlog (

:

)

2

ˆar ( ) ar

( )
(1 )

j

F

j a

t

j

t j j

F t e

q
F t

r q£

=

»
-å

 
 

Greenwood’s Formula for the variance is then given by 

{ } { }

{ }
:

:

2

2

2

0

ˆ
ˆ ˆ ˆar ( ) ( )

ˆ(1 )

1ˆ( )

j

j

j

t j j

j

t j j

j

j a j

a

q
F t F t

r q

d
F t

r r d

s

£

£

=

=
-

-

=

å

å



 

And a confidence interval for F(t) is 
0 0

ˆ ˆ( ) , ( )F t s F t sé ù-F +Fê úë û  

 Unfortunately, the confidence interval above can go beyond the interval 

[0,1]. Two solutions exist to this 

o Use a transformation. Two possibilities 

 log transformation 

We know from above that 

{ }( ) 2
1

:

ar
(1 )

ˆlog ( )
j

j

ja tj j

q

r q
F t s

£

=
-

=å  

and so we obtain the following confidence interval for 

F(t):  

1 1ˆ ˆ( ) , ( )s sF t e F t e-F Fé ù
ê úë û

 

This works for F(t) near 0, but may get into trouble 

for F(t) near 1. 

 log(–log) transformation 

Using the propagation of variance formula, we get 
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{ }( ) 2

22
:

11ˆlog log ( )a
l

r
ˆog ( ) j

j

t j jj a j

F t s
F t

d

r r d£

é ù- = =ê úë û é ù
ê úë û

-å  

And we obtain the following confidence interval 

2 2exp expˆ ˆ( ) , ( )
s s

F t F t
é ù é ùF -Fê ú ê úë û ë ûé ù

ê úë û
 

This is guaranteed to be between 0 and 1. 

o Use the likelihood directly: another approach is to find the 

likelihood L which corresponds to an arbitrary value z of ˆ( )F t . 
 

To do this, first recall that we construct the KM estimate by 

assuming that our survivor function takes the form 

:
( ) (1 )

j tj a j
F t q£=  -  

Where the qj have to be estimated. For a given set of qj, the 

corresponding likelihood is 

a

al

ll events

l events

( | , ) (1 )

( | , ) log ( )log(1 )

j j jd r d

j j

j j j j j

L q q

d q r d q

--

= + - -

µ

å
q d r

q d r
 

If the q are unconstrained, this likelihood is maximised by 

setting ˆ /
j j j

q d r= , as we do in the KM estimate. 
 

However, if we insist on constraining F(t) = z, then we need to 

use Lagrange multipliers to maximise the likelihood. This 

involves finding a l  such that 

all events :

log ( )log(1 ) log log(1 )
j

j j j j j j
j a t

d q r d q z ql
£

ì üï ïï ïï ï+ - - - - -í ýï ïï ïï ïî þ
å å  

is maximised when the constraint is satisfied. This gives 

:

/ :

j

j

d

jr
j

j j j

j a
q

d r a

t

j t
l+

ìïïïí
£

=
ï >ïïî

 

(Note that only values for Xj < t are affected, since F(t) – which 

we are constraining – only involves these values). 
 

Our strategy for interval estimation is then as follows 

 Choose a l  

 Work out the qj 

 Using those, we can work out F(t) and L 
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 Repeat for various values of l , and use the values 

obtained to construct a likelihood graph of L against F(t) 

Since there is effectively only one parameter here (l ), then 

( ) ( ) 2

1
ˆ2 ( ) ~F t z cé ù-ê úë û

   

where ˆ( )F t  is the KM estimate of F(t) and z as another value. 

Thus, to find a confidence interval for ˆ( )F t , we use the graph to 

find the values z whose likelihoods are at most 1
1,12

C a-  away 

from the maximum likelihood. 

 

Empirical Inference 

We now consider a different kind of non-parametric way to estimate the 

survivor function. We do this by constructing an empirical likelihood, and 

finding the F that maximise it subject to 

1. )( ()F u F v³  if u < v 

2. 1 > F(t) > 0 

3. F(0) = 1 (not essential, but aids exposition; implies no events at t = 0). 

Four common kinds of contributions to the likelihood are 

 ith individual right censored at xi adds ( )
i

F x  

 ith individual with event at xi contributes ( ) ( )
i i

F x F x- - , where 

0
( ) lim ( )

i i
F x F x

D
- = -D  

 ith individual left censored at xi (ie: T < xi) adds 1 ( )
i

F x-  

 ith individual censored in the interval [ , )L U

i i
x x  (ie: 

i

L

i

Ux T x£< ) adds 

( ) ( )U L

i i
F x F x-  

To find the likelihood, we multiply all the contributions together and 

maximise. Note that the generic term is in the form ( ) ( )F b F aé ù-ê úë û . If there is 

no term involving a ( )F b- , this means that we should increase F(b) 

indefinitely, subject to condition 1 above. An immediate consequence, together 

with condition 3 above, is that F(0) = 1. 

 

We can use this methodology to re-derive Kaplan Meier: 

 All terms will be of the form ( ) ( )
i i

F x F x- -  or ( )
i

F x . 
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 Now, note that 

o There will never be a – sign in front of F(xi–), and so 

1

ˆ ˆ( ) (latest event)
ˆ ˆ( ) ( )

j j

i

F a

F x

F a

F

-
 - =

- =
 

o If, at a time xi, there is no event but a censored observation, 

then there will never be a sign in front of F(xi), and so 

( )
:  max  

ˆ ˆ( ) latest eve
ˆ ˆ( )

n

( )

t

j ii j a x

i

F

F

F

F

x

x

a £

=

 =
 

This implies that we only need to consider event times, and that the 

function is constant except at event times. 

 We write 
1j j j j

c r d r += - -  for the number of censored events in the 

interval 
1

[ , )
j j

a a + .  

 The likelihood can then be written as 

1
all events

( ) ( ) ( )
j jd c

j j j
L F a F a F a-

é ù é ù= -ê ú ê úë û ë û  

Writing Fj = F(aj), we can write this as 

1
all events

j jd c

j j j
L F F F-

é ù é ù= -ê ú ê úë û ë û  

The exponent on the second term is effectively the number of censored 

events between aj and aj + 1. 

 Taking logs, and then differentiating 

( )1
all events all events

1

1 1

log log

0
ˆ ˆ ˆ ˆ ˆ

j j j j j

j j j

j j j j j j

d F F c F

d d c

F F F F F F

-

+

- +

= - +

¶
= - + + =

¶ - -

å å

  

 This is a third-order recurrence relationship. It simplifies greatly if we 

start with ˆ
g

F . Consider that dg + 1 = 0. The recursion relation for ˆ
g

F  is 

then 

1
1

ˆ0 ˆj j

g g g

g

g g
g g

d c

F F F

c
F F

c d -
-

 =
+

- + =
-

 

(If cg = 0, ˆ 0
g

F = . This makes sense; since the last term in the 

likelihood is 
1

gd

g g
F F-
é ù-ê úë û , we want to make ˆ

g
F  as small as possible). 

 Now, consider that we can re-write our expression for ˆ
g

F  as 

1 1
ˆ ˆ ˆ1g j j

g g g

g g

r d d
F F F

r r- -

æ ö- ÷ç ÷ç= = - ÷ç ÷ç ÷çè ø
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Note also that if ( )1

1
1

ˆ ˆ1 j

j

d

j jr
F F+

+
+ = - , then 

( )1

1

1

1 1

1

1

1

1

1 1 1 1

1

1
1

1

0
ˆ ˆ ˆ ˆ ˆ

0
ˆ ˆ ˆˆ ˆ1

0
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ

ˆ ˆ

ˆ 1

j

j

j j j

j j j j j

j j j

d
j j jj jr

j j j

j j j j

j j j j j j j j j j

j j

j j
j j j

j j

j j
j

j

j
j

d d c

F F F F F

d d c

F F FF F

d r c

F F F F

d F r F r F c F c F

r c
F F

d r c

r d
F F

r

d
F

r

+

+

+

- +

+

-

+

-

+ - + -

+
-

+

-

- + + =
- -

- + + =
- - -

- + + =
-

- + - + - =
+

=
+ +

-
=

æçç= -
è

1
ˆ
j

F -

ö÷÷÷ç ÷ç ÷ç ø

 

Thus, by induction, this is true for all j. Since we have assume that 

0
ˆ 1F = , this is our familiar Kaplan-Meier estimate. 

 

Note that this all ties in to our earlier discussion of deriving confidence 

intervals for the KM estimator. Consider that 

 Constraining F(t) = z is equivalent to constraining log log
k

F z= , 

where k is chosen to be the event just before t. 

 The quantity to maximise is then 

( ) ( )1
all events all events

log log log log
j j j j j k

d F F c F F zl-= - + + -å å  

Interestingly, this just looks like we’ve added an extra l  censored 

individuals at time ak. This makes the recurrence relation easy to 

intuitively adapt 

( )
( )

1

1

ˆ ˆ1

ˆ ˆ1

j

j

j

j

d

j jr

d

j jr

j k F F

k F Fj
l

-

-+
£ = -

> = -
 

We start at ˆ
k

F z=  to obtain those terms with j > k, and we start with 

0
ˆ 1F =  for those j < k, choosing l  such that ˆ

k
F z= . 

 As ever, the confidence intervals are then found using 

( ){ }1,1
ˆ: 2 ( )z z C a-£-  
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Where ̂  is the maximum log-likelihood and ( )z  is the constrained 

likelihood. 

 

The Log-Rank Test 

We now consider a situation in which we want to compare the survival 

performance of two groups. It is not a good idea to compare the groups at a 

particular time t because 

 We are usually interested in the complete time spectrum rather than in 

individual points 

 Comparing specific time points could lead to multiple testing problems 

 We might be tempted to choose specific time points a posteriori to suit 

our hypothesis 

The log-rank test is a nonparametric test that takes all observations into 

account. It is most powerful when used on non-overlapping survival curves (ie: 

where the curves belong to the same proportional hazards family, 

( )(0) (1)
k

j j
F F= ). In fact, this test can be shown to be the score test for 

proportional hazards. 

 

Consider two groups {0,1}i Î , with observed/censored times ( )i

j
X . At time Xj, 

there are ( )i
j

r  individuals at risk in group i, of which ( )i
j

d  are observed to fail. 

The survivor function at Xj is 
( )i
j

F  in group i, and our null hypothesis is 

(0) (1)

0
:

j j
H F F j= "  

 

Our strategy in the log-rank test is to construct a contingency table for every 

time aj at which a failure is observed, which looks like this 

Time aj Group 0 Group 1 Total 

Fails (0)

j
d  (1)

j
d  j

d  

Not-fails (0) (0)

j j
r d-  (1) (1)

j j
r d-  j j

r d-  

# risk set (0)

j
r  (1)

j
r  j

r  

Now consider – under the null hypothesis, the probability of failing is the 

same for both groups. Using the hypergeometric distribution, the expectation 

and variance of the upper-left-hand cell should then be 
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(0)

(0) (1)

2

2

( )
ar

/ ( 1)

j

j
j

j j j j j

j j

d
r

r

d r d r r
s

r r

=

-
= =

-




 

The deviation from what we expect is therefore given by 

(0) (0)j

j j j
j

d
z d r

r
= -  

And the log-rank statistic is given by 

1

1 N

j
j

z
s =
å  

should be compared with the standard normal distribution. 

 

Other versions weigh the zj by rj. 
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Modelling 

 

We may be interested in modelling the effect of explanatory variables on the 

survival probabilities. The setup is as follows 

 Individual i has explanatory variables ( )( ) ( ) ( )

1
, , ii

p
iz z=z   

 Our model has parameter set ( )
T

=q b y , where b  are “interesting” 

parameters relating to the z, and y  are the nuisance parameters. 

 

Accelerated life modelling 

Here, we start with a baseline survivor 
0
( , )F t y , and we model the survivor of 

the ith individual by 

( ) ( )( ) ( )

0
, , , ( , ) ,i iF t F tf=z zb y b y  

This, however, is very rarely used. 

 

Proportional Hazards Modelling 

Here, we start with a baseline hazard 
0
( , )h t y , and we model the hazard of the 

ith individual by 

( )( ) ( )

0
( , , , ) , ( , )i ih t h tf=z zb y b y  

Possible forms of the function f  are as follows (note that it must be positive) 

( )

Cox regressio

( , )

n

1

log 1

T

T

T

e

e

e

f

ìïïïïï= +

¬

íïïï +ïïî

z

z

z

z

b

b

b

b  

 

We now consider the likelihood inference for b . 

 We first use an invariance argument to show that the order in which 

the events happen is sufficient for b  

o If we transform the timescale from t u  with ( )t g u=  and g 

monotonically increasing and differentiable), then 

( )( ) ( )

0
( , , , ) , ( ( ), ) ( )i ih t h g u g uf ¢=z zb y b y  

o Clearly, only the baseline hazard changes. Thus, the timescale is 

irrelevant to the proportionality factor. 
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 Now, consider a situation in which we have no censoring and no ties. 

o Label the individuals 1, ,n , and let 
j

p  be the jth individual to 

fail, at time aj (p  is a permutation of the n individuals). 

o The risk set at that time is { }:
j j

jR jp ¢
¢= ³  

o The probability of individual i failing at t is proportional to that 

individual’s hazard at t. Now, we know that individual 
j

p  is the 

only one from the risk set Rj to have failed at aj. The probability 

of that happening was therefore 

( )( )

0
, ( , )j

j
h

pf z ab y

( )
0

( , ) ( , )i
j

hf z ab y

( )( )

( )

,

( , )

j

jj

i

i Ri R

pf

f
ÎÎ

=
åå

z

z

b

b
 

o Thus, the probability that we observe the sequence that we did 

indeed observe is 

( )( )

( )
1

,

( , )

j

j

n

i

i R

j

pf

f
Î

=
å

z

z

b

b
 

This partial likelihood for b  can be maximised. Some software 

exists to do this efficiently, especially for Cox regression. (The 

likelihood is “partial” because it does not use all the data 

available – but we showed, from our invariance argument, that 

it is nevertheless sufficient). 

 Dealing with censoring – we use exactly the same expression as above, 

but we only include the non-censored observations in the product. For 

example, if the individuals are censored in the order 3 (4) 1 2, we 

would obtain the following likelihood 

1 1 2

1 2 3 4 1 2 2

f f f
f f f f f f f+ + + +

 

(Note that this is the sum of the likelihoods for 3 4 1 2, 3 1 4 2 and  

3 1 2 4). 

 Dealing with ties – consider the example 3, 4 = 2, 1 (ie: 4 and 2 fail at 

the same time). Several options: 

o Assume there is a real order, and sum the likelihoods. 

3 4 1 1 4 2

1 2 3 4 1 2 4 1 2 1 2 4 2 4 2

f f f f f f
f f f f f f f f f f f f f f f

æ ö÷ç ÷ç + ÷ç ÷÷ç+ + + + + + + + +è ø
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This is called the exact partial likelihood, but it can get 

computationally very expensive. 

o We consider the tie as genuine, and consider the probability of 

choosing this group of 2 events out of all the possible groups of 

two events we could have chosen 

3 4 1 2

1 2 3 4 4 1 1 2 2 4 2

f f f f
f f f f f f f f f f f+ + + + +

 

This should only be used if the data is truly discrete. 

o We consider a mixture of individuals 

( )( )1 4

3 4 1 2

1 2 3 4 21 2 4 2 2 2

f f

f f f f
f f f f ff f f f+ + + + + + +

 

This is called the Efron approximation. 

 

Residuals 

We define: 

 The Cox-Snell residual is defined as follows 
( )

0
ˆ ˆ( ) ( , ) ( , ) log ( )i

i i i i i i
y H x H x S xf= = = -z b y  

where xi is the failure time of individual i. Note that for uncensored 

data, ~ Exp(1)
i

y . We can prove this as follows: 
 

Note that if ( )
T

U H T= , and FU and FT are the survival functions of U 

and T, we have: 

( ) ( )) (( )
TU

U u HF u T u> = >=    

HT is increasing and has an inverse, and so 

( )
( )
( )
( )

1

1

1

( )

( )

exp ( ( ))

e p

(

x

)
T

T T

U

T T

T H u

F H u

H H u

u

F u -

-

-

= >

=

= -

= -



 

This is the survivor function for an exponential distribution. 

 If the individual is right-censored with recorded time xi and real time 
*

i i
t x> , then we obviously have that *ˆ ˆ( ) ( )

i i i i
H x H t< . Our strategy will 

therefore be to add something to the Cox-Snell residuals for censored 

values to correct for this discrepancy. 
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Remember, further, that the exponential distribution is memory-less. 

Thus, *ˆ ˆ ˆ( ) ~ Exp(1) ( ) ( ) ~ Exp(1)
i i i i i i

H x H t H x- , and therefore 

{ }*ˆ ˆ( ) ( ) 1
i i i i

H t H x- = . Thus, it seems like a sensible amount to add is 

1. We define the modified Cox-Snell Residuals: 

( ) ˆ1 ( )
i i i

y v H x¢ = - +  

These simply add 1 to censored observations. These are therefore 

genuinely Exp(1) distributions, regardless of censoring and ( ) 1
i

y ¢ = . 

 The Martingale residual is defined as 

ˆ1 ( )
i i i i

y y v H x¢¢ ¢= - = -  

This has expectation 0. It can be thought of as the number of 

“observed” events at xi (1 or 0) minus the number of “expected” events. 
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Counting Processes 

 

N(t) is a counting process if 

 N(t) is a non-negative integer 

 ( ) ( )N s N t<  if s < t 

 d ( ) ( ) {0,1) }(N t N t N t Î= - - , where 
0

( ) lim ( )N t N td d- = -  

 ( )( )N t <¥  

We write 
t
  for the filtration of a counting process – all that is known at 

time t (in particular, this includes the values of random variables known up to 

and including time t). 

 

We define an intensity ( )tl  and integrated intensity ( )tL  as follows 

( )
( )

0

( ) ( ) | ( )

d ( ) | d ( ) ( ) ( ) d

t
t

t

N t N t t

N t t t t t

d l d

l

-

-

+ - - »

= L L = ò







 

Since dN(t) can only take values in {0,1}, this is equivalent to 

( )d ( ) | d ( )
t

N t t- = L   

Now, we require ( )tL  to be predictable with respect to 
t
  (ie: we require it to 

be known given 
1t- ) – effectively, this means it must be continuous. That 

said, we can write 

( )d ( ) d ( ) | 0
t

N t t -- L =   

Defining ( ) ( ) ( )M t N t t= -L , the above clearly show that ( )d ( ) | 0
t

M t - =  . 

Thus, M is a martingale, and we can write the Doob-Meyer decomposition: 

( ) ( ) ( )N t t M t= L +  

In other words, the counting process can be decomposed into a martingale and 

an increasing compensator function. 

 

Relation to Survival Analysis 

Survival analysis can be seen as a counting process. The counting variable for 

individual i whose time-to-event is the random variable Ti is 

{ }( )
i

i t T
N t

³
=   

Now 

( )d ( ) | In risk set Hazard ( ) )d ( ()
i t i ii

N t Y t h tt - = ´L = =   
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Where { }( )
Ti t

Y t
³

=  . 

 

When we consider all n individuals, we can construct a new counting process 

consisting of the sum of each individual counting process 

( ) ( ) ( )N t t M t+ + += L +  

The summed compensator can be written as 

0
1

( ) ( ) ( ) d
nt

i i
i

t Y u h u u+
=

L = åò  

If all the individuals are exposed to the same hazard, this becomes 

0 0
( ) ( ) ( )d ( ) d ( )

t t

t Y u h u u Y u H u
+ + +

L = =ò ò  

Where H(u) is the integrated hazard. 

 

The Nelson-Aalen Estimator of H(t) 

The Doob-Meyer decomposition of the counting process can be written in 

differential form as 

d ( ) d ( ) d ( )N t t M t
+ + +

= L +  

We saw, however, that conditional on past history, the martingale has 

expectation 0. So an estimate of H can be obtained using 

d ( ) d ( )N t t+ += L  

When the hazard is the same of every individual, this becomes 

0

d ( ) ( ) d ( )

d ( )ˆd ( )
( )

d ( )ˆ( )
( )

t

N t Y t H t

N t
H t

Y t

N t
H t

Y t

+ +

+

+

+

+

=

=

= ò

 

Now, let’s consider each part of this estimator 

 dN+(t) is 1 at any time at which an event happens, but 0 otherwise. 

 Y+(t) is simply the size of the risk set at t, rt. 

Thus, the Nelson-Aalen estimator is 

:

ˆ( ) 1/
j

j

a
j a t

H t r
£

= å  

Censored data poses no problem – if an individual fails in between times aj 

and aj + 1, it is included in all risk sets up to aj but none thereafter. Similarly, if 

failure occurs at a time aj, it is included in that risk set but none thereafter. 
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We find the variance of the estimator as follows 

 dN+(t) is (locally) a Poisson variable, with mean and variance d ( )t
+

L . 

Thus, ( ) ˆˆar d ( ) d ( ) d ( )N t t N t+ + += L = . As such 

( ) 2

d ( ) d ( )ˆ ˆ ˆar d ( ) ar
( ) ( )

N t N t
H t

Y t Y t

+ +

+
+

æ ö÷ç ÷ç= =÷ç ÷ç ÷ é ùè ø ê úë û

   

 Integrating in this case is paramount to adding lots of independent bits, 

so 

( ) 2

2 20
:

d ( ) 1ˆ ˆar ( ) ( )
( ) j

t

j a t j

N t
H t s t

rY t £
+

é ù= = = ê úë ûé ùê úë û
åò  

 Confidence intervals can be worked out using the normal distribution 
1 1ˆ ˆ( ) ( ), ( ) ( )H t s t H t s t- -é ù-F +Fê úë û  

But better results can be obtained by first taking log transforms, and 

nothing that by the propagation of variance formula, 

{ }
2

( )ˆ ˆar log ( )
ˆ( )

s t
H t

H t

æ ö÷ç ÷» ç ÷ç ÷çè ø
  

Thus, a confidence integral for ˆlog ( )H t  is 

1 1( ) ( )ˆ, log ( )ˆlog ( )
ˆ ˆ( ) ( )

s t s t
H t

H t
H

H
t

t
- -

é ù
ê ú-F Fê + ú
ë û

 

Which gives 

1 1ˆ ˆ( )exp ( )
( ) ( )

,
ˆ ˆ( ) ( )

exp
s t s t

H t H
H H t

t
t - -

é ùì ü ì üï ï ï ïï ï ï ïê ú-F Fí ý í ýê úï ï ï ïê úï ï ï ïî þ î þë û
 

 

There are a number of ways to handle ties at aj 

 A natural way is to simply assume d ( ) 2
j

N a =  at that point. The 

estimate is then 

1 1

1 2 1

j j j
r r r- +

+ + + +  

Unfortunately, the resulting estimate for ˆ( )H t  for t > aj is not the 

same as would be obtained by substituting two distinct event times 

j
a D  and letting 0D  . 

 In the second method, we actually assume that one event happens 

before the other. The estimate is then 

1 1

1 1 1 1

1
j j j j

r r r r- +

+ + + + +
-
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Nelson-Aalen and Kaplan-Meier 

If we let 
NA

ˆ ( )H t  be the Nelson-Aalen estimator of H(t) and 
KM

ˆ ( )S t , be the 

Kaplan-Meier estimate of S(t), we can come up with a “Kaplan-Meier 

estimator of integrated hazard”: 

{ }KM KM
ˆ ˆ( ) log ( )H t S t= -  

and a “Nelson-Aalen estimator of the survivor function” 

{ }NA NA
ˆ ˆ( ) exp ( )S t H t= -  

For reasonably-sized risk sets, these are close to each other. 

 

Nelson-Aalen and Proportional Hazards 

In proportional hazards modelling, we assume that 
(( )

0

)

0
( ) ( , ) ( ) ( ) ( , ) ( )i

i i

i H t z H th t z h tb f bf  ==  

It sometimes helps to have an estimate of H0. Let’s use the equation for the 

compensator again: 

( )

00
1

( )

00
1

( )

0
1

( ) ( ) ( , ) ( ) d

( ) ( ) ( , ) d ( )

d ( ) ( ) ( , ) d ( )

nt
i

i
i

nt
i

i
i
n

i

i
i

t Y u z h u u

t Y u z H u

t Y t z H t

f b

f b

f b

+
=

+
=

+
=

L =

L =

L =

åò

åò

å

 

Once again, we assume d ( ) d ( )t N t+ +L = , and this gives 

( )

0
1

0 ( )

1

0 ( )0
1

ˆ( ) ( , ) d ( ) d ( )

d ( )ˆd ( )
( ) ( , )

d ( )ˆ ( )
( ) ( , )

n
i

i
i

n i

i i

t

n i

i i

Y t z H t N t

N t
H t

Y t z

N t
H t

Y t z

f b

f b

f b

+
=

+

=

+

=

=

=
å

=
å

å

ò


