Deriving the Power of a Test

Consider a situation in which we would like to test whether an overdose rate has shrunk from $p_{\text {old }}$ to $p_{\text {new }}=p_{\text {old }} / 2$ (ie: whether the overdose rate has halved). The question is - how large does our sample need to be to get a certain power for a test of a certain size?

Strictly speaking, we should fit a binomial generalized linear model and derive a test statistics from that model. Given the large number of sample, however, we take a "back of the envelope" approach instead.

Let the original overdose rate be $p_{\text {old }}$, the new rate $p_{\text {new }}$, and let n individuals be sampled in each case (in this case, 15, 000) or which $d_{\text {old }}$ and $d_{\text {new }}$ die of overdose. The hypotheses we want to test are

$$
\begin{gathered}
H_{0}: p_{\text {new }}=p_{\text {old }} \\
H_{1}: p_{\text {new }}=p_{\text {old }} / 2
\end{gathered}
$$

Now, note that

$$
d_{\text {old }} \sim \operatorname{Bin}\left(n, p_{\text {old }}\right) \Rightarrow \operatorname{Var}\left(d_{\text {old }}\right)=n p_{\text {old }}\left(1-p_{\text {old }}\right)=n p_{\text {old }}\left(1-p_{\text {old }}\right)
$$

Since the rates are very small and n is very large, we approximate

$$
d_{\text {old }} \sim N\left(n p_{\text {old }}, n p_{\text {old }} \bar{p}_{\text {old }}\right)
$$

and similarly for $d_{\text {new }}$. This means that

$$
d_{\text {old }}-d_{\text {new }} \sim N\left(n\left\{p_{\text {old }}-p_{\text {new }}\right\}, n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)\right)
$$

Our test statistic will therefore be

$$
Z=\frac{d_{\text {old }}-d_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}} \sim\left\{\begin{array}{cl}
N(0,1) & \text { under } H_{0} \\
N\left(n p_{\text {new }}, 1\right) & \text { under } H_{1}
\end{array}\right.
$$

Now, if we want the significance of our test to be α,

$$
\begin{gathered}
\mathbb{P}\left(H_{0} \text { rejected } \mid H_{0} \text { true }\right)=\alpha \\
\mathbb{P}\left(\frac{d_{\text {old }}-d_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}}>C\right)=\alpha \\
C=z_{\alpha}
\end{gathered}
$$

All that said, the power of our test, $1-\beta$, is given by

$$
\begin{gathered}
\mathbb{P}\left(H_{0} \text { accepted } \mid H_{1} \text { true }\right)=\beta \\
\mathbb{P}\left(\frac{d_{\text {old }}-d_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}}>C\right)=1-\beta \\
\mathbb{P}\left(\frac{d_{\text {old }}-d_{\text {new }}-n p_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}}>C-\frac{n p_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}}\right)=1-\beta \\
C-\frac{n p_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}}=z_{1-\beta}
\end{gathered}
$$

Solving to eliminate C

$$
\begin{aligned}
& z_{\alpha}-z_{1-\beta}=\frac{n p_{\text {new }}}{\sqrt{n\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}} \\
& \frac{\left(z_{\alpha}-z_{1-\beta}\right)^{2}\left(p_{\text {old }} \bar{p}_{\text {old }}+p_{\text {new }} \bar{p}_{\text {new }}\right)}{p_{\text {new }}^{2}}=n
\end{aligned}
$$

