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Loss Distributions 

 

A loss is the value of actual damage caused by the insured-against event. We 

treat this loss as a positive random variable. 

 

Common Distributions 

Here is a table of common distributions. Note that 
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Notes: when k = 1, we recover the two parameter form. 
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Notes: when 1g = , we recover the two-parameter Pareto. 

 

I can’t really be bothered to make a similar table for discrete distributions. 

But they’re available everywhere. Common ones are the Bernoulli, binomial, 

geometric, negative binomial and Poisson. 

 

Notation 

 Let X be the loss, a positive random variable with distribution function 

(DF) F so that )( ) (F xx X= £ , and density f. 

 The moment generating function (MGF) of X is 

( ) ( )tXM t e=   

It certainly exists for t < 0 if X is positive, but might not exist for some, 

or all t > 0. 

 The rth moment of X, ( )rX  may be found by direction integration, 
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(so again, the cumulants of independent random variables are additive). 

We find 
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The standardised 3rd cumulant is 3/2

3 2
/k m  is the skewness or coefficient of 

skewness. If f is symmetric, the skewness is 0: 

 
Loss distributions are typically positively skewed, with heavy tails. 

 The probability generating function of a random variable X is given by 
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Mixed Distributions 

EXAMPLE:  Each policy holder in a portfolio has loses that are exponentially 

distributed, but each with a different expectation. We model this 
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We say that X has a mixed distribution. ( , )a qG  is the mixing 

distribution and we say l  is mixed over ( , )a qG . 
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(Where, in the last line, we used the fact that the quantity in the 

integral is a G  density). 
 

We then have 

Positively skewed Negatively skewed 
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This is a two-parameter Pareto. 
 

Morals of the example: 

1. Identify a density to set an integral to 1. 

2. If you have ( )X x>  rather than ( )X x< , use the fact 

that { }d d
d d
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Fitting loss distributions to data 

Standard statistical methods are used (like maximum likelihood estimation). 

Bayesian methods can also be used. 
 

EXAMPLE (truncated data): Let X be a random variable with density fX and 
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We sometimes use plots in the exploratory stages of fitting 
| 
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Definition (mean residual life): The mean residual 

life at x of a random variable X is 

( )( ) |e x X x X x= - >  

It is the case that 

0

1 ( ) d( )
( )  d

1 ( ) 1 ( )

XX x

X X

F w wf x y
e x y y

F x F x

¥

¥ -+
= =

- -
ò

ò  
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Where we have assumed, in the last line, that the tail 

is small enough to ensure (1 ( )) 0w F w-   as 

w  ¥ . As required.  
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Definition (empirical mean residual life): The 

empirical mean residual life of a sample 
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Now, since our distribution puts mass 1/n at each 
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As required.  
 

We usually plot the empirical mean residual life against x, and then compare 

it to e(x) for some known distributions. 
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Compound Distributions 

 

Definition (compound distribution): Let 
1 2
, ,X X   be 

IID random variables and let N be a random variable 

taking values in { }0,1,2,  independently of the Xi. 

Then the random sum 
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is said to be a compound distribution. 

 

Moments & Distributions 

For the random sum S defined above, it is the case 
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we then note that, since all the X are independent: 
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as required.  
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We can find the distribution of S either using convolutions of MGFs (ie: 

transforms). 

 Convolutions 

Definition (n-fold convolution of F): Let X have the 

distribution function F. The n-fold convolution of F, 

denoted *nF , is the distribution of 
1 n

X X+ + . 
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The distribution function of S is then 

( ) ( )

( )
0

*

0

)

(

)

)

(

|

(
s

n

n

n

x

S x N

F x

n N n

x n

S

F N

¥

=
¥

=

£

= £ = =

=

= =

å

å

 





 

This expression is hard to use because of the infinite sum and the 

recursive integral. 
 

Note, however, that if X is non-negative, then F(0) = 0 and 

( ) ( )0 0S N= = =   

thus, if the claim sizes are nonnegative, S has an atom at 0 of size 

( )0N = . 

 Moment generating functions 
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Let ( )( ) N

N
z z=   be the probability generating 

function (PGF) of N, and let ( )1( ) uX

X
M u e=   be the 

MGF of X1. Then the MGF of S is 
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As required.  
 

Note as well that since ( )( ) log
X X

z M z= , we also have 

( ) ( )( ) log ( ) log ( ) log log ( ) ( ( ))
S S N X N X N X

M M M Mk q q q q k k q= = = =  

Depending on the situation, the cumulant generating function might 

be easier to use than the moment generating function. 

 

In some cases, this allows us to work out the distribution of S 

directly. 
 

EXAMPLE:  Suppose N is geometric so that ( ) nN n q p= =  where 
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Actuarial Statistics  Page 11 of 55 

  © Daniel Guetta, 2010 

Based on lectures by Susan Pitts, Lent 2010 

( )

( )

( )

 ( )

( )

1
1

2

MGF of  if 
is s.t. ( 0) 1

MGF of  if
~exp /

( ) ( )
1

1

1
1

1
 1 1 (*)

1

S N X

u

Y Y pY

W
W p

p
M u M u

q

p u

u q
p u

p u
p u p p

p
p u p u

p p
u

m

m

m

m

m
m

m
m
m m

-

= =

= =
-

-
=

- -
-

=
-

æ ö- -÷ç ÷= +ç ÷ç ÷ç - -è ø

= + -
-




 

We note that the following three statements are 
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and so (*) implies that 
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in other words, the distribution of S is a discrete mixture 

of the exponential distribution and the distribution with 

an atom at 0. Note that 

( ) ( ) 1
( ) 0 ( ) ( )q

p p
S p q N Xm m= ⋅ + ⋅ = =    

in accordance with equation (2.1). Also 

/

0

/

0

0

01 )

 d
( )

0

(

x
p pt

S

px

p q e t x
F x

x

qe x

m
m

m

-

-

ìïï +ï= íïïïî
= -

³

£

³

ò
 

  

 

Common choices of N in insurance 

Common examples of distributions that are used for N are geometric, negative 

binomial, binomial, mixed Poisson, etc…, leading to compound Poisson, 

compound geometric, etc… Some examples: 

1. For a group life insurance policy covering m lives, the distribution of N 

(= # deaths in 1 year, of  1 year policy) is binomial if we assume that 
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each life is subject to the same mortality rate, and that the deaths are 

independent. 

2. Suppose that | ~ Po( )N l l  and ~l  some distribution with density fl , 

then N has a mixed Poisson distribution, and 
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This is the PGF of a negative binomial with parameters k and 

/ ( 1)p d d= + , so 

1
( ) 0,1,2,n k

n k
N n q p n

n
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note that for a negative binomial, 2var / /kq p kq p= > =  . In 

practice, this often gives a better fit to data than a Poisson distribution. 

 

Important properties of independent compound Poisson 

distributions 

Suppose 
1

,,
n

S S  (n fixed) are independent compound Poisson random 

variables with Poisson parameters 
1

,,
n

l l , and the claim sizes for each of the 

sums have distribution functions 
1

,,
n

F F . Let Mi be the MGF belonging to 

the claim size for compound variable i. Let 
1 n

SS S= + +  and 

1 n
ll l= + + . 



Actuarial Statistics  Page 13 of 55 

  © Daniel Guetta, 2010 

Based on lectures by Susan Pitts, Lent 2010 

( ) ( )
( )

( ){ }

1(

1

1

1

1

1

( )

( )

exp ( ) 1

ex

(MGF o

p ( )

exp

f )

( ) 1

i

i

nu SuS

S

n
uS

i
n

N i
i
n

i i
i

n

i i
i

n

i
i

S

i

M y e e

e

M u

M u

M u

M u

S

l

l

l

l l

l

++

=

=

=

=

=

= =

=

é ù= ê úë û

= -

é ùæ ö÷çê ú÷= -ç ÷ê úç ÷çè øê úë û
é ùæ öì üï ï ÷çï ïê ú÷ç= -í ý ÷ê úç ÷ï ï ÷çè øê úï ïî þë û

¬





å

å

 





 

thus, we see that the sum has itself a compound Poisson distribution with 

Poisson parameter l . Note also that the multipliers in the sum all sum to 1 

( / 1
i i
l lå = ), so we have a discrete mixture, and the equivalent claim size 

distribution function of the sum is 
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Numerical Methods ~ Panjer Recursion 

Assume X1 takes values in { }1,2,3,  and let ( )1k
f X k= = . Let also 
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This is satisfied by Poisson ( 0,a b l= = ), binomial ( ( 1), n pp
q qa b += - = ) and 

negative binomial ( , ( 1)a q b k q= = - ). 
 

Assume { }
k
f , a, b and p0 are known. We have that 

1 N
XS X= + + , which 

can take values in { }0,1,2, , since the claim sizes take integer values. 
 

Let ( )
k

g S k= = . We have that 

 1. g0 = p0 

 2. 
1

r

r j r j
j

bj
g a f g

r -
=

æ ö÷ç ÷= +ç ÷ç ÷çè ø
å  (2.4) 

 

Proof: It is obvious that g0 = p0, because since the 

claim sizes cannot be 0, 
0

( 0) ( 0)S N p= = = =  . 
 

Now, mutiply (2.3) by zn and sum, to get 
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( )

1
1 1

1

0 1 1
0 1 1

0 1
0 1

0 1
1

( )

1 ( )

n n

n n
n n

n
n n

n n n
n n n

n
n

N n n
n n

n

N n
n

b
p z z a p

n

z
p z p azz p b p

n
z

G z p az z p b p
n

z
az G z p b p

n

¥ ¥

-
= =

¥ ¥ ¥
-

- -
= = =

¥ ¥

-
= =

¥

-
=

æ ö÷ç ÷= +ç ÷ç ÷çè ø

- = +

- = +

- = +

å å

å å å

å å

å

 

Differentiating with respect to z 

( )( ) 1 ( ) ( )
N N N

aG z az G z bG z¢- + - =  

 ( ) ( )
1N N

a b
G z G z

az

+¢ =
-

 (2.5) 

 

Now, let 

0

( ) n

S n
n

G z g z
¥

=

= å  

We have ( )( ) ( )
S N X

M u G M u= , and we also know 

that ( )( ) logG z M z= , so 

( ) ( ) ( )( ) log (log ) ( )
S S N X N X

G z M z G M z G G z= = =  

Differentiating, we get 

( )
( )

( ) ( ) ( )

( ) ( )
1 ( )

( ) ( )
1 ( )

S N X X

N X X
X

S X

X

G z G G z G z

a b
G G z G z

aG z
a b

G z G z
aG z

¢ ¢ ¢=
+ ¢=

-
+ ¢=

-

 

So 

( )1 ( ) ( ) ( ) ( ) ( )
X S S X

aG z G z a b G z G z¢ ¢- = +  

We now feed in the fact that [note: the second sum 

goes from 1 instead of 0 because f0 = 0] 

0

( ) n

S n
n

G z g z
¥

=

= å  
1

( ) k

X k
n

G z f z
¥

=

= å  

And get 

1 1

1 1 0 1

1 ( )a f z g z a b g z f za b a b
a b a b

a b a b

b b
¥ ¥ ¥ ¥

- -

= = = =

æ ö æ öæ ö æ ö÷ ÷÷ ÷ç çç ç÷ ÷÷ ÷- = +ç çç ç÷ ÷÷ ÷ç çç ç÷ ÷÷ ÷ç çç çè ø è øè ø è ø
å å å å  

Now, equate coefficients of zr – 1 
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1

1 1

( )

( ) ( )

r
r r

r r

r r r

rg a f g a b g f

rg a r f g a b f g

a b a b
a b a b

a a b b
a b

b b

a b

+ = + =
-

- -
= =

- = +

- - = +

å å

å å
 

And so  
1

1 1
1

0
1

1

( ) ( )

( ) ( )

( )

r r

r r r

r

r r

r

r

rg a b f g ar a f g

ar b f g ar br f g

ar b f g

b b a a
b a

b b
b

b b
b

b b a

b

b

-

- -
= =
-

-
=

-
=

= + + -

= + + +

= +

å å

å

å

 

Which means that 

1

r

r j r j
j

bj
g a f g

r -
=

æ ö÷ç ÷= +ç ÷ç ÷çè ø
å  

As required.  

 

To use this method with continuous claim distributions for X, we must 

approximate X by a discrete distribution. One way to do this is 

( )( )1 1
2 2

[ ] ,[ ]
k

X k h hf k += Î -  

for small h and k = 0, 1, 2, … 

 

Approximations to Compound Distributions 

Some simple approximations to the distribution of S can be obtained using 

only a few moments of N and X1: 

 Normal approximation: Assume 2( )S <¥  and let ( )
S

Sm =   and 
2 var( )
S

Ss = . We can then approximate the distribution of S as 

( )2,
S S

N m s . This is a quick an easy approximation, with two major 

drawbacks: 

o S is always positive, whereas a normal distribution can take 

negative values. 

o S is often skewed, whereas a normal distribution is symmetric. 

 Translated gamma approximation: Assume 2( )S <¥ , and let the 

coefficient of skewness of S be ( )3 3( ) /
S S S

Sb m s= -  (note that 
S

b  is 

non-standard notation). We can then approximate the distribution of S 

as that of Y + k, where k is a constant and ~ ( , )Y a dG , where k, a  
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and d  are chosen such that k + Y has mean, variance and coefficient of 

skewness equal to that of S. This distribution can also be negative, but 

less often than the normal. 

Many other approximations exist, some based only on a few moments (eg: 

normal power, Edgeworth expansions) and some based on the Laplace 

transform of the moment generating function (eg: Esscher transforms, 

saddlepoint approximations). See Daykin et. al. for details. 
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Reinsurance 

 

An insurance company may be able to take out insurance, against last claims, 

for example. The direct insurer cedes part of the risk to a re-insurer, and pays 

a premium to do that. 

 

Proportional reinsurance 

A common example is quota share. The direct insurer pays a fixed portion 

[0,1]a Î  of each claim (irrespective of its size) and the re-insurer pays the rest. 
 

For a claim X, the direct insurer pays Y Xa=  and the insurer pays 

( )1Z Xa= - . The total claim amount paid by the direct insurer in a fixed 

period is 

1

N

i
i

S aX Sa
=

= =å  

 

Non-proportional reinsurance 

A common example is excess loss (XoL). For a claim X, the direct insurer 

pays ( )min ,Y X M=  and the re-insurer pays ( )max 0,Z X M= - =  

( )X M
+

- . M is called the retention limit. 

 Clearly, (( ))Y X£  . Furthermore, if X has density fX, then 

( )

0

0

0

( ) ( ) d ( )

( ) d ( ) d ( ) d

( ) d ( ) d

M

X

X X XM M

X XM

Y xf x x M X M

xf x x xf x x M f x x

xf x x x M f x x

¥ ¥ ¥

¥ ¥

= + >
æ ö÷ç= - +÷ç ÷çè ø

= - -

ò
ò ò ò

ò ò

 

 

and so 

( ) ( )
0

( ) ( ) ( ) d  d
X XM

X Y x M f x x f Mm m m
¥ ¥

- = - = +ò ò   

 We now consider the effect on the total claim amount. Let 

1

N

I i
i

S Y
=

= å  

If ~ Po( )N l  then SI is a compound Poisson, and since ( ) ( )
i i

Y X<   

( ) ( )
( ) ( )

1 1

I

XY

S S

ll £

£
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 Similarly, let 

1

N

R i
i

S Z
=

= å  

This is also compound Poisson ( )l . However, ( )0i
Z = = , 

( ) ( )1 X
MX F M£ = , so if ( ) 0

X
F M > , then there is a positive 

probability that Zi = 0, and in practice, the re-insurer only “sees” the 

non-zero Zi. Suppose there are N  of these, which we’ll call 
1

,,
N

w w  , 

then 
1

N

R j j
S w

=
= å


. 

 

Now, note that 

1 1 1 1 1
~ | 0 ~ |Z Z X M X Mw > - >  

and so 

 
( )

( )
1 ( )
X

W
X

f w M
f w

F M

+
=

-
 (3.1) 

Finally, we note that 
1 i

N

i X M
N = >= å  . It is a random sum and therefore 

has a compound distribution. We note that 

( )| ~ Bin , ( )N N n n X M= >   

and that, writing ( )X m p> = , N  has probability generating 

function 

( ) ( )

( )

( ) |

( )

N N

N

N

N

z z z N

pz q

pz q

é ù= = ê úë û
é ù= +ê úë û

= +

 
   






 

EXAMPLE: if ~ Po( )N l , then 

( )
{ }
{ }

( )

exp ( 1)

exp ( 1)

N N
z pz q

pz q

p z

l

l

= +

= + -

= -

 

 

and so ~ Po( )N pl .  

 In practice, limited excessive loss reinsurance is more common, in 

which 

( , ]

0 X

Z X M X

A X A M

M

M A M

ìïï £
ï

Î +ï= -íïï > +ïïî
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In many insurance policies, the insured has to pay the first part of any claim 

up to an amount of deductible (or excess), say L. The insurer therefore pays 

( )X L
+

- , and the calculation is similar as for excess loss insurance. 

 

Example 

Here’s an example comparing quota share reinsurance and XoL reinsurance, in 

which X is exponentially distributed with mean and standard deviation 10: 
 

 Insurer (Y) Reinsurer (Z) 

 Mean SD Mean SD 

No reinsurance 10 10 0 0 

Quota share 
( 3 / 4a = ) 

7.5 7.5 2.5 2.5 

XoL 
(M chosen such that the direct 

insurer’s mean payment is the same 

as in quota share. This gives 

13.86M » ) 

7.5 4.94 2.5 6.61 

 

Clearly, the reinsurer takes up more of the risk in XoL. XoL reinsurance is 

therefore more expensive. 
 

The figures in the last row are found as follows: 

 Finding M 

From above, we have that 

( )
0

( ) ( )  d
X

X Y f Mm m m
¥

- = +ò   

in this case, 1( )X
l

= , and x

X
f e ll -= , so 

{ }

( )

( )1

0

( ) ( )1 1 1

0 0

( )1

0
1

( )  d

 d

 d

1

M

M M

M

M

Y e

e e

e

e

l m
l

l m l m
l l l

l m
l

l
l

l m m

l m m

m

¥
- +

¥¥
- + - +

¥
- +

-

= -

é ù= - - +ê úë û

= -

= -

ò
ò

ò



 

We require this to be equal to 7.5 (the mean in quota share), so 

( )
( )

1

1

1 7.5

ln 1 7.5

Me

M

l
l

l
l

-- =

= - -
 

in this case, ( ) 10X = , and so 0.1l = . So: 
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13.86M =  
as advertised. 

 

 Finding SD(Y) 

Consider 

( )

2 2 2

0

2 2 2

0

2 2 2

0

( ) ( ) d ( )

( ) d ( ) d ( ) d

( ) d ( ) d

M

X

X X XM M

X XM

Y x f x x M X M

x f x x x f x x M f x x

x f x x x M f x x

¥ ¥ ¥

¥ ¥

= + >
æ ö÷ç= - +÷ç ÷çè ø

= - -

ò
ò ò ò

ò ò

 

 

And so 

( )2 2 2 2( ) ( ) ( ) d
XM

X Y x M f x x
¥

- = -ò   

In our case, 2 2 2( ) var( ) ( ) 2 /X X X l= + =   and fX is as above, so 

( )
{ }

{ }
{ }

2

2

2

2

2 2

2 2

2 2 22

2 22 1 1

2

2 1 1

2 1 1

1 1 1

( )  d

( ) 2  d

2  d

2 2  d

2 2

2

x

M

x x

M M

x

M

x x

M M

M M

M M

Y x M e x

x M e xe x

xe x

xe e x

Me e

Me e

l

l

l l
l ll

l

l

l l
l ll

l l
ll l

l l
ll l

l

l

¥
-

¥¥
- -

¥
-

¥¥
- -

- -

- -

= - -

é ù= - - - +ê úë û

= -

é ù= - - +ê úë û

= - +
é ù= - -ê úë û

ò
ò

ò
ò



 

Furthermore, 

2 2SD( ) ( ) ( )Y Y Y= -   

In our case, we know 13.86M = , 0.1l =  and ( ) 7.5Y = . Feeding 

in numbers to all the above, we obtain 

SD( ) 4.94Y =  

As advertised. 

 

 Finding (Z) 

{ }1 1

1

( ) ( ) ( ) d

( )  d

( )  d

XM

x

M

x x

M M

M

Z x M f x x

x M e x

x M e e x

e

l

l l
l l

l
l

l

l

¥

¥
-

¥¥
- -

-

= -

= -

é ù= - - +ê úë û
=

ò
ò

ò



 

From above, we know 
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1 7.5Me l l- = -  

and so 
1( ) 7.5 2.5Z
l

= - =  

As advertised. 

 

 Finding SD(Z) 

Consider 

{ }

2 2

2

21 1

( )

0

( ) ( ) ( ) d

( )  d

( ) 2 ( )  d

2 ( )  d

2  d

XM

x

M

x x

M M

x

M

M

Z x M f x x

x M e x

x M e x M e x

x M e x

e

l

l l
l l

l

l m

l

l

m m

¥

¥
-

¥¥
- -

¥
-

¥
- +

= -

= -

é ù= - - + -ê úë û

= -

=

ò
ò

ò

ò
ò



 

Thankfully, this is an integral we’ve already worked out when 

finding M above, and we get 

2

2 2( ) MZ e l

l

-=  

Finally, we know ( ) 2.5Z = , and so feeding numbers in, 

2 2SD( ) ( ) ( ) 6.61Z Z Z= - =   

Unsurprisingly, as advertised.  
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Ruin Probabilities 

 

Suppose 
1 2
, ,X X   are IID with distribution function F, and ( )1

X < ¥ . Let 

N(t) be the number of claims arriving in (0, t], independent of the Xi. Let 
( )

1
( ) N t

i i
S t X

=
= å  be the total claim amount in (0, t] (with S(t) = 0 if N(t) = 0). 

 

In the classical risk model, the Xi are positive random variables, and 

{ }( , 0)N t t ³  is a Poisson process with rate 0l >  (which means that (a) 

( ) ~ Po( )N t tl  and (b) the times between consecutive arrivals are IID 

exponential variables with mean 1/l ). 
 

{ }( , 0)S t t ³  is then a compound Poisson process (in other words, for every t, 

S(t) has a compound Poisson distribution). Using (2.1) and (2.2), we have 

( )
( )
( )

( ){ }

( ) ( )

2

1

2

1

2
1

( )

*

0

( )

var ( ) var

var

( ) exp ( ) 1

( ) ( )
!

S t X

nt

n

n

S t t

S t t X t

t X

t X

M u t M u

e t
S t F x

n
x

l

lm

l l m

l m

l

l

l-¥

=

£

é ù =ê úë û
é ù = +ê úë û

= +

=

= -

= å







 

 

We further suppose that premium income is received continuously at a 

constant rate c > 0. Suppose that at t = 0, the insurance company has capital 

u > 0. 
 

The surplus or risk reserve at time t is then 

 
( )

1

( )
N t

i
i

U t u ct X
=

= + -å  (4.1) 

We call { }( : 0)U t t ³  the risk reserve process or surplus process. 
 

This classical risk model involves a number of simplifications. For example: 

 The claims are all paid out immediately 

 No interest is earned on the surpluss 

 l  remains constant (unlikely if there are seasonal variations in accident 

rates, for example) 

 c is continuous in time, and constant 
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Miscellaneous definitions 

 Safety loading: From (4.1), note that the expected profit in unit time (0, t] 

is 

( )U t u ct t
c

t t

lm
lm

é ù - -ê úë û = = -


 

The net profit condition is then 

 c lm>  (4.2) 

We put ( )1c r lm= + , so that 0r >  if the net profit condition is 

satisfied. r  is called the (relative) safety loading (or premium loading 

factor). However, random fluctuations in U(t) mean that the company 

could still face ruin. 

 Probability of ruin: if U(t) < 0 for some t > 0, then ruin is said to occur. 

The probability of ruin given initial capital u > 0 is 

( )
( )

( ) ( ) 0 for so 0me 

Ruin ever occuring

u U t ty =

=

³<
  

this is also know as the probability of ultimate ruin or the infinite time 

horizon ruin probability. 
 

Other quantities of interest include the time to ruin, and the deficit at 

ruin, ( ( ))U uy . 

 Finite-time ruin probability: given an initial capital u > 0, the finite-time 

ruin probability is 

( )( , ) ( ) 0 for some  in [0, ]u T U t t Ty = <  

 Constraint on  ruin probabilities: if 
1 2

0 u u£ £  and 
1 2

0 T T£ £ £ ¥ , 

then 

2

1 2

1

1 2

( )

( , ) ( , )

( , ) ( ) ( ) 0

( )

,

u u

u T u T

u T u T u u

y
y

y
y

y y y

£

£

£ £ " ³

 

Furthermore, 

( , ) ( )Tu T uy y¥¾¾¾¾  

 Discrete-time ruin probabilities: the classical risk model assumes we check 

for ruin continuously in time. However in practice, it may be only possible 

to observe ( )U nh , where 0,1,2,n = , and we might miss a time at which 
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ruin occurs. In this course, however, we always use a continuous time 

model. 

 

( )uy  is hard to calculate explicitly. We therefore develop bounds, and latter 

approximations, for this quantity. 

 

The Lundberg Inequality 

We will first need to state a condition on the moment generating function. 

Recall that if X is positive, the MGF ( )
X

M r  exists in ( ),g-¥ , where 

[0, ]g Î ¥ , and if g < ¥ , the MGF may or may not exist at r g= . Now 

consider the following condition: 
 

Condition C: Assume there exists r¥ , 0 r¥< £ ¥ , 

such that ( )
X

M r  ¥  as r r
¥

 . 
 

Remark: To get an intuitive understanding of this 

condition, consider that, some fixed r > 0 and any x 

> 0. Then: 

1

1{ }

Xr r

X

x

x
e e> £  

now take expectations 

( )1
( )

X

rxe X x M r£>  

now, condition C implies that there must be some 

finite r for which M is finite. Let the r we chose 

above be such an r, and let ( )
X

M r k= . We then 

have 

( )1

rxeX x k -£>  

Intuitively, this stipulates that the tails of X be small 

enough. So any X that satisfies condition C must 

have 1 ( )
X

F x-  decreasing at least exponentially fast. 
 

EXAMPLE: (1)  if X1 has density 1( ) /
x
f x x qq +=  for x > 1, then 

   
1

( ) 1/X x x q> =  

 which clearly does not decrease at least exponentially. Thus, 

this distribution does not satisfy condition C. (This is to be 
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expected; the distribution is Pareto, which has very heavy 

tails). 

(2) if 
1
~ exp(1/ )X m , then 

   
1

( ) 1/
1X

M r r
r

m
m

= <
-

 

  This satisfies C with 1/r m
¥

= .  

 

We’re now ready to derive our bound: 
 

Theorem 4.2 (Lundberg inequality): Under positive 

safety loading and condition C in the classical risk 

model, we have 

0( ) Ruu e uy -£ " ³  

Where R called the adjustment coefficient or 

Lundberg exponent is the unique positive solution of 

 ( ) 1
X

cR
M R

l
- =  (4.3) 

This equation can also be written as 

( )( ) 1 1
X

M R Rr m- = +  
 

Proof: The structure of the proof is as follows: 

1. Prove that (4.3) has a unique solution. 

2. Define a new function ( )
n

uy  and show that 

) )( (Ru Ru

n
u e u ey y- -£  £ . 

3. Show that ( )
n

Ruu ey -£ . 

 

STEP 1 
 

We first show (4.3) has a unique solution. Let 

( ) ( ) 1
X

cr
g r M r

l
= - -  

We want a solution for g(r) = 0. 

 

Case 1; r¥ < ¥: We know that 

 g(0) = 0, because MX(0) = 1. 
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 g(r) is continuous for r r¥< , because M is 

continuous over that region (a property of 

Laplace transforms). 

 ( ) ( ) c
X

g r M r
l

¢ ¢= - , and  

(0) (0) 0c c
X

g M
l l

m¢ ¢= - = - <  

because since we have positive safety loading, 

c lm> . 

 ( ) ( ) 0
X

g r M r¢¢ ¢¢= > , because M is convex (a 

property of Laplace transforms). 

 Condition C holds, and so g tends to infinity 

as r approaches r
¥

. 

Together, the above statements imply that the graph 

of g looks something like this: 

 
There is clearly a unique strictly positive solution for 

g(r) =0. 

 

Case 2; r¥ = ¥: in that case, the argument above no 

longer works, because its unclear whether M or r will 

tend to infinity faster. If M tends to infinity faster, 

then the graph will look as above and all is good. If r 

tends to infinity faster, then things will be very 

different. 
 

We observe that since X1 > 0, there exists some 

0h >  such that 
1

)( 0X ph => > . Then, for r > 0, 

r¥

R r

( )g r
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( )
( )

( )( )
( )

1

1

1

1

1

1

1

( )

|

| 1

|

rX

X

rX

rX

r

rXp

p

M r e

e X p

e X

X

e

p

e
h

h

h

h

£

³

=

= >

+ -

>

³







 

This implies that 

( ) 1 rr cr
peg r h

l
¥³ - - ¾¾¾¥  

(Because the exponential term “beats” the linear 

term). Thus, all is well and we have a unique 

solution to g(r) = 0 in all cases. 

 

STEP 1 
 

We note that ruin can only occur at the time of a 

claim. Let 

( ) (Ruin occurs before th claim)
n

u ny =   

and note that ( ) ( )
n

u uy y  as n  ¥ , and so 

)( () Ru Ru

n
e u e nuy y- -£  £ "  

 

STEP 3 
 

We now prove that ( ) Ru

n
u e ny -£ "  by induction 

on n. For convenience, assume X1 has density fX (the 

proof goes through in the general case). 

 

Basic case (n = 1): Ruin cannot occur before the first 

claim. Thus 

1

0

( ) (Ruin occurs on or before 1st claim)

= (Ruin occurs  1  claim)

(Ruin occurs at 1  claim
=

|1  claim occurs at )  dt

u

at st

st

st t e tl

y

l

¥

-

=

ò





 

We note that if the first claim occurs at time t, the 

total money held at that time is u + ct. Thus, the 

amount of the first claim must exceed that amount 

for ruin to occur then: 
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0
( ) d  dt

Xt x u ct
e f x x tll

¥ ¥
-

= = +
= ò ò  

We also note that for x > u + ct, ( ) 1
R u ct x

e
- + - ³ , so 

( )

0
( ) d  dt R u ct x

Xt x u ct
e e f x x tll

¥ ¥
- - + -

= = +
£ ò ò  

Note that the second integrand is always positive, so 

( )

( )

0 0

( )

0 0

( )

0

( )

0

( ) d  d

( ) d  d

 d

( ) d

t R u ct x

Xt x

Ru Rc t Rx

Xt x

Ru Rc t RX

t

Ru Rc t

Xt

e e f x x t

e e e f x x t

e e e t

e e M R t

l

l

l

l

l

l

l

l

¥ ¥
- - + -

= =
¥ ¥

- - +

= =
¥

- - +

=
¥

- - +

=

=

£

=

=

ò ò
ò ò
ò
ò


 

Recall the definition of R is ( ) 1 cR
X

M R
l

= + , so 

( ) ( )

0
 dRu Rc t

t
Ru

e cR e t

e

ll
¥

- - +

=
-

= +

=
ò  

So we do indeed have 

1
( ) Ruu ey -£  

 

Inductive step: Assume ( )
n

Ruu ey -£ , and condition 

on the time and amount of the first claim: 

1 0

(Ruin on or before ( 1)th
( )

claim | 1st claim at time ) d

t

n

e n
u

t t

ll
y

-
¥

+

+
= ò


 

We split this probability into two: 

 First assuming that ruin occurs at the first 

claim, so that the amount of the first claim is 

greater than u + ct 

 then assume that it doesn’t, so that the 

amount of the first claim is less than u + ct, 

and we “restart from scratch” after the first 

claim with wealth u + ct – x1 

{ }1 0 0
( ) ( ) d ( ) ( ) d  d

u ct
t

n X n Xx u ct x
u e f x x u ct x f x x tly l y

¥ ¥ +
-

+ = + =
= + + -ò ò ò

 

As before, we note that x > u + ct, ( ) 1
R u ct x

e
- + - ³ . 

Furthermore, by our inductive hypothesis, 
( )( ) R u ct x

n
eu ct xy - + -+ - £ , and so 
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( )

1 0 0
( ) ( ) d  dt R u ct x

n Xt x
u e e f x x tly l

¥ ¥
- - + -

+ = =
£ ò ò  

this is identical to the expression obtained in the 

basic step. Thus, ( )
n

Ruu ey -£ . This proves our 

theorem.  

 

The Adjustment Coefficient 

This section contains a number of miscellaneous points regarding the 

adjustment coefficient R: 

 R is used as a measure of risk. A large R means a smaller bound on 

( )uy , and so we “like” large R. 

 In certain cases, R can be found explicitly. For example, if 

( )1
~ exp 1/X m , then 1

(1 )c
R rl

m m r+
= - = . However, R often needs to be 

found numerically (eg: by Newton-Raphson iteration). 

 We can find an upper bound for R: 

( )
( )

2 21
20

2 21

0

12

1 ( ) d

( ) 1 ( ) d

1

1Rx

X X

X
Rx R x f x

cR
M R e f

x

R R

x

X

x
l

m

¥

¥
= - = -

³ + + -

= +
ò
ò


 

this implies that 

( )2 21
12

R R
cR

Xm
l

³ +   

Finding the critical points of this quadratic inequality and subbing in a 

few values confirms that 

( )2

1

2

X
R

m
r£


 

 R satisfies ( )( ) 1 1
X

M R Rr m- = + . We know ( ) 1
X

M R -  is convex with 

positive gradient m  at the origin, so R is: 

 R
r

(1 ) rr m+

( ) 1
X

M r -
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Clearly, increasing r  increases the gradient of the line and therefore 

increases R. This makes sense; the more safety loading, the less risk. 

 We can express the defining equation for R in a different form using 

integration by parts: 

( )

0

0

0

( ) 1

( ) d 1

d
(1 ( ))  d 1

d

1 ( )  d

X

Rx

X

Rx

X

Rx

X

cR
M R

cR
e f x x

cR
e F x x

x
c

e F x x

l

l

l

l

¥

¥

¥

- =

- =

é ù- - - =ê úë û

- =

ò

ò

ò

 

 In practice, l  and the distribution of X1 are not known; they need to 

be estimated from data, using statistical techniques. 

 

EXAMPLE: We now consider the effect of XoL reinsurance with retention limit 

M on R in a classical risk model with positive safety loading 

(c lm> ). Recall that ( )/cr lm lm= -  and ( )1c r lm= +  

 Claims arrive at a poisson rate l . The direct insurer pays 

{ }min ,Y X M=  and the re-insurer pays 

{ }max 0,Z X M= - . 

 The re-insurer can expect to pay out ( )Zl  per unit time, 

so we expect the re-insurer to charge ( )1 ( )Zx l+   per unit 

time, were x  is the premium loading factor for the re-insurer. 
 

Taking this into account, the direct insurer’s “premium 

income” per unit time is 

( ) ( )* 1 1 ( )c Zr lm x l= + - +   
 

If M = 0 and all the risk is passed to the re-insurer, 

( ) ( )Z X m= =   and ( )c r x lm= - . To ensure the direct 

insurer does not make a steady profit without taking any 

risk, we insist that 

r x£  
 

We also assume the re-insured process is safety-loaded, so 

that  

1
( )c Yl>   
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 Condition C is satisfied with r¥ = ¥ . Intuitively, this is 

because condition C is a “short tail” condition, and re-

insurance ensures the tail is short. This can be formally 

verified using the monotone convergence theorem. 

 The direct insurer’s adjustment coefficient R  therefore 

satisfies 

( ) 1
Y

c R
M R

l
- =

 
  

ie: 

( )
0

( ) d 1 ( ) 1
M

R x MR
X X

c R
e f x x e F M

l
+ - - =ò

 
 

 

for given , ,
X
f x r  and l , we can solve this equation 

numerically.  

 

The Cramér-Lundberg Approximation 

We now obtain an approximation for ( )uy  when u is large. Let 

( ) 1 ( ) (Never ruined)u uf y= - =   

this is also known as the survival probability. 
 

Lemma 4.3: In a classical risk model with positive 

safety loading, we have 

 ( )
0

( ) (0) ( ) 1 ( )  d
t

X
t t x F x x

c

l
f f f= + - -ò  (4.4) 

where 
1

(0) 1
c

lm r

r
f

+
= - =  

 

Proof: We consider a case in which X1 has a density, 

though the proof generalises. 
 

We begin by conditioning on the time T1 and size X1 

of the first claim: 

( )
( )

0 0 1 1 1

( ) ( )

( )

( )

0   

0  

 d  e

|

d

,

 
s x

s
X

t

t X x

u U t

U t

f x

T

x s

s
l

f

l

¥ ¥

= =
-

³ "

³ "

=

= == ò ò


  

We note, however, that 

 If the first claim is greater than u + cs, we’re 

immediately ruined. 
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 Once the first claim has occurred, we 

effectively “re-start the clock” with capital 

u cs x+ - . 

The above therefore becomes: 

0 0
( ) ( ) ( ) d   d

u cs
s

Xs x
u u cs x f x x e slf f l

¥ +
-

= =
= + -ò ò  

We substitute z = u + cs into the outer integral to 

get: 

( )
0

0

( ) ( ) ( ) d  d

( ) ( ) d  d

z u
c

u z
c c

z

Xz u x

z

Xz u

u e z x f x x z
c

e e z x f x x z
c

l l

ll
f f

l
f

-¥ -

= =

¥ -

=

= -

= -

ò ò

ò ò
 

We now differentiate f  with respect to u (sigh) 

/ /

0
( ) ( ) ( ) ( ) d

u
u c u c

Xx
u u e e u x f x x

c c
l ll l

f f f-

=
¢ = - -ò  

 
0

( ) ( ) ( ) ( ) d
u

Xx
u u u x f x x

c c

l l
f f f

=
¢ = - -ò  (4.5) 

This is an integro-differential equation for f . We 

now integrate this from 0 to t 

 

{ }
0

0 0

( ) (0) ( ) d

( ) ( ) d  d

t

t u

Xu x

t u u
c

u x f x x u
c

l
f f f

l
f

= =

= +

é ù
ê ú- -
ê úë û

ò

ò ò
 (*) 

Consider the integral in curly braces separately and 

integrate it by parts using ( )d
d

( ) (1 ( )
X Xx
f x F x= - -  

{ }
( )

( ) ( )
( )

0

0

0

     ( )(1 ( )

( ) 1 ( )  d

(0) 1 ( ) ( ) 1 (0)

( ) 1 ( )  d

u

X
u

X

X X
u

X

u x F x

u x F x x

F u u F

u x F x x

f

f

f f

f

é ù= - - -ê úë û
¢- - -

= - - + -

¢- - -

ò

ò

 

Since X is strictly positive, FX(0) = 0 and so 

( )
( )

0

(0) 1 ( ) ( )

( ) 1 ( )  d

X
u

X

F u u

u x F x x

f f

f

= - - +

¢- - -ò
 

And so the integral which appears in square brackets 

in (*) becomes 
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( )
( )

0 0

0 0

    (0) 1 ( )  d ( ) d

( ) 1 ( )  d  d

t t

Xu u
t u

Xu x

F u u u u

u x F x x u

f f

f
= =

= =

é ù = - - +ê úë û
¢- - -

ò ò
ò ò

 

Interchanging the order of integration in the last 

term, we get 

( )
( )

( )

0 0

0

0

(0) 1 ( )  d ( ) d

1 ( ) ( ) d  d

(0) 1 ( )  d

t t

Xu u
t t

Xx u x
t

Xu

F u u u u

F x u x u x

F u u

f f

f

f

= =

= =

=

= - - +

¢- - -

= - -

ò ò
ò ò

ò
( )

0
( ) d

1 ( ) ( ) (0)

t

u

X

u u

F x t x

f

f f

=
+

- - - -

ò
{ }

0
 d

t

x
x

=ò

 

Clearly, the indicated terms cancel 

( )
( )

( )

0 0

0

0 0

(0) 1 ( )  d ( ) d

1 ( ) ( ) d  d

( ) d 1 ( ) ( ) d

t t

Xu u
t t

Xx u x
t t

Xu x

F u u u u

F x u x u x

u u F x t x x

f f

f

f f

= =

= =

= =

= - - +

¢- - -

= - - -

ò ò
ò ò

ò ò

 

Substituting this back into (*), we get 

0
( ) (0) ( ) d

t

t u u
c

l
f f f= + ò 0

( ) d
t

u
u u

c

l
f

=
- ò

( )
0

1 ( ) ( ) d
t

Xx
F x t x xf

=

é
ê
êë

ù
- - - ú

úûò
 

Once again, the indicated terms cancel 

( )
0

( ) (0) ( ) 1 ( )  d
t

Xx
t t x F x x

c

l
f f f

=
= + - -ò  

which is precisely statement (4.4), which we wanted 

to prove. 
 

We can find (0)f  by a slightly informal argument. 

Let t  ¥  in (4.4). We get 
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( )

( )
0

0

0

0 0

0

1

( ) (0) ( ) 1 ( )  d

(0) ( ) 1 ( )  d

(0) ( ) ( ) d  d

(0) ( ) ( ) 1 d  d

(0) ( ) ( ) d

(0) ( ) ( )

(0) ( )

Xx

Xx

Xx y x

y

Xy x

Xy

x F x x
c

F x x
c

f y y x
c

f y x y
c

yf y y
c

X
c

c

l
f f f

l
f f

l
f f

l
f f

l
f f

l
f f

lm
f f

¥

=

¥

=

¥ ¥

= =

¥

= =

¥

=

¥ = + ¥- -

= + ¥ -

= + ¥

= + ¥

= + ¥

= + ¥

= + ¥

ò

ò

ò ò

ò ò

ò


 

However, 

( ) (No ruin | start with  capital) 1f ¥ = ¥ =  

And so 

(0) 1
c

lm
f = -  

as required.  
 

Note that (0) 1 (0) /cy f lm= - =  

 

We are now ready to derive the main theorem of this section: 

Theorem 4.4 (Cramér-Lundberg approximation): 

Assume positive safety loading and condition C in 

the classical risk model. Then 

lim ( )Ru

u
e u Ay

¥
=  

where 
1

0

1 ( )
 dRx X

F xR
A xe x

p m

-
¥ì üï ï-ï ï= í ýï ïï ïî þ

ò  

And R is the adjustment coefficient. 
 

Proof: Let 

1 ( )
( ) X

I

F x
f x

m
-

=  

Then fI(x) > 0 is a probability density on (0, )¥  

because 
0

( ) d 1
I
f x x

¥
=ò . 
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Now, recall that 1
c

lm <  by positive safety loading. 

Let’s now play around with equation (4.4) 

( )
0

0

( ) (0) ( ) 1 ( )  d

1 ( ) ( ) d

u

X

u

I

u t x F x x
c

u x f x x
c c

l
f f f

lm lm
f

= + - -

= - + -

ò

ò
 

We can now replace our survival probabilities f  

with ruin probabilities y : 

( )
0

0

0

0

0

( ) 1 1 ( ) ( ) d

( ) d

( ) ( ) d

1 ( ) d

( ) ( ) d

u

I

u

I

u

I

I

u

I

u u x f x x
c

f x x
c c

u x f x x
c

f x x
c c

u x f x x
c

lm
y y

lm lm

lm
y

lm lm

lm
y

¥

æ ö÷ç= - - - ÷ç ÷çè ø

= -

+ -

æ ö÷ç= - - ÷ç ÷çè ø

+ -

ò

ò

ò

ò

ò

 

 
0

( ) d ( ) ( ) d
u

I Iu
f x x u x f x x

c c

lm lm
y

¥
= + -ò ò (4.6) 

Therefore 

( )

0

( ) ( ) d

( ) ( ) d

Ru Ru

Iu

u
R u x Rx

I

u e e f x x
c

e u x e f x x
c

lm
y

lm
y

¥

-

=

+ -

ò

ò
 

This is of the form 

 
0

( ) ( ) ( ) ( ) d
u

Z u z u z u x g x x= + -ò  (*) 

where 

 ( ) ( )RuZ u e uy=  

 ( ) ( ) dRu

Ic u
z u e f x xlm ¥

= ò  

 ( ) ( )Rx
Ic

g x e f xlm= . Note that this is a density 

because ( ) 0g x ³  and 
0

( ) dRx

Ic
e f x xlm ¥

=ò  

( )
0

1 ( )  d 1Rx

Xc
e F x xl

¥
- =ò , by the definition 

of the Lundberg exponent, which states that 
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( )

( )

( )

0

d
d0

0

0

( ) 1

( ) d 1

(1 ( )  d 1

1 1 ( )  d 1

1 ( )  d 1

X

Rx

X

Rx

Xx

Rx

X

Rx

X

cR
M R

cR
e f x x

cR
e F x x

cR
R e F x x

e F x x
c

l

l

l

l
l

¥

¥

¥

¥

= +

= +

- - = +

+ - = +

- =

ò

ò

ò

ò

 

 

Now, (*) is a “renewal type equation”. We use a 

small result from renewal theory (see Feller, Vol 2 

Chap 11) which states that if z is integrable and 

equals the difference of two non-decreasing functions, 

then 

 0

0

( ) d
( )   as 

( ) d

z x x
Z u A u

xg x x

¥

¥
 =  ¥

ò
ò

 (#) 

In our case 

0 0

0

( ) ( ) d

( ) d ( ) d

( ) d

Ru

Iu

u
Ru

I I

u
Ru Ru

I

z u e f x x
c

e f x x f x x
c

e e f x x
c c

lm

lm

lm lm

¥

¥

=

æ ö÷ç= - ÷ç ÷çè ø

= -

ò

ò ò

ò

 

Both functions are non-decreasing, so the result 

above applies. 
 

Now 

{ }

{ }

0 0

0 0

0

0

0

( ) d ( ) d  d

( )  d  d

1
( ) 1  d

( ) d 1

1
( ) d

1
1

Rx

Ix t x

t
Rx

It x

Rt

It

Rt

I

z x x e f t t x
c

f t e x t
c

f t e t
c R

e f t t
cR

g t t
R cR

R c

lm

lm

lm

lm

lm

lm

¥ ¥ ¥

= =

¥

= =

¥

=

¥

¥

=

=

= -

= -

= -

æ ö÷ç ÷= -ç ÷ç ÷çè ø

ò ò ò

ò ò

ò

ò

ò
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Therefore, using result (#), we have 

( )

1 0

0

0

1

0

( ) d

( ) d

( ) d

1

( ) d

Rx

Xc

R c

Rx

X

xg x x
A

z x x

xe f x x

R
xe f x x

lm

lm

r

¥

-
¥

¥

¥

=

=
-

=

ò
ò
ò

ò

 

As required.  
 

Note that this implies ( ) Ruu Aey -  as u  ¥ . 

Note also that A can be written 
1

( ) c
X

M R
A l

mr

-æ ö¢ - ÷ç ÷ç= ÷ç ÷ç ÷è ø
 

 

EXAMPLE: If 
1
~ exp(1/ )X m , we find 

1
( ) exp

1 (1 )
u u

r
y

r r m

æ ö÷ç ÷= -ç ÷ç ÷ç+ +è ø
, and 

(1 )
R

r
r m

=
+

.  
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Credibility Theory 

 

Credibility theory is used when we wish to estimate the expected aggregate 

claim (or the expected number of claims) in the coming time period for a 

single risk (ie: a single policy or group of policies) based on 

 An estimate A based on data from the risk itself 

 An estimate B based on “collateral information” from somewhere else 

(for example, information from similar but not identical risks). 

The credibility approach is to use the credibility formula 

(1 ) (0,1]C zA z B z Î= + -  

Where C is the expected aggregate claim, and z is known as the credibility 

factor. We expect z to 

 Increase as the number of data points for the risk itself increases. 

 Decrease for “more relevant” collateral information 

 

Our work in this area will require some Bayesian concepts. We briefly review 

those here: 

 If X has density ( ; )f x q  and q  is a random variable with prior 

distribution ( )p q , the posterior density for q  given X x=  is given by 

( ) ( ; )
( | )

( ) ( ; ) d

f x
x

f x

p q q
p q

p q q q
=
ò

 

 To estimate q  on the basis of data ( )1
, ,

n
x x=x  , we define ( ), ( )L gq x  

to be the loss incurred when ( )g x  is used as an estimator for q . The 

Bayes’ estimator minimizes the expected posterior loss 

( ), ( ) ( | ) dL gq p q qò x x  

if we use a quadratic loss function ( ) ( )2, ( ) ( )L g gq q= -x x , the Bayes’ 

estimator is the posterior mean of q : 

( )( ) |g q=x x  

 We will also need the conditional covariance formula 
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( )( )( )
( )
( ) ( ) ( )
{ } { } { }

( ){ }
{ } { }

{ } { }
{ } { }

{ } { }

cov( , )

( | ) ( | ) ( | )

cov , | ( | ) ( | )

( | ) ( | )

cov( , | ( | ) ( | )

( | ) ( | )

cov( , | cov ( | ), ( | )

X S

Y X X Y

X Y X Y

XY X Y

XY X Y

XY Z X Z Y Z

X Y Z X Z Y Z

X Z Y Z

X Y Z X Z Y Z

X Z Y Z

X Y Z X Z Y Z

m m

m m m m

= - -

= - - +

= -

= -

= +

-

= +

-

= +



  
     
  

   
   

   
  

 

(This reduces to the conditional variance formula when X = Y) 

 

Bayesian Credibility Theory (Exact Credibility) 

In Bayesian credibility, the concept of “collateral information” is formalised in 

terms of a period density of q , which is chosen to reflect subjective degrees of 

belief about the value of q . We set up our model as follows: 

 Let X be yearly aggregate claims with density ( ; )f x q  

 Let ( )p q  be the prior density of q . 

 Suppose that we have n observations of X, ( )1
, ,

n
x x=x  , and that 

1
,| |,

n
X X qq  are independent – these are data from the particular 

risk itself. 

We are interested in the aggregate claims for the coming year. If q  was 

known, then our answer would be ( ) ( | )Xm q q=  . 
 

We do not, however, know q . This means that we can do two things: 

 Estimate X based only on the prior ( )p q . In this case, we’re 

basing our estimate of X on the collateral data only, encapsulated in 

( )p q : 

( )
( )C p q m qé ù= ê úë û  

 Estimate X based on the prior ( )p q  as well as on x. In this case, 

we’re basing our estimate of X on collateral data encapsulated in ( )p q  

as well as on specific data from the risk itself, encapsulated in x: 
 

To do this, we use the posterior mean, which is the optimal Bayesian 

estimator under quadratic loss 

( ) ( | )
( ) | ( ) ( ) ( | ) dC p q p qm q m q m q p q qé ù é ù= = =ê ú ê úë û ë û òx

x x   
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For certain special choices of f and p , we find that this estimate takes 

the form of a credibility estimate: 

( )
Something based on Something based on

1
the data only the prior/collateral only

C z z
æ ö æ ö÷ ÷ç ç÷ ÷ç ç= + -÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 

with a specific formula for z. 

 

EXAMPLE: Consider a situation in which 

 2

1
| ~ ( , )X Nq q s , 

1
s  known 

 2

2
~ ( , )Nq m s , 

2
,m s  known 

 This means that 

( )22

2 2
11 2

2

2 2 2 2

1 2 1 2

( ) ( | )

1
exp ( )

2 2

1 1
exp 2

)

2

( |

n

i
i

f

x

xn

p q q

q m
q

s s

m
q q

s s s s

p q

=

+

µ
ì üï ïï ï-ï ïµ - - -í ýï ïï ïï ïî þ
ì üé ùæ ö æ öï ïï ï÷ ÷ç çê úï ï÷ ÷ç çµ - + - +í ý÷ ÷ê úç ç÷ ÷ï ïç ç÷ ÷ê úè ø è øï ïë ûï ïî þ

å

x x

 

By completing the square on the denominator, we find that 

( )2( | ) ~ ,Np q M Sx  

2 2

2 1
2 2

2 1

nx
M

n

s ms

s s

+
=

+
  

2 2
2 1 2

2 2

2 1
n

s s

s s
S =

+
 

 

Now, back to the example. It’s clear that ( ) ( | )Xm q q q= = . In 

other words, if we know q , our best estimate for X is q . But we 

don’t know q , so let’s see what we can do: 

 Based only on collateral information, 

( )( )C p pm q q mé ù= = =ê úë û   

 Based on the data as well as the collateral 
2 2

2 1
( | ) 2 2

2 1

( ) | ( )
nx

C
np p q

s ms
m q q

s s

+é ù= = =ê úë û +x
x   

Which can be written as 

( )1C zx z m= + -  

Where 

( )
( )

2
1

2
2

var |

var ( )

X

n n
z

n n
qs

m qs

= =
+ +
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This puts C precisely in the form we were interested in, since 

x  depends only on the data, whereas m  depends only on the 

collateral (since m  was our estimate of X using only 

collateral information, in the previous bullet point). 
 

Note that our expression for n meets our intuitive expectations: 

 As n increases (more actual data) z increases (more weight 

on the actual data) 

 As 
2

s  increases (collateral data less precise) z increases 

(more weight on the actual data). 
 

Note also that although 
1

,| |,
n

X X qq  are independent, the X 

themselves are not necessarily independent, since 

( ) ( )

( )

1 2 1 2

1 2

2

2

2 2

2

1 2 1 2
2

2

|

( | ) ( | )

var( ) ( )

( ) ( ) ( | ) ( | )

( )

X X X X

X X

X X X X

q

q q

q

q q

s m

q q

q

m

é ù= ê úë û
é ù= ê úë û

=

= +

= +
é ù é ù= ê ú ê úë û ë û

=

=

  
  




     


 

These are not generally equal, unless 
2

0s = .  

 

We can also get exact credibility if X is the number of claims in a given time 

period, | ~ Po( )X q q  and ~ ( , )q a lG . In general, we do not get exact 

credibility. 

 

Empirical Bayesian Credibility – The Buhlman Model 

Usually, we know neither f nor p . All we have is  

 n observations X pertaining to the risk in question. 

 Some observations pertaining to other, similar policies. 
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We would like to get a credibility estimate out of these data. We define the 

following quantities: 

 ( )1
( ) |Xm q q=  , the expected claim amount assuming q  is known. 

(This is a random variable, since q  is a random variable). 

o Note that ( ) ( )1
var ( ) var ( | )Xm q q=   is a measure of how 

different the various models are – in other words, it’s a measure 

of how reliable the collateral data is. 

 ( ) ( )2

1
var |Xs q q= , the expected claim amount variance assuming q  is 

known (this is also a random variable). 

o Note that 2( )s q  is effectively the variance for our data on a 

given risk. Thus, ( ) ( )( )2

1
( ) var |Xs q q=   is a measure of how 

reliable the specific data for a risk is. 

And: 

 1
1

n

i in
X X

=
= å  – this is the mean of all observations available for our 

specific risk. It only contains information about the risk itself. 

 ( ) ( )1
( )m X m q= =  , the expected average claim amount – this is the 

premium we would charge to a new claim with no history. It is based 

entirely on collateral information. 

(Once again, we assume all moments are finite as needed. Note also that this 

analysis is valid if the X are claim frequencies). 

 

Our method is as follows: 

 We’ll first derive a credibility estimate of the form 

( ) { }
Something based onSomething based on

1
the specific data collateral data 

(1 )
js

C z z
X X

C zX z m

æ öæ ö ÷÷ çç ÷÷ çç= + - ÷÷ çç ÷÷ çç ÷ ÷ç çè ø è ø
= + -

 

 We’ll then use the data available to estimate the following quantities 

( ) ( )2( ) var ( ) ms q m q  

m is directly needed in C, and the other quantities are needed to work 

out z. 
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Step 1 

As we saw above, the Bayesian estimator minimising squared error loss is the 

posterior mean 

( )( ) | all dataC m q=   

However, this sometimes does not take the form of a credibility estimate. To 

ensure we obtain something of the form (1 )C zX z m= + - , we restrict our 

attention to 

0
1

n

j j
j

C C C X
=

= +å  

chosen so as to minimize the squared error loss 

( )
2

0 1
( )

n

j jj
L C C Xm q

=

ì üï ïï ï= - -í ýï ïï ïî þ
å  

Taking derivatives, we obtain 

 { }0 1
0

( ) 0
n

j jj

L
C C X

C
m q

=

¶
= - - =

¶ å  (1) 

 ( ){ }0 1
( ) 0

n

r j jj
r

L
X C X rC

C
m q

=

¶
- -

¶
"= =å  (2) 

Time for some acrobatics to find Cr and C0 

 (Finding Cr) Taking (2) ( )(1)
r

X-  gives 

( ){ } { }
( ) ( ) ( )

0 01 1

1 1

( ) ( ) ( ) 0

( ) ( ) ( ( )) ( )

n n

r j j r j jj j

n n

r r r j j r j jj j

X C C X X C C X

X X X C X X C X

m q m q

m q m q

= =

= =

- - - - - =

- = -

å å
å å

  

     
 

 ( ) ( )
1

cov ( ), cov ,
n

r j r j
j

X C X X rm q
=

= "å  (3) 

We can use the conditional covariance formula on both the LHS and 

the RHS of (3): 

{ } { }
{ } { }
( ) ( )

( ) ( ){ } { }
( ){ } ( )

( )

2

2

cov( , ) cov( , | ) cov ( | ), ( | )

( ) cov ( ), ( )

( ) var ( )

cov ( ), cov ( ), | cov ( ( ) | ), ( | )

( )cov 1, | var ( )

var ( )

r j r j r j

rj

rj

r r r

r

X Y X X X X

X X X

X

q q q

d s q m q m q

d s q m q

m q m q q m q q q

m q q m q

m q

= +

= +

= +

= +

= +

=

  



  


 

Where 
rj
d  is the Kronecker delta, equal to 1 if r = j and 0 otherwise. 
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So (3) becomes 

 ( ) ( ) ( )2

1

var ( ) ( ) var ( )
n

r j
j

C C rm q s q m q
=

= + "å  (4) 

Directly from (4), we get 

 
( )

( )2
1

var ( )
1

( )

n

r j
j

C C
m q

s q =

æ ö÷ç ÷= -ç ÷ç ÷çè ø
å

 (4b) 

Add up (4) from 1 to n to get 

( ) ( ) ( ){ }2

1

var ( ) ( ) var ( )
n

j
j

n n Cm q s q m q
=

= + å  

 
( )

( )

2 ( )
1

var ( )

1

1

n

j
j

n

C
s q

m q
=

=
+

å 
 (5) 

Feeding (5) into (4b), we get 

( )
( )

2
1

( )

var ( )

1
1

r n
C

n

s q

m q

-é ù
ê ú= +
ê úë û


 

 (Finding C0) From (1), we get 

( ) ( )
( )

0 1

0 1

( ) 0

1

n

j jj
n

jj

C C X

C m C

m q
=

=

- - =

= -

å
å

 
 

once again, feeding (5) into this gives 

( )
( )

2
1

( )

0 var ( )
1 1

n
C m

s q

m q

-æ öé ù ÷ç ÷ç ê ú= - + ÷ç ÷ç ê ú ÷ç ë ûè ø


 

 

Feeding C0 and Cr into 
0 1

n

j j j
C C X

=
+ å , we obtain 

 (1 )zX z m+ -  (5.4) 

Where 

( )
( )

( )
( )

2 2 Var of individual risk( ) ( )
Var of collateral info

var ( ) var ( )

1

1
n

n n
z

nn
s q s q

m q m q

= = =
++ +

 
 

Which is indeed in the form of a credibility estimate.  

 

Note that: 

 In this case, Cr does not depend on r, because every X is weighed 

identically. We could have used this to simplify the equations above. 

 As n increases, z increases to 1. 
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 As ( )var ( )m q  increases, z increases (ie: as the collateral information 

becomes less relevant, we put more weight on the data pertaining to 

the risk itself). 

 

Step 2 

We now estimate the quantities needed for the credibility estimate. We will 

assume that the data we have is in the form { }js
X , pertaining to k other 

policies over n time periods, where 

 Xjs is the claim amount (or number of claims) in time period s for 

policy j. We also write ( )1
, ,

jj j n
X X=X   for the data about a single 

policy. 

 Each of the k policies has its own structure variable 
1

,,
k

q q , which are 

IID with (unknown) distribution ( )p q . 

We assume the following dependence structure: 

 Within any policy, 
1

, ,| |
j j jn j

X Xq q  are IID (but the Xji may not be 

independent themselves.) 

 All the ( ),
j j
q X  are IID 

 

Now, let ( )( ) |
j js j

Xm q q=  , and note that from our assumptions, we have 

( ) 2cov | ( )I
j j j n
q s q=X . We then use the following estimators for our quantities 

of interest: 

1
1

( | )
1

( )
n

j jj
s

j js
M X

n
X qm q

=

= = = å  

0
1 1 1

1 1
( )

k k n

j j js
j j s

m M M X
k kn

m q
= = =

é ù= = = =ê úë û å åå  

( ) ( )1

2
2 2

1 1

1 1
( ) var( | )

1

k n

js j
j

j j
s

X M s
k n

Xs q q
= =

é ù = = - =ê úë û -å å  

( ) ( )2 2

0
1

1 1
var ( )

1

k

j
j

M M s
k n

m q
=

= - -
- å  
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Empirical Bayesian Credibility – The Buhlman-Straub Model 

We now consider a more complicated model which takes into account the 

volume of business for the different risks and time periods. We set up our 

model as follows: 

 Let 
1
, ,

n
Y Y   be the claim amounts for a particular risk 

 Let 
1
, ,

n
p p  be the (known) volumes of business for each of these claim 

amounts (for example, number of policies or premium income) 

We then define /
j j j

X Y p= , the income per unit volume for each period, and 

we assume that 

 
1
| , , |

n
X Xq q  are independent 

 ( )|
j

X q  and ( )var |
j j

p X q  do not depend on j 

We define 

 ( ) ( | )
j

Xm q q=   

 ( )2( ) var |
j j

p Xs q q=  

 

EXAMPLE: Suppose a particular risk is made up for a number of independent 

policies. In time period j, there are pj policies. If claims from a 

single policy have mean ( )m q  and variance 2 )s q( , then the total 

claim amount for that period has mean ( )
j

p m q  and variance 2 )
j

p s q( . 
 

Thus, ( | ) ( )
j

X q m q=  and ( ) 2var | ( ) /
j j

X pq s q= .  

 

We once again assume the credibility premium takes the form 

0
1

n

j j
j

C a a X
=

= +å  

chosen so as to minimize the squared error loss 

( )
2

0 1
( )

n

j jj
L a a Xm q

=

ì üï ïï ï= - -í ýï ïï ïî þ
å  

Once again, we take derivatives and obtain equations (1) and (2) above. 

 

We then engage in similar acrobatics to find ar and a0 

 (Finding Cr) Taking (2) ( )(1)
r

X-  gives 

 ( ) ( )
1

cov ( ), cov ,
n

r j r j
j

X C X Xm q
=

=å  (3) 
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Using the conditional variance formula on the LHS gives the same 

results as above. On the RHS, however, 

{ } { }
{ } { }

( ) ( )2

cov( , ) cov( | cov ( | ), ( | )

var( | ) cov ( ), ( )

1
( ) var ( )

r j r j r j

rj j

rj
j

X Y X X X X

X

p

q q q

d q m q m q

d s q m q

= +

= +

= +

  




 

Feeding this back into (3), we get 

 ( ) ( ) ( )2

1

var ( ) ( ) var ( )
n

r
j

jr

a
a

p
m q s q m q

=

= + å  

 ( ) ( ) ( )2

1

var ( ) ( ) var ( )
n

r r r j
j

p a p am q s q m q
=

= + å  (4) 

Re-arranging (4) 

 
( )

( )2
1

var ( )
1

( )

n

r r j
j

a p a
m q

s q =

ì üï ïï ï= -í ýï ïï ïî þ
å

 (4b) 

Adding (4) up from 1 to n, and letting 
1

n

i j
p p+ == å , we get 

 ( ) ( ) ( ){ }2

1

var ( ) ( ) var ( )
n

j
j

p p am q s q m q
+ +

=

= + å  

 
( )
( )

2( )
1

var ( )

n

j
j

p
a

p
s q

m q

+

=
+

=
+

å 
 (5) 

Feeding (5) into (4b), we get 

( )
( )

2
1

( )

var ( )
1r

r p

p
a

p

s q

m q+

-

+

é ù
ê ú= +
ê úë û


 

 (Finding C0) From equation (1), we get 

( ) ( )
( )

0 1

0 1

( ) 0

1

n

j jj
n

jj

a a X

a m a

m q
=

=

- - =

= -

å
å

 
 

Feeding (5) into this gives 

( )
( )

2
1

( )

0 var ( )
1 1

p
a m

s q

m q+

-æ öé ù ÷ç ÷ç ê ú= - + ÷ç ÷ç ê ú ÷ç ë ûè ø


 

 

Feeding back into 
0 1

n

j j j
C a a X== +å , our credibility estimate per unit volume 

is 

( ) ( )1 ( )X zC z m q+ -=    

Where 
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( )
( )

2
1

( )

var

1

( )
1

n

j

p

j j
p X

X
p

z
s q

m q+

=

+

-é ù
ê ú= +
ê úë û

å
=


 

Note that 

 If every pj = 1, then pj = n, and we recover the Buhlman credibility 

factor. 

 The quantities ( ) ( ) ( )2( ) , var , () )(s q m m qq   must be estimated from 

data. 
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No Claims Discount (NCD) Systems 

 

No claims discount systems give the policyholder a discount on the usual 

premium, the size of the discount being based on the number of claim-free 

years for the policy holder. For example, a motor insurance scheme may have 

3 discount categories. Policyholders in category 0 pay the full previous c, 

those in category 1 pay 0.7c and those in category 2 pay 0.6c. If a 

policyholder makes no claims in a particular year, they move up to the next 

category (or stays in category 2). If they make > 1 claim, they move down a 

category (or stay in category 0). 

 

Suppose the categories are 0,1, ,d , and consider a policyholder who takes 

out a policy at year 0 and enters in category 0. Let Xn be their discount 

category in year n. Finally, suppose the distribution of the number of claims 

per year is the same each year. Then { }
n

X  is a discrete-time time-

homogeneous Markov chain with finite statespace 0,1, ,d . Its transition 

matrix is ( )
ij

P p= , where ( )1
|

nj ni
p X j X i

+
== = . 

 

EXAMPLE: In our motor insurance example, in which we had three categories 
To

From

(0) (1) (2)

(0) 1 0

(1) 1 0

(2) 0 1

p p

P p p

p p

ì æ öï - ÷çï ÷çï ÷çï ÷ç= - ÷í ç ÷ï ç ÷ï ç ÷-ï ÷çè øïî



 

Where ( )No claims in a given yearp =  .  

 

Now, let ( )( )n

i n
X ip = =  and ( )( ) ( ) ( )

0
, ,n n n

d
p p= p . At any given time, this 

vector contains the probability of being in each state. For example, since the 

policyholder enters in category 0, we have ( )(0) 1, ,00,= p . 
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Now 

( )
( ) ( )

( 1

1

1

( )

)

0

0

|

n
d

n n n
i
d

n

ij i
i

n

j
X j

X j X i X i

p p

p
+

+
=

=

+ =

= = =

=

=

=å

å



  . 

in other words 

 ( 1) ( )n n P+ =p p  (6.1) 

The stochastic evolution of { }
n

X  therefore only depends on P and (0)p . 

 

Under certain conditions (always satisfied in our examples), ( )n p p  as 

n  ¥ . To find this equilibrium distribution, let n  ¥  in (6.1). This gives 

P=p p . Solving this (redundant) system of linear equations together with 

1
i i
på =  allows us to find p . 

 

EXAMPLE: In our motor insurance example, the system of equations P=p p  

is 

( )0 1 2

0 1 0

0 2 1

1 2 2

1 0

1 0

0 1

(1 ) (1 )

(1 )

p p

p p

p p

p p

p p

p p

p p p

p p p
p p p

p p p

æ ö- ÷ç ÷ç ÷ç ÷ç - ÷ç ÷ç ÷ç ÷- ÷çè ø
ß

- + - =
+ - =

+ =

 

This gives 
2

0 2
1, ,

1 (1 )

p p

p p
p

æ ö÷ç ÷= ç ÷ç ÷ç - -è ø
p  

Using 1
i i
på = , we find that 

( )
1

0 3

1

1

1

p

p

p

p

p -

-

-
=

-
 

For example, if p = 0.9, then 

( )1
91

1,9,81=p  

 

This could then be used to find the expected premium payable.  
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Consider a final application of our example: 

 

EXAMPLE: Suppose the driver pays the full premium in year 0 (ie: they are in 

category 0) and then has an accident in that year with repair cost 

 . 
 

Assuming no further accidents, compare the cost to the driver if  

they do claim and if they do not claim: 
 

Year 0 1 2 3 4 

If claim made 0 c 0.7c 0.6c 0.6c 

If no claim made  . 0.7c 0.6c 0.6c 0.6c 

 

The driver’s decision to pay or not depends on their time horizon: 

 Two year time horizon (0 and 1) – the driver will claim if 

0 0.7

0.3

c c

c

+ < +

>




 

 Infinite time horizon – the driver will claim if 

0 0.7 0.7 0.6

0.4

c c c c

c

+ + > + +

>




 

In general, the loss   is a random variable (say lognormal), then 

we could find the probability p of claiming, and use that in the 

transition matrix. 
 

Of course, it is also true that drivers currently in different 

categories will have different “thresholds” for claiming.  
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Run-off triangles 

 

Delays may occur at various stages in settling claims – for example, incurred 

but not reported claims, or outstanding reported claims. 

 

EXAMPLE: Imagine the last year for which we have complete data is 2009. 

Then a run-off (or delay) triangle might look like this 

  Development year 

 
Claim payments 

(£000) 
0 1 2 3 

2006 
300 
(2006) 

500 
(2007) 

200 
(2008) 

100 
(2009) 

2007 
500 
(2007) 

700 
(2008) 

300 
(2009) 

(No data 

available for 

2010) 

2008 
400 
(2008) 

600 
(2009) 

(No data 

available for 

2010) 
 

A
cciden

t Y
ear 

2009 
500 
(2009) 

(No data 

available for 

2010) 
  

 

The diagonals corresponds to payments in a given calendar year. 

  
 

We begin by developing some notation: 

 Let Yij be the amount paid for accident year i in development (not 

calendar) year j. 

 Let 
0

j

ij k ik
C Y== å  be the total amount paid for accident year i up to j 

development years after i. 

We observe Yij and Cij for , ,0i d=   and ,0, d ij = - , where d is the last 

full year for which complete information is available. Note also that i + j is 

the calendar year of a given payment. 
 

Our aim is to obtain projections for the amounts yet to be paid. 
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The Chain-Ladder Technique 

We assume that the expected value in cell (i, j) is 

 ( )
iij j
rY n=  (7.1) 

where 

 ni reflects the volume of claims relating to accident year i. 

 rj is a factor related to the development year j. 

We assume that the rj do not vary over accident years, and we further assume 

that the claims for year 0 are “fully run off” – ie: they are finally settled by 

development year d, so that 
0

1
d

r r+ + = . 

 

Under equation (7.1), we have 

( ) ( )

( )
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0

,( 1)
0 1

,( 1)
0 1

1

ij i j

j

i j
j

j

i j
j

C n r r

r r
C

r r

r
C
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+ +
æ ö÷ç ÷ç= + ÷ç ÷ç + + ÷çè ø













 

and we write 

 ( ),( 1)
( )

ij j i j
C Cl -=   (7.2) 

We can use 7.2 to estimate the 
j

l  by 

( ),( 1)

( )
ij

j

i j

C

C
l

-

=



 

(and equating expected values to observed values). 

 

However, for any given development year j there might be a number of 

accident years i available to estimate 
j

l . The chain-ladder technique takes the 

following weighed average of these values 

( ),0

0,( 1) ( ),( 1)
0,( 1) ( ),( 1)
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0, ( ),

0,( 1) ( ),( 1)

ˆ
d j jj

j d j j

CC

j d j jC C

j
j d j j

j d j j

j d j j

C C

C C

C C

C C

l
-

- - -- - -
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=
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EXAMPLE: In the example above, we begin by drawing up a table of the 

cumulative amounts Cij 

  Development year 

 
Claim payments 

(£000) 
0 1 2 3 

2006 300 800 1000 1100 

2007 500 1200 1500  

2008 400 1000   

A
cciden

t Y
ear 

2009 500    

 

We then calculate 

1

2

3

800 1200 1000ˆ 2.5
300 500 400
1000 1500ˆ 1.25
800 1200

1100ˆ 1.1
1000

l

l

l

+ +
= =

+ +
+

= =
+

= =

 

We can then calculate the projected Cij for the future. For j > d – i: 

,( ) 1 1ij i d i d j
C C ll- - +=   

We can then find Yij by subtraction.  

 

This method projects forward using an implicit inflation rate embodied in the 

j
l . 

 

The Inflation Adjustment Chain-Ladder Technique 

We now assume that the expected value in cell (i, j) is 

 ( )
i jij j i

n rY t +=  

Where ti+j is the assumed index of claims inflation from year to year. In other 

words, the inflation from calendar year s to s + 1 is vs = ts+1/ts. 

 

Values from calendar year d – k can be “converted” to calendar year d money, 

by multiplying by 
1

/
d k d d d k

v v t t
- - -

=  – let the resulting values be 
ij

Y . We 
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can then apply the chain-ladder technique to these to obtain projections, in 

calendar year d money. We can then project even further using future 

inflation values. 

 


