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Question 1 

 
 

We begin by noting that since the claim sizes cannot be 0, 

0 0
( 0) 0g N p= = = = . 

 

We also note that for the compound distribution to have a value of 1, we 

must have a single claim, with a value of 1. So 
1 1 1

g f p= . This will be the basis 

for our recursion formula. 

 

Now, mutiply the condition in the question by zn and sum, to get 
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Differentiating with respect to z 
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Now, let 
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We have ( )( ) ( )
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M u G M u= , and we also know that ( )( ) logG z M z= , so 

( ) ( ) ( )( ) log (log ) ( )
S S N X N X

G z M z G M z G G z= = =  

Differentiating, we get 

( )
( )

( ) ( ) ( )

( ) ( )
1 ( )

( ) ( )
1 ( )

S N X X

N X X
X

S X

X

G z G G z G z

a b
G G z G z

aG z
a b

G z G z
aG z

¢ ¢ ¢=
+ ¢=

-
+ ¢=

-

 

So 

( )1 ( ) ( ) ( ) ( ) ( )
X S S X

aG z G z a b G z G z¢ ¢- = +  

We now feed in the fact that [note: the second sum goes from 1 instead of 0 

because f0 = 0] 
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Now, equate coefficients of zr – 1 
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Which means that 
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This is our recursion formula for the g, starting from 
1 1 1

g f p= . 

 

Let us find a and b when 
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And so a = 0 and b l= . Our recursion formula becomes 
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Starting from 
1 1 1

g f p= . 



Actuarial Statistics – 2006 Paper  Page 4 of 16 

  Daniel Guetta, 2010 

Question 2 

 
 

The situation is as follows 

 Each year has n risks 

 Each risk 1, ,i nÎ   has a number of claims ~Po( )
i i

N l  per year. The 

PGF of Ni is 
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Si is the total claim per year for risk i. Clearly, it has a compound distribution. 

The MGF of Si is given by 
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Now, consider 
1 n
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This is clearly a compound Poisson, with Poisson parameter 
1
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The total number of claims on the whole portfolio in one year is 
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and we now have ~ Po( )
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First, consider each Ni and let x be an integer 
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At this point, we remember (somehow) that the PDF of ( , )k qG  is 
1( ) / ( )k kf e kqll q l - -= G . The quantity in the integral is in that form, with 

k x m= +  and 1(1 )q a -= + . The integral therefore evaluates to 1 and 
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This is a negative binomial distribution with parameters 
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The total number of claims is given by 

1 n
NN N= + +  

Consider the MGF of N: 
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This is also the MGF of a negative binomial, with the same p parameter but 

with 
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In other words 
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This can be viewed as a single Poisson distribution ~ Po( )N l  with its 

parameter mixed over the following distribution: 
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Now, the claims sizes all have exponential distribution with parameter m . 

And we have just seen that the total number of claims in a year is N, across 

all categories. Now 
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S X X
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= =åå å  

So S does indeed have a compound mixed Poisson distribution, and the 

mixing distribution is that in equation (*). 
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Question 3 

 
 

In the classical risk model 

 The claim sizes 
1 2
, ,X X   are positive random variables. 

 The number of claims arriving in (0, t] is N(t), it is independent of the 

Xi and { }( , 0)N t t ³  is a Poisson process with rate 0l > , which means 

that (a) ( ) ~ Po( )N t tl  and (b) the times between consecutive arrivals 

are IID exponential variables with mean 1/l . 

 We assume that premium income is received continuously at a constant 

rate c > 0, and we suppose that at t = 0, the company has capital u > 

0. 

 

At time t, the risk-reserve is then given by 
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1
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i
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We note that using the properties of compound Poisson variables 

)( ( )U t u ct tlm= + -  

Where 
1

( )Xm =  . Thus, the profit the company makes per unit time is given 

by 

( ))(U t u
c

t
lm

-
= -


 

If c lm> , then the expected profit per unit time is positive and we have 

positive safety loading. We write (1 )c q lm= +  where 0q >  is called the 

premium loading factor. 

 

The probability of ruin is given by 
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( ) 0 at some time 

given starting capita
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u
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Lundberg’s inequality states that 

( ) ruu ey -£  

Where R, the adjustment coefficient, is given by 

( )( ) 1 1
X
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This inequality holds provided that there exists a (0, ]z¥ Î ¥  such that 
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X
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We prove this inequality in three steps 

1. We prove that ( ) 1 (1 )
X

M r rq m- = +  has a unique strictly positive 

solution. 

Define ( ) ( ) 1 (1 )
X

g z M z zq m= - - + . We would like to show that 

there is a unique strictly positive solution to ( ) 0g z = . 

 

First, assume that z
¥
<¥ . In that case 

 g is continuous because M is continuous (this is a property of 

Laplace transforms) 

 (0) (0) 1 1 1 0
X

g M= - = - =  

 (0) (0) (1 ) 0
X

g M q m qm¢ ¢= - + =- <  because, assuming positive 

safety loading, 0q >  

 (0) 0g ¢¢ <  - this is another property of Laplace transforms 

 g tends to ¥  as z z¥  

Together, these imply that g looks like this 
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Clearly, therefore, there is a single strictly positive solution of g(z) = 

0. 

 

If z
¥
= ¥ , we need to make sure that the M term in g grows faster 

than the r term – otherwise, the function no longer looks as plotted 

above. To show this, consider that since the variables X are positive, 
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Therefore, MX is bounded below by an exponential, which clearly 

grows faster than a simple linear term. Thus 
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So there is indeed one unique strictly positive solution for r. 
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3. We show that ( )  Ru

n
u e ny -£ "  

We do this by induction 

 n = 1 case 

Clearly, ruin can’t occur before the first claim. Thus 
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Consider, however, that at a time t, the risk reserve is  

u + ct. The first claim must exceed this amount for ruin to 

occur 
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Now, note that in the range of the integral, ( )r u ct x
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r is defined as ( ) (1 ) 1
X

M r rq m= + + , so 
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Remember that (1 )c q ml= +  
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The integral is simply an exponential density that 

evaluates to 1, so 
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 Inductive step 

Now assume that ( ) ru

n
u ey -£ , and consider 
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We now split this integral into two options: 

 The ruin happening at the first claim (ie: first 

claim greater than u + ct) 

 The ruin not happening at the first claim, in 

which case, after the first claim, we “reset the 

timer” with capital u + ct – x1 

 – the ruin happening at the first claim, and the ruin not 

happening at the first claim: 
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Now: 
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 In the second situation, the inductive hypothesis 
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When claims are exponentially distributed, 
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For claims that are exactly m , ( )( ) u
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A Taylor expansion gives 

( )2

2 2

1
(1 )

2
1

0
2

R R R

R R

m m m

m m

m m q m

qm m

+ + = +

- + + =




 

Truncating the Taylor series will result in a value of Rm  that is  

1
2

Rm

q
m

=  

This is clearly larger than R, because 1
2

1 q+ >  this means that the Lundberg 

bound leads to a generally lower probability of ruin in the “fixed claim size” 

case. This makes sense – the exponential distribution is highly positively 

skewed, and this implies that it places greater weight on claim sizes above the 

mean than below. Thus, by replacing the exponential distribution with the 

mean exactly, we are, overall, decreasing claim sizes. The probability of ruin is 

therefore lower. 

 

[Note: I’m not entirely pleased with the argument above, because it’s unclear 

whether truncating the Taylor series over or underestimates Rm , so it seems 

silly to then use that as a basis for comparison. If anyone can think of a better 

way, let me know ] 
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Question 4 
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We now use the conditional variance formula on both sides of (3) 
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Feeding this back into (3), we get 
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Re-arranging (4), we get 
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Summing (4) from 1 to n, we get 
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Going all the way back to (1), we get 
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Feeding (6) into this, we get 
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Feeding this all into 
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Precisely as required, with 
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In terms of exact credibility; the posterior is given by (once again, we write 

1

n

i i
y y
+ =
= å , and similarly for other quantities): 
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And the Bayesian estimate, with respect to quadratic loss, is therefore simply 

the mean of the beta distribution, given by 
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In this case, it’s exactly the same. Thus, in this particular case, exact Bayes’ 

credibility is possible, and the resulting estimate is identical to the Buhlman 

credibility estimate. 


