Actuarial Statistics - 2006 Paper

Question 1

1 Consider the total amount of the claims arising from traffic accidents for which an insurance company receives at least one claim. Let N be the number of claims from one such accident and let the claim sizes X_{1}, X_{2}, \ldots be independent identically distributed random variables, independent of N. Let $p_{n}=\mathbb{P}(N=n)$, so that $p_{0}=0$, and assume that

$$
p_{n}=\left(a+\frac{b}{n}\right) p_{n-1}, \quad n=2,3, \ldots
$$

where $a, b \in \mathbb{R}$ are known.
Suppose that the claim sizes are discrete with $f_{k}=\mathbb{P}\left(X_{1}=k\right), k=1,2, \ldots$, where $\sum_{k=1}^{\infty} f_{k}=1$, and assume that the p_{n} 's and the f_{k} 's are known. Let $g_{k}=\mathbb{P}\left(X_{1}+\ldots+X_{N}=\right.$ $k), k=1,2, \ldots$.

By considering probability generating functions, derive a recursion formula for the g_{k} 's in terms of known quantities.

Write down the recursion if

$$
p_{n}=\frac{e^{-\lambda} \lambda^{n}}{\left(1-e^{-\lambda}\right) n!} \quad n=1,2, \ldots
$$

We begin by noting that since the claim sizes cannot be 0 , $g_{0}=\mathbb{P}(N=0)=p_{0}=0$.

We also note that for the compound distribution to have a value of 1 , we must have a single claim, with a value of 1 . So $g_{1}=f_{1} p_{1}$. This will be the basis for our recursion formula.

Now, mutiply the condition in the question by z^{n} and sum, to get

$$
\begin{gathered}
\sum_{n=1}^{\infty} p_{n} z^{n}=\sum_{n=1}^{\infty} z^{n}\left(a+\frac{b}{n}\right) p_{n-1} \\
\sum_{n=0}^{\infty} p_{n} z^{n}-p_{0}=\sum_{n=1}^{\infty} a z z^{n-1} p_{n-1}+b \sum_{n=1}^{\infty} \frac{z^{n}}{n} p_{n-1} \\
G_{N}(z)-p_{0}=a z \sum_{n=0}^{\infty} z^{n} p_{n}+b \sum_{n=1}^{\infty} \frac{z^{n}}{n} p_{n-1} \\
(1-a z) G_{N}(z)=p_{0}+b \sum_{n=1}^{\infty} \frac{z^{n}}{n} p_{n-1}
\end{gathered}
$$

Differentiating with respect to z

$$
\begin{gathered}
-a G_{N}(z)+(1-a z) G_{N}^{\prime}(z)=b G_{N}(z) \\
G_{N}^{\prime}(z)=\frac{a+b}{1-a z} G_{N}(z)
\end{gathered}
$$

Now, let

$$
G_{S}(z)=\sum_{n=0}^{\infty} g_{n} z^{n}
$$

We have $M_{S}(u)=G_{N}\left(M_{X}(u)\right)$, and we also know that $G(z)=M(\log z)$, so

$$
G_{S}(z)=M_{S}(\log z)=G_{N}\left(M_{X}(\log z)\right)=G_{N}\left(G_{X}(z)\right)
$$

Differentiating, we get

$$
\begin{aligned}
G_{S}^{\prime}(z) & =G_{N}^{\prime}\left(G_{X}(z)\right) G_{X}^{\prime}(z) \\
& =\frac{a+b}{1-a G_{X}(z)} G_{N}\left(G_{X}(z)\right) G_{X}^{\prime}(z) \\
& =\frac{a+b}{1-a G_{X}(z)} G_{S}(z) G_{X}^{\prime}(z)
\end{aligned}
$$

So

$$
\left(1-a G_{X}(z)\right) G_{S}^{\prime}(z)=(a+b) G_{S}(z) G_{X}^{\prime}(z)
$$

We now feed in the fact that [note: the second sum goes from 1 instead of 0 because $f_{0}=0$]

$$
G_{S}(z)=\sum_{n=0}^{\infty} g_{n} z^{n} \quad G_{X}(z)=\sum_{n=1}^{\infty} f_{k} z^{k}
$$

And get

$$
\left(1-a \sum_{\alpha=1}^{\infty} f_{\alpha} z^{\alpha}\right)\left(\sum_{\beta=1}^{\infty} \beta g_{\beta} z^{\beta-1}\right)=(a+b)\left(\sum_{\alpha=0}^{\infty} g_{\alpha} z^{\alpha}\right)\left(\sum_{\beta=1}^{\infty} \beta f_{\beta} z^{\beta-1}\right)
$$

Now, equate coefficients of z^{n-1}

$$
\begin{gathered}
r g_{r}-a \sum_{\alpha+\beta=r} \beta f_{\alpha} g_{\beta}=(a+b) \sum_{\alpha+\beta=r} \beta g_{\alpha} f_{\beta} \\
r g_{r}-a \sum_{\alpha=1}^{r-1}(r-\alpha) f_{\alpha} g_{r-\alpha}=(a+b) \sum_{\beta=1}^{r} \beta f_{\beta} g_{r-\beta}
\end{gathered}
$$

And so

$$
\begin{aligned}
r g_{r} & =\sum_{\beta=1}^{r}(a \beta+b \beta) f_{\beta} g_{r-\beta}+\sum_{\alpha=1}^{r-1}(a r-a \alpha) f_{\alpha} g_{r-\alpha} \\
& =\sum_{\beta=1}^{r-1}(a r+b \beta) f_{\beta} g_{r-\beta}+(a r+b r) f_{r} g_{0} \\
& =\sum_{\beta=1}^{r}(a r+b \beta) f_{\beta} g_{r-\beta}
\end{aligned}
$$

Which means that

$$
g_{r}=\sum_{j=1}^{r}\left(a+\frac{b j}{r}\right) f_{j} g_{r-j}
$$

This is our recursion formula for the g, starting from $g_{1}=f_{1} p_{1}$.

Let us find a and b when

$$
p_{n}=\frac{e^{-\lambda} \lambda^{n}}{\left(1-e^{-\lambda}\right) n!}
$$

Note that

$$
p_{n-1}=\frac{e^{-\lambda} \lambda^{n-1}}{\left(1-e^{-\lambda}\right)(n-1)!}
$$

And so

$$
\begin{aligned}
a+\frac{b}{n} & =\frac{p_{n}}{p_{n-1}} \\
& =\frac{e^{-\lambda} \lambda^{n}}{\left(1-e^{-\lambda}\right) n!} \\
& =\frac{\lambda}{n}
\end{aligned}
$$

And so $a=0$ and $b=\lambda$. Our recursion formula becomes

$$
g_{r}=\sum_{j=1}^{r} \frac{\lambda j}{r} f_{j} g_{r-j}
$$

Starting from $g_{1}=f_{1} p_{1}$.

Question 2

2 A portfolio consists of n independent risks. For the $i^{\text {th }}$ risk, the number of claims in a year has a Poisson distribution with parameter λ_{i} and the claims are independent exponentially distributed random variables with mean μ, independent of the number of claims. Let S_{i} be the total amount claimed in a year for risk i. Find the moment generating function of S_{i}, and show that $S=S_{1}+\ldots+S_{n}$ has a compound Poisson distribution.

Now suppose that $\lambda_{1}, \ldots, \lambda_{n}$ are independent identically distributed random variables with density

$$
f(\lambda)=\frac{\alpha^{m} \lambda^{m-1} e^{-\alpha \lambda}}{(m-1)!}, \quad \lambda>0
$$

for $\alpha>0$ and $m \in \mathbb{N}$, so that the number of claims for each risk in one year has a mixed Poisson distribution with mixing density $f(\lambda)$. Find the distribution of the total number of claims on the whole portfolio in one year.

Show that the total amount S claimed in one year on the whole portolio has a compound mixed Poisson distribution, and identify the mixing distribution for the Poisson parameter.

The situation is as follows

- Each year has n risks
- Each risk $i \in 1, \cdots, n$ has a number of claims $N_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$ per year. The PGF of N_{i} is

$$
G_{N_{i}}(z)=\mathbb{E}\left(z^{N_{i}}\right)=e^{\lambda_{i}(z-1)}
$$

- Each claim is of size $X \sim \operatorname{Exp}(\mu)$. The MGF of X is

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=\frac{\mu}{\mu-t} \quad t<\mu
$$

S_{i} is the total claim per year for risk i. Clearly, it has a compound distribution.
The MGF of S_{i} is given by

$$
\begin{array}{rlr}
M_{S_{i}}(u)=\mathbb{E}\left(e^{u S_{i}}\right) & =\mathbb{E}\left(\mathbb{E}\left(e^{u S_{i}} \mid N_{i}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(e^{u X_{1}} e^{u X_{2}} \cdots \mid N_{i}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(e^{u X_{1}} \cdots e^{u X_{N_{i}}}\right)\right) & \\
& =\mathbb{E}\left(\left[e^{u X_{1}}\right]^{N_{i}}\right) & \leftarrow \text { Indep. of } X_{i} \\
& =\mathbb{E}\left(\left[M_{X}(u)\right]^{N_{i}}\right) \\
& =G_{N_{i}}\left(M_{X}(u)\right) \\
& =\exp \left(\lambda_{i}\left[\frac{\mu}{\mu-u}-1\right]\right) \quad \leftarrow \text { Use functions from } \\
\text { start of question }
\end{array}
$$

Now, consider $S=S_{1}+\cdots+S_{n}$

$$
\begin{array}{rlr}
M_{S}(u)=\mathbb{E}\left(e^{u S}\right) & =\mathbb{E}\left(e^{u S_{1}} \cdots e^{u S_{n}}\right) & \\
& =\mathbb{E}\left(e^{u S_{1}}\right) \cdots \mathbb{E}\left(e^{u S_{n}}\right) \quad \leftarrow \quad \text { Indep. of } S_{i}, \text { due to } \\
& \quad \text { indep. of } X_{i} \text { and } \lambda_{i} \\
& =\exp \left(\lambda_{1}\left[\frac{\mu}{\mu-u}-1\right]\right) \cdots \exp \left(\lambda_{n}\left[\frac{\mu}{\mu-u}-1\right]\right) \\
& =\exp \left(\left[\sum_{i=1}^{n} \lambda_{i}\right]\left[\frac{\mu}{\mu-u}-1\right]\right)
\end{array}
$$

This is clearly a compound Poisson, with Poisson parameter $\sum_{i=1}^{n} \lambda_{i}$.

The total number of claims on the whole portfolio in one year is $N=\sum_{i=1}^{n} N_{i}$, and we now have $N_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$, where $\lambda \sim f\left(\lambda_{i}\right)$ and $\lambda>0$.

First, consider each N_{i} and let x be an integer

$$
\begin{aligned}
\mathbb{P}\left(N_{i}=x\right) & =\int_{\lambda=0}^{\infty} \mathbb{P}\left(N_{i}=x \mid \lambda\right) f(\lambda) \mathrm{d} \lambda \\
& =\int_{\lambda=0}^{\infty} \frac{\lambda^{x}}{x!} e^{-\lambda} \cdot \frac{\alpha^{m} \lambda^{m-1} e^{-\alpha \lambda}}{(m-1)!} \cdot 1 \mathrm{~d} \lambda \\
& =\int_{\lambda=0}^{\infty} \frac{\lambda^{x}}{x!} e^{-\lambda} \cdot \frac{\alpha^{m} \lambda^{m-1} e^{-\alpha \lambda}}{(m-1)!} \cdot \frac{(x+m-1)!}{(x+m-1)!} \mathrm{d} \lambda \\
& =\frac{(x+m-1)!}{(m-1)!} \int_{\lambda=0}^{\infty} \frac{\lambda^{x}}{x!} e^{-\lambda} \cdot \frac{\alpha^{m} \lambda^{m-1} e^{-\alpha \lambda}}{(x+m-1)!} \mathrm{d} \lambda \\
& =\frac{(x+m-1)!}{(m-1)!} \frac{\alpha^{m}}{x!} \int_{\lambda=0}^{\infty} \frac{\lambda^{x+m-1} e^{-(\alpha+1) \lambda}}{\Gamma(x+m)} \mathrm{d} \lambda \\
& =\frac{(x+m-1)!}{(m-1)!} \frac{\alpha^{m}}{x!(\alpha+1)^{x+m}} \int_{\lambda=0}^{\infty} \frac{(\alpha+1)^{x+m} \lambda^{x+m-1} e^{-(\alpha+1) \lambda}}{\Gamma(x+m)} \mathrm{d} \lambda
\end{aligned}
$$

At this point, we remember (somehow) that the PDF of $\Gamma(k, \theta)$ is $f(\lambda)=\theta^{k} \lambda^{k-1} e^{-\theta \lambda} / \Gamma(k)$. The quantity in the integral is in that form, with $k=x+m$ and $\theta=(1+\alpha)^{-1}$. The integral therefore evaluates to 1 and

$$
\begin{aligned}
\mathbb{P}\left(N_{i}=x\right) & =\frac{(x+m-1)!}{(m-1)!} \frac{\alpha^{m}}{x!(\alpha+1)^{x+m}} \\
& =\binom{x+m-1}{x} \alpha^{m}(\alpha+1)^{-(x+m)} \\
& =\binom{x+m-1}{x}\left(\frac{\alpha}{\alpha+1}\right)^{m}\left(\frac{1}{\alpha+1}\right)^{x}
\end{aligned}
$$

This is a negative binomial distribution with parameters

$$
\begin{gathered}
p=\frac{\alpha}{\alpha+1} \\
q=1-\frac{\alpha}{\alpha+1}=\frac{1}{\alpha+1} \\
r=m
\end{gathered}
$$

The total number of claims is given by

$$
N=N_{1}+\cdots+N_{n}
$$

Consider the MGF of N :

$$
M_{N}(t)=\mathbb{E}\left(e^{N t}\right)=\mathbb{E}\left(e^{N_{1} t}\right) \cdots \mathbb{E}\left(e^{N_{n} t}\right)=M_{N_{1}}(t) \cdots M_{N_{n}}(t)
$$

Furthermore, since N_{i} has a negative binomial distribution,

$$
M_{N_{i}}(t)=\left(\frac{1}{1-\frac{1}{\alpha+1} e^{t}}\right)^{m}
$$

And so

$$
M_{N}(t)=\left(\frac{1}{1-\frac{1}{\alpha+1} e^{t}}\right)^{m n}
$$

This is also the MGF of a negative binomial, with the same p parameter but with

$$
\begin{aligned}
& p=\frac{\alpha}{\alpha+1} \\
& r=n m
\end{aligned}
$$

In other words

$$
N \sim \operatorname{NegBin}\left(r=n m, p=\frac{\alpha}{\alpha+1}\right)
$$

This can be viewed as a single Poisson distribution $N \sim \operatorname{Po}(\lambda)$ with its parameter mixed over the following distribution:

$$
\begin{equation*}
f(\lambda)=\frac{\alpha^{n m} \lambda^{n m-1} e^{-\alpha \lambda}}{(n m-1)!} \quad \lambda>0 \tag{*}
\end{equation*}
$$

Now, the claims sizes all have exponential distribution with parameter μ. And we have just seen that the total number of claims in a year is N, across all categories. Now

$$
S=\sum_{k=1}^{n} \sum_{i=1}^{N_{k}} X_{i}=\sum_{i=1}^{N} X_{i}
$$

So S does indeed have a compound mixed Poisson distribution, and the mixing distribution is that in equation $(*)$.

Question 3

3 Explain what is meant by a classical risk model with positive premium loading factor.

Assume that the adjustment coefficient is the unique positive solution of

$$
M(r)-1=(1+\theta) \mu r,
$$

where $M(r)$ is the claim size moment generating function, μ is the mean claim size and θ is the premium loading factor. State and prove Lundberg's inequality for the probability of ruin.

Find the adjustment coefficient R when claims are exponentially distributed with mean μ.

Determine whether R is greater or smaller than the adjustment coefficient R_{μ} for claims that are exactly μ, and comment briefly on the corresponding Lundberg bounds.

In the classical risk model

- The claim sizes X_{1}, X_{2}, \cdots are positive random variables.
- The number of claims arriving in $(0, t]$ is $N(t)$, it is independent of the X_{i} and $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$, which means that (a) $N(t) \sim \operatorname{Po}(\lambda t)$ and (b) the times between consecutive arrivals are IID exponential variables with mean $1 / \lambda$.
- We assume that premium income is received continuously at a constant rate $c>0$, and we suppose that at $t=0$, the company has capital $u \geq$ 0.

At time t, the risk-reserve is then given by

$$
U(t)=u+c t-\sum_{i=1}^{N(t)} X_{i}
$$

We note that using the properties of compound Poisson variables

$$
\mathbb{E}(U(t))=u+c t-\lambda \mu t
$$

Where $\mu=\mathbb{E}\left(X_{1}\right)$. Thus, the profit the company makes per unit time is given by

$$
\frac{\mathbb{E}(U(t))-u}{t}=c-\lambda \mu
$$

If $c>\lambda \mu$, then the expected profit per unit time is positive and we have positive safety loading. We write $c=(1+\theta) \lambda \mu$ where $\theta>0$ is called the premium loading factor.

The probability of ruin is given by

$$
\psi(u)=\mathbb{P}\binom{U(t)<0 \text { at some time } t}{\text { given starting capital } u}
$$

Lundberg's inequality states that

$$
\psi(u) \leq e^{-r u}
$$

Where R, the adjustment coefficient, is given by

$$
M_{X}(r)-1=(1+\theta) \mu r
$$

This inequality holds provided that there exists a $z_{\infty} \in(0, \infty]$ such that $M_{X}(z) \uparrow \infty$ as $z \rightarrow z_{\infty}$.

We prove this inequality in three steps

1. We prove that $M_{X}(r)-1=(1+\theta) \mu r$ has a unique strictly positive solution.

Define $g(z)=M_{X}(z)-1-(1+\theta) \mu z$. We would like to show that there is a unique strictly positive solution to $g(z)=0$.

First, assume that $z_{\infty}<\infty$. In that case

- g is continuous because M is continuous (this is a property of Laplace transforms)
- $g(0)=M_{X}(0)-1=1-1=0$
- $g^{\prime}(0)=M_{X}^{\prime}(0)-(1+\theta) \mu=-\theta \mu<0$ because, assuming positive safety loading, $\theta>0$
- $g^{\prime \prime}(0)<0$ - this is another property of Laplace transforms
- g tends to ∞ as $z \rightarrow z_{\infty}$

Together, these imply that g looks like this

Clearly, therefore, there is a single strictly positive solution of $g(z)=$ 0 .

If $z_{\infty}=\infty$, we need to make sure that the M term in g grows faster than the r term - otherwise, the function no longer looks as plotted above. To show this, consider that since the variables X are positive,

$$
\exists \eta>0 \text { s.t. } \mathbb{P}(X>\eta)=p>0
$$

Now

$$
\begin{aligned}
M_{X}(z) & =\mathbb{E}\left(e^{z X}\right) \\
& =p \mathbb{E}\left(e^{z X} \mid X>\eta\right)+(1-p) \mathbb{E}\left(e^{z X} \mid X \leq \eta\right) \\
& \geq p \mathbb{E}\left(e^{z X} \mid X>\eta\right) \\
& \geq p e^{z \eta}
\end{aligned}
$$

Therefore, M_{X} is bounded below by an exponential, which clearly grows faster than a simple linear term. Thus

$$
g(z) \geq p e^{\eta_{z}}-1+(1+\theta) \mu z \rightarrow \infty
$$

So there is indeed one unique strictly positive solution for r.
2. We define a new quantity, $\psi_{n}(u)$, such that $\psi_{n}(u) \leq e^{-R u} \forall n \Rightarrow \psi(u) \leq e^{-R u}$

The new quantity we define is

$$
\psi_{n}(u)=\mathbb{P}\left(\text { Ruin occurs at or before } n^{\text {th }} \text { claim }\right)
$$

Clearly, $\psi_{n}(u) \uparrow \psi(u)$ as $n \rightarrow \infty$. As such

$$
\psi_{n}(u) \leq e^{-R u} \forall n \Rightarrow \psi(u) \leq e^{-R u}
$$

3. We show that $\psi_{n}(u) \leq e^{-R u} \forall n$

We do this by induction

- $n=1$ case

Clearly, ruin can't occur before the first claim. Thus

$$
\begin{aligned}
\psi_{1}(u) & =\mathbb{P}\left(\text { Ruin occurs at or before } 1^{\text {st }} \text { claim }\right) \\
& =\mathbb{P}\left(\text { Ruin occurs at } 1^{\text {st }} \text { claim }\right) \\
& =\int_{0}^{\infty} \mathbb{P}\left(\text { Occurs @ } 1^{\text {st }} \mid 1^{\text {st }} \text { occurs at } t\right) \lambda e^{-\lambda t} \mathrm{~d} t
\end{aligned}
$$

Consider, however, that at a time t, the risk reserve is $u+c t$. The first claim must exceed this amount for ruin to occur

$$
\begin{aligned}
\psi_{1}(u) & =\int_{0}^{\infty} \mathbb{P}\left(X_{1}>u+c t\right) \lambda e^{-\lambda t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \int_{x=u+c t}^{\infty} f_{X}(x) \lambda e^{-\lambda t} \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

Now, note that in the range of the integral, $e^{-r(u+c t-x)}$ is greater than 1 and so

$$
\psi_{1}(u) \leq \int_{0}^{\infty} \int_{x=u+c t}^{\infty} e^{-R(u+c t-x)} f_{X}(x) \lambda e^{-\lambda t} \mathrm{~d} x \mathrm{~d} t
$$

Further note that the integrand is positive, so

$$
\begin{aligned}
\psi_{1}(u) & \leq \int_{0}^{\infty} \int_{x=0}^{\infty} e^{-r(u+c t-x)} f_{X}(x) \lambda e^{-\lambda t} \mathrm{~d} x \mathrm{~d} t \\
& =\int_{0}^{\infty} \lambda e^{-\lambda t} e^{-r(u+c t)} \int_{x=0}^{\infty} e^{r x} f_{X}(x) \mathrm{d} x \mathrm{~d} t \\
& =e^{-r u} \int_{0}^{\infty} \lambda e^{-(r c+\lambda) t} M_{X}(r) \mathrm{d} t
\end{aligned}
$$

r is defined as $M_{X}(r)=(1+\theta) \mu r+1$, so

$$
\begin{aligned}
\psi_{1}(u) & \leq e^{-r u} \int_{0}^{\infty} \lambda e^{-(r c+\lambda) t}\{(1+\theta) \mu r+1\} \mathrm{d} t \\
& =e^{-r u} \int_{0}^{\infty}\{(1+\theta) \mu \lambda r+\lambda\} e^{-(r c+\lambda) t} \mathrm{~d} t
\end{aligned}
$$

Remember that $c=(1+\theta) \mu \lambda$

$$
\psi_{1}(u) \leq e^{-r u} \int_{0}^{\infty}\{r c+\lambda\} e^{-(r c+\lambda) t} \mathrm{~d} t
$$

The integral is simply an exponential density that evaluates to 1 , so

$$
\psi_{1}(u) \leq e^{-r u}
$$

- Inductive step

Now assume that $\psi_{n}(u) \leq e^{-r u}$, and consider

$$
\begin{aligned}
\psi_{n+1}(u) & =\mathbb{P}\left(\text { Ruin @ or before }(n+1)^{\text {th }}\right) \\
& =\int_{0}^{\infty} \mathbb{P}\binom{\text { Ruin @ or before }(n+1)^{\text {th }}}{\mid 1^{s t} \text { occurs at } t} \lambda e^{-\lambda t} \mathrm{~d} t
\end{aligned}
$$

We now split this integral into two options:

- The ruin happening at the first claim (ie: first claim greater than $u+c t$)
- The ruin not happening at the first claim, in which case, after the first claim, we "reset the timer" with capital $u+c t-x_{1}$
- the ruin happening at the first claim, and the ruin not happening at the first claim:

$$
\psi_{n+1}(u)=\int_{0}^{\infty} \lambda e^{-\lambda t}\left\{\int_{x_{1}=u+c t}^{\infty} f_{X}(x) \mathrm{d} x+\int_{x_{1}=0}^{u+c t} \psi_{n}\left(u+c t-x_{1}\right) f_{X}(x) \mathrm{d} x\right\} \mathrm{d} t
$$

Now:

- In the first situation, $e^{-r\left(u+c t-x_{1}\right)}>1$
- In the second situation, the inductive hypothesis implies that $\psi_{n}\left(u+c t-x_{1}\right) \leq e^{-r\left(u+c t-x_{1}\right)}$.
As such

$$
\begin{aligned}
\psi_{n+1}(u) & \leq \int_{0}^{\infty} \lambda e^{-\lambda t}\left\{\int_{x_{1}=0}^{\infty} e^{-r\left(u+c t-x_{1}\right)} f_{X}(x) \mathrm{d} x\right\} \mathrm{d} t \\
& \leq e^{-r u}
\end{aligned}
$$

When claims are exponentially distributed,

$$
M_{X}(u)=(1-u \mu)^{-1}
$$

So

$$
\begin{gathered}
\frac{1}{1-R \mu}-1=(1+\theta) \mu R \\
(1+\theta)(1-R \mu)=1 \\
1-R \mu+\theta-\theta R \mu=1 \\
R=\frac{\theta}{\mu(1+\theta)}
\end{gathered}
$$

For claims that are exactly $\mu, M_{X}(u)=\mathbb{E}\left(e^{u X}\right)=e^{u \mu}$, and so

$$
e^{R_{\mu} \mu}-1=(1+\theta) \mu R_{\mu}
$$

A Taylor expansion gives

$$
\begin{gathered}
R_{\mu} \mu+\frac{1}{2}\left(R_{\mu} \mu\right)^{2}+\cdots=(1+\theta) \mu R_{\mu} \\
-\theta \mu R_{\mu}+\frac{1}{2} \mu^{2} R_{\mu}^{2}+\cdots=0
\end{gathered}
$$

Truncating the Taylor series will result in a value of R_{μ} that is

$$
R_{\mu}=\frac{\theta}{\mu \frac{1}{2}}
$$

This is clearly larger than R, because $1+\theta>\frac{1}{2}$ this means that the Lundberg bound leads to a generally lower probability of ruin in the "fixed claim size" case. This makes sense - the exponential distribution is highly positively skewed, and this implies that it places greater weight on claim sizes above the mean than below. Thus, by replacing the exponential distribution with the mean exactly, we are, overall, decreasing claim sizes. The probability of ruin is therefore lower.
[Note: I'm not entirely pleased with the argument above, because it's unclear whether truncating the Taylor series over or underestimates R_{μ}, so it seems silly to then use that as a basis for comparison. If anyone can think of a better way, let me know \cdot]

Question 4

4 Let Y_{i} be the number of claims on a group life insurance policy covering m_{i} lives in year $i, i=1, \ldots, n$. Suppose that

$$
\mathbb{P}\left(Y_{i}=x\right)=\binom{m_{i}}{x} \theta^{x}(1-\theta)^{m_{i}-x}, \quad x=0, \ldots, m_{i},
$$

where $\theta \in(0,1)$ has prior density $f(\theta)$. Let $X_{i}=Y_{i} / m_{i}$ and assume that, given θ, X_{1}, \ldots, X_{n} are conditionally independent. Suppose θ is estimated by $\hat{\theta}=a_{0}+\sum_{i=1}^{n} a_{i} X_{i}$ where $a_{0}, a_{1}, \ldots, a_{n}$ are chosen such that $\mathbb{E}_{x, \theta}\left[(\theta-\hat{\theta})^{2}\right]$ is minimised. Show that $\hat{\theta}$ can be written in the form

$$
\hat{\theta}=Z \frac{\sum_{i=1}^{n} m_{i} X_{i}}{\sum_{i=1}^{n} m_{i}}+(1-Z) \mathbb{E}[\theta]
$$

where you should specify Z.
Now suppose that $f(\theta)=1$ for $0<\theta<1$ and that $n=2$. Find $\hat{\theta}$, and compare it with the Bayesian estimate of θ with respect to quadratic loss.

We write

$$
\hat{\theta}=a_{0}+\sum_{i=1}^{n} a_{i} X_{i}
$$

We need to choose this estimator to minimise

$$
L=\mathbb{E}\left\{\left(\theta-a_{0}-\sum_{i=1}^{n} a_{i} X_{i}\right)^{2}\right\}
$$

This implies that

$$
\begin{array}{r}
\frac{\partial L}{\partial a_{0}}=\mathbb{E}\left\{\theta-a_{0}-\sum_{i=1}^{n} a_{i} X_{i}\right\}=0 \\
\frac{\partial L}{\partial a_{r}}=\mathbb{E}\left\{X_{r}\left(\theta-a_{0}-\sum_{i=1}^{n} a_{i} X_{i}\right)\right\}=0 \quad \forall r \tag{2}
\end{array}
$$

First consider $(2)-\mathbb{E}\left(X_{r}\right)(1)$

$$
\begin{gather*}
\mathbb{E}\left\{X_{r}\left(\theta-a_{0}-\sum_{i=1}^{n} a_{i} X_{i}\right)\right\}=\mathbb{E}\left(X_{r}\right) \mathbb{E}\left\{\theta-a_{0}-\sum_{i=1}^{n} a_{i} X_{i}\right\} \\
\mathbb{E}\left(X_{r} \theta\right)-a_{0} \mathbb{E}\left(X_{r}\right)-\sum_{i=1}^{n} \mathbb{E}\left\{a_{i} X_{r} X_{i}\right\}=\mathbb{E}\left(X_{r}\right) \mathbb{E}(\theta)-a_{0} \mathbb{E}\left(X_{r}\right)-\mathbb{E}\left(X_{r}\right) \sum_{i=1}^{n} \mathbb{E}\left\{a_{i} X_{i}\right\} \\
\mathbb{E}\left(X_{r} \theta\right)-\mathbb{E}\left(X_{r}\right) \mathbb{E}(\theta)=\sum_{i=1}^{n} \mathbb{E}\left\{a_{i} X_{r} X_{i}\right\}-\mathbb{E}\left(X_{r}\right) \sum_{i=1}^{n} \mathbb{E}\left\{a_{i} X_{i}\right\} \\
\mathbb{C o v}\left(X_{r}, \theta\right)=\sum_{i=1}^{n} a_{i} \operatorname{Cov}\left(X_{r}, X_{i}\right) \tag{3}
\end{gather*}
$$

We now use the conditional variance formula on both sides of (3)

$$
\begin{aligned}
\mathbb{C o v}\left(X_{r}, \theta\right) & =\mathbb{E}\left[\operatorname{Cov}\left(X_{r}, \theta \mid \theta\right)\right]+\operatorname{Cov}\left[\mathbb{E}\left(X_{r} \mid \theta\right), \mathbb{E}(\theta \mid \theta)\right] \\
& =\mathbb{E}\left[\theta \operatorname{Cov}\left(X_{r}, 1 \mid \theta\right)\right]+\operatorname{Cov}[\theta, \theta] \\
& =\mathbb{V} \operatorname{ar}(\theta) \\
\mathbb{C o v}\left(X_{r}, X_{i}\right) & =\mathbb{E}\left[\operatorname{Cov}\left(X_{r}, X_{i} \mid \theta\right)\right]+\mathbb{C o v}\left[\mathbb{E}\left(X_{r} \mid \theta\right), \mathbb{E}\left(X_{i} \mid \theta\right)\right] \\
& =\mathbb{E}\left[\delta_{r i} \operatorname{Var}\left(X_{i} \mid \theta\right)\right]+\mathbb{C o v}[\theta, \theta] \\
& =\mathbb{E}\left[\delta_{r i} \frac{1}{m_{i}^{2}} \operatorname{Var}\left(Y_{i} \mid \theta\right)\right]+\mathbb{V a r}(\theta) \\
& =\mathbb{E}\left[\delta_{r i} \frac{1}{m_{i}^{2}} m_{i} \theta(1-\theta)\right]+\mathbb{V a r}(\theta) \\
& =\mathbb{E}\left[\delta_{r i} \frac{1}{m_{i}} \theta(1-\theta)\right]+\operatorname{Var}(\theta)
\end{aligned}
$$

Feeding this back into (3), we get

$$
\begin{gather*}
\mathbb{V a r}(\theta)=\sum_{i=1}^{n} a_{i}\left\{\mathbb{E}\left[\delta_{r i} \frac{1}{m_{i}} \theta(1-\theta)\right]+\mathbb{V a r}(\theta)\right\} \\
\operatorname{Var}(\theta)=\frac{a_{r}}{m_{r}} \mathbb{E}(\theta(1-\theta))+\mathbb{V a r}(\theta) \sum_{i=1}^{n} a_{i} \\
m_{r} \operatorname{Var}(\theta)=a_{r} \mathbb{E}(\theta(1-\theta))+m_{r} \mathbb{V} \operatorname{Var}(\theta) \sum_{i=1}^{n} a_{i} \tag{4}
\end{gather*}
$$

Re-arranging (4), we get

$$
\begin{equation*}
a_{r}=\frac{m_{r} \operatorname{Var}(\theta)}{\mathbb{E}(\theta(1-\theta))}\left\{1-\sum_{i=1}^{n} a_{i}\right\} \tag{5}
\end{equation*}
$$

Summing (4) from 1 to n, we get

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}=\frac{m_{+}}{m_{+}+\frac{\mathbb{E}(\theta(1-\theta))}{\operatorname{Var}(\theta)}} \tag{6}
\end{equation*}
$$

Where $m_{+}=\sum_{i=1}^{n} m_{i}$. Feeding (6) into (5), we get

$$
\begin{aligned}
& a_{r}= \frac{m_{r} \operatorname{Var}(\theta)}{\mathbb{E}(\theta(1-\theta))}\left\{1-\frac{m_{+}}{m_{+}+\frac{\mathbb{E}(\theta(1-\theta))}{\operatorname{Var}(\theta)}}\right\} \\
& a_{r}=\frac{m_{r}}{m_{+}}\left\{\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}\right\}
\end{aligned}
$$

Going all the way back to (1), we get

$$
\begin{gathered}
\mathbb{E}(\theta)-a_{0}-\sum_{i=1}^{n} a_{i} \mathbb{E}\left(X_{i}\right)=0 \\
a_{0}=\mathbb{E}(\theta)-\sum_{i=1}^{n} a_{i} \frac{1}{m_{i}} \mathbb{E}\left(Y_{i}\right) \\
a_{0}=\mathbb{E}(\theta)\left\{1-\sum_{i=1}^{n} a_{i}\right\}
\end{gathered}
$$

Feeding (6) into this, we get

$$
\begin{gathered}
\mathbb{E}(\theta)-a_{0}-\sum_{i=1}^{n} a_{i} \mathbb{E}\left(X_{i}\right)=0 \\
a_{0}=\mathbb{E}(\theta)-\sum_{i=1}^{n} a_{i} \frac{1}{m_{i}} \mathbb{E}\left(Y_{i}\right) \\
a_{0}=\mathbb{E}(\theta)\left\{1-\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}\right\}
\end{gathered}
$$

Feeding this all into $\hat{\theta}=a_{0}+\sum_{i=1}^{n} a_{i} X_{i}$, we obtain

$$
\begin{aligned}
& \hat{\theta}=\mathbb{E}(\theta)\left\{1-\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}\right\}+\sum_{i=1}^{n}\left\{\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}\right\} \frac{m_{i}}{m_{+}} X_{i} \\
& \hat{\theta}=\left\{\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}\right\} \frac{\sum_{i=1}^{n} m_{i} X_{i}}{m_{+}}+\left\{1-\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta) \mathbb{E}(\theta(1-\theta))}\right\} \mathbb{E}(\theta)
\end{aligned}
$$

Precisely as required, with

$$
Z=\frac{m_{+} \operatorname{Var}(\theta)}{m_{+} \operatorname{Var}(\theta)+\mathbb{E}(\theta(1-\theta))}
$$

Now, if $f(\theta)=\mathbb{I}_{\theta \in(0,1)}$, then

- $\mathbb{E}(\theta)=\frac{1}{2}$
- $\operatorname{Var}(\theta)=\frac{1}{12}$
- $\mathbb{E}(\theta(1-\theta))=\mathbb{E}\left(\theta-\theta^{2}\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
- $Z=\frac{m_{+} \frac{1}{12}}{m_{+} \frac{1}{12}+\frac{1}{6}}=\frac{m_{+}}{m_{+}+2}$

And so

$$
\begin{gathered}
\hat{\theta}=\frac{m_{+}}{m_{+}+2} \frac{\sum_{i=1}^{n} m_{i} X_{i}}{m_{+}}+\left\{1-\frac{m_{+}}{m_{+}+2}\right\} \frac{1}{2} \\
\hat{\theta}=\frac{1+\sum_{i=1}^{n} m_{i} X_{i}}{m_{+}+2} \\
\hat{\theta}=\frac{1+\sum_{i=1}^{n} Y_{i}}{2+\sum_{i=1}^{n} m_{i}}
\end{gathered}
$$

In terms of exact credibility; the posterior is given by (once again, we write $y_{+}=\sum_{i=1}^{n} y_{i}$, and similarly for other quantities):

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{y}) & \propto f(\theta) \mathbb{P}(\boldsymbol{Y}=\boldsymbol{y} \mid \theta) \\
& =\mathbb{P}(\boldsymbol{Y}=\boldsymbol{y} \mid \theta) \mathbb{I}_{\theta \in(0,1)} \\
& \propto \prod_{i=1}^{n} \theta^{y_{i}}(1-\theta)^{m_{i}-y_{i}} \mathbb{I}_{\theta \in(0,1)} \\
& =\theta^{y_{+}}(1-\theta)^{m_{+}-y_{+}} \mathbb{I}_{\theta \in(0,1)} \\
& \sim \operatorname{Beta}\left(y_{+}+1, m_{+}-y_{+}+1\right)
\end{aligned}
$$

And the Bayesian estimate, with respect to quadratic loss, is therefore simply the mean of the beta distribution, given by

$$
\begin{gathered}
\mathbb{E}(\theta \mid \boldsymbol{y})=\frac{y_{+}+1}{2+m_{+}} \\
\mathbb{E}(\theta \mid \boldsymbol{y})=\frac{1+\sum_{i=1}^{n} Y_{i}}{2+\sum_{i=1}^{n} Y_{i}}
\end{gathered}
$$

In this case, it's exactly the same. Thus, in this particular case, exact Bayes' credibility is possible, and the resulting estimate is identical to the Buhlman credibility estimate.

