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Classical Thermodynamics 
 

Ideal gases 

 Assumptions 

o Identical particles in random motion. 

o Small solid spheres – occupy negligible volume. 

o Elastic collisions. 

o No long range forces – only forces during collisions  only 

energy is KE, ½mv2 per particle. 

 Results 

o Pressure is given by 21
3p nm v= . 

o Flux is given by 1
4J n v= . 

 The Maxwell-Boltzmann Distribution 

o ( ) ( )3/2 2 2
2( ) 4 exp /2m

kTP v v mv kTp p= -  

o This gives 
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 Energy… 

o 3 3
2 2 AU RT N kT= =  

 

Definitions 

 A system is in Thermal Equilibrium when all its macroscopic 

observables have ceased to change with time. 

 A function of state is any physics quantity that has a well-defined 

value for each equilibrium state of the system. They are represented by 

exact differentials. 

 Functions of state can be either 

o Extensive (proportional to system size) – eg: volume. 

o Intensive (independent of system size) – eg: pressure. 

o Intensive and extensive variables form conjugate pairs, the 

product of which is energy. 
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 The heat capacity is the amount of heat we need to supply to raise the 

temperature by dT. This can be measured at constant volume or at 

constant pressure, so 

d

dV
V

Q
C

T

æ ö÷ç= ÷ç ÷çè ø
  

d

dp
p

Q
C

T

æ ö÷ç= ÷ç ÷çè ø
 

 For an ideal gas 

pV nRT=  

 Stirling’s Approximation 

ln ! lnN N N N» -  
 

The First Law 

 The First Law of Thermodynamics states that 

Energy is conserved, and heat and work 

are both forms of energy 

U Q WD = D +D  

 Convention: 

QD  and WD are POSITIVE when 

energy is given TO the system 

 For a differential change 

d d dU Q W= +  

 The work done compressing a gas is given by 

d dW p V=-  

And so for a gas, the first law can be written 

d d dU Q p V= -  

 

Heat Capacities 

 In general, the internal energy will be a function of temperature and 

volume, so 

d d d
V T

U U
U T V

T V

æ ö æ ö¶ ¶÷ ÷ç ç= +÷ ÷ç ç÷ ÷ç çè ø è ø¶ ¶
 

 Using the form of the first law for a gas, above, we can write 

d d d

d d d
V T

Q U p V

U U
Q T p V

T V

= +

é ùæ ö æ ö¶ ¶÷ ÷ç çê ú= + +÷ ÷ç ç÷ ÷ç çê úè ø è ø¶ ¶ë û
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And dividing by dT: 

d d

d dV T

Q U U V
p

T T V T

é ùæ ö æ ö¶ ¶÷ ÷ç çê ú= + +÷ ÷ç ç÷ ÷ç çê úè ø è ø¶ ¶ë û
 

 By taking the equation above at constant volume and constant 

pressure (only the dV/dT term will matter), we obtain 

V
V

p V
T p

U
C

T

U V
C C p

V T

æ ö¶ ÷ç= ÷ç ÷çè ø¶
é ùæ ö æ ö¶ ¶÷ ÷ç çê ú= + +÷ ÷ç ç÷ ÷ç çê úè ø è ø¶ ¶ë û

 

 For an ideal gas: 

p VC C R= +  

 We define 

p

V

C

C
g =  

 

Reversibility 

 A change is reversible if an infinitesimal change in external conditions 

would reverse the direction of the change. 

 Reversible changes are typically very slow and quasi-static. 

 They are also frictionless – no viscosity, turbulence, etc… 

 

Isothermal expansions 

 When an expansion is isothermal, the temperature of the system does 

not change. Therefore, the internal energy of the system does not 

change, and 

d dW Q=-  

 Therefore, when a gas is expanded isothermally from V1 to V2 at a 

temperature T, the heat absorbed by the gas is given by 
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2

1

ln
V

Q RT
V

D =  

 An adiabatic process is both adiathermal (no flow of heat) and 

reversible, so 

d 0Q =  

And 

d dU W=  
However, for an ideal gas 

d dVU C T=  

Therefore 

( )

n
Obvious from

def  of 

1

d d

d d

d d

d d

d d
1

constant

V

V

V

V

C T W

C T p V
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C T V
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T R V

T C V
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T V

TV

g

g

g

-

=

= -

= -

= -

= -

=



 

Other versions can easily be generated using pV Tµ . 

 

The Second Law 

 The Second Law of Thermodynamics can be stated in two different 

ways 

The Clausius Formulation 

No process is possible whose sole result is 

the transfer of heat from a hotter to a cooler 

body. 
 

The Kelvin Formulation 

No process is possible whose sole result is 

the complete conversion of heat into work. 

 The equivalence of these two formulations can be shown in two steps 

o Violating Kelvin  Violating Clausius 
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Consider a “Kelvin-violator” E connected to a Carnot engine: 

 
We then have 

h

h l

Q W

Q W Q

¢ =

= +
 

But the total heat dumped at Th is given by 

h h l lQ Q W Q W Q¢- = + - =  

Thus, the net effect is to transfer heat from Tl to Th – this 

violates Clausius’ Formulation. 

o Violating Clausius  Violating Kelvin 

Consider a “Clausius violator” E running next to a Carnot 

engine: 

 
Overall, no heat is being dumped at Tl, but a heat Qh – Ql 

is drawn from Th. Furthermore, by the First Law 

h lW Q Q= -  

Which means that the net effect of this engine is to convert 

heat Qh – Ql into work which Violates Kelvin’s Formulation. 

 

Engines 

 Engines are systems operating cyclic processes that convert heat into 

work. 

 The Carnot Engine is based on the Carnot Cycle: 

o Isothermal expansion – heat Qh absorbed. 

E Carnot W 

Qh 

Ql lQ

lQ

Th 

Tl 

E Carnot 
W 

Qh 

Ql 

hQ ¢

Th 

Tl 
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o Adiabatic expansion – no heat flow. 

o Isothermal compression – heat Ql given out. 

o Adiabatic compression – no heat flow 

A schematic is as follows: 

 
Where S is some quantity proportional to pV g , constant during an 

adiabatic change. 

 By the First Law, the work output must be 

d h lW p V Q Q= = -ò  

 The efficiency of an engine is defined as 

What we want Work done by engine
1

What we gave for it Heat put in
h l l

h h

Q Q Q

Q Q
h

-
= = = = -  

 For a Carnot Cycle, we can show, using the formulae derived above for 

isotherms and adiabats, that 

1h h l

l l h

Q T T

Q T T
h=  = -  

 Note, crucially, that this implies that the quantity Q/T is always the 

same in a reversible Carnot Cycle, so, for a Carnot Cycle 

d
0

Q

T
=ò  

Furthermore, for any other sort of engine, Engine Carnoth h£ , so 

1 1

d
0

l l h l

h h h l

Q T Q Q

Q T T T

Q

T

- £ -  £

£ò
 

We can show that this is true for any cycle – Clausius’ Theorem (see 

below). 

 An engine can be run in reverse in two ways: 

o Refrigerator 

S 

T 

Qh 

Ql 

Tl 

Th 

Large V
 

Small V
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 In this case, the desired aim is the removal of heat from a 

cold reservoir, and this is done by the provision of work 

 Therefore, the efficiency is given by 

lQ

W
h =  

 High efficiency can be achieved if 2 1T T» . 

o Heat pump 

 In this case, the desired aim is the dumping of heat at a 

hot reservoir, and this is done by the porivision of work. 

 Therefore, the efficiency is given by 

hQ

W
h =  

 This is always greater than 1, because all work is 

converted to heat (eg: like in an electric heater), but 

more is also added, from the cold reservoir! 

 

Carnot’s Theorem 

 Carnot’s Theorem states that 

Carnot’s Theorem 

Of all the heat engines working between two 

given temperatures, none is more efficient 

than a Carnot engine 

Proof 

 
Consider an engine E that is more efficient than a Carnot Engine (ie: 

E Carnoth h> ), whose produced work is used to drive a Carnot engine in 

reverse. We then have 

E Carnot 
W 

Qh 

Ql lQ ¢

hQ ¢

Th 

Tl 
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0
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h h

h h

h h
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The First Law further implies that 

h k h lW Q Q Q Q¢ ¢= - = -  

And therefore 

0h h l lQ Q Q Q¢ ¢- = - >  

This means that the net effect of these engines is to transfer energy 

from Tl to Th – this violates the Clausius Formulation. 

 A corollary is that 

Corollary to Carnot’s Theorem 

All reversible engines have the same 

efficiency as a Carnot engine, Carnoth  

Proof 

 
We now imagine a reversible engine R, with R Carnoth h<  and drive it 

backwards, using the work from a Carnot Engine. The overall result 

will be to transfer heat from Tl to Th, in violation of Clausius’ 

Formulation. Thus, since the efficiency of any engine has to be both < 

and > that of a Carnot engine, it must be equal. 

 

Clausius’ Theorem 

 Consider any cycle that 

o Absorbs heats idQ  at various points i which have temperature 

Ti. 

o Releases, overall, work WD , which, by the First Law, must be 

cycle

d iW QD =å  

R Carnot 
W 

Qh 

Ql lQ ¢

hQ ¢

Th 

Tl 
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 Further imagine that each of these heats, idQ , are being provided by 

Carnot Engines, operating from a single reservoir at T0 and product 

work idW  each time. From the discussions above, we know that 

d d d

d d 1

i i i

i

i i
i

Q Q W

T T

T
W Q

T

-
=

æ ö÷ç ÷= -ç ÷ç ÷çè ø

 

 [Note that no assumptions has been made about the sign of idQ , so 

heat could have been released as well]. 

 In any case, it looks, at the moment, like all the system is doing is 

absorbing heat and producing work. This violates Kelvin’s Statement. 

To remedy to this, we must have 

cycle

total work produced per cycle d 0iW W= D + £å  

cycle

d
0

i

Q
T

T
£å  

Since T > 0, we must therefore have 
d

0
i

Q

T
£ò  

 If the cycle was reversible, we could have run it backwards (with 

d di iQ Q¢ = - ), and obtained the result with the inequality sign flipped. 

So, Clausius’ Theorem is that 

d
0

i

Q

T
£ò  

For any closed cycle, with equality when the cycle is reversible. 

 

Entropy 

 We saw that for a reversible cycle, d / 0cycle revQ Tò = , which means 

that the integral d / 0
B

A revQ Tò =  is path independent. As such, the 

quantity d /revQ T  is an exact differential, and we can write a new 

state function, entropy, S, which we define by 

d
d revQ
S

T
=  

 Now, consider going from A  B reversibly, and then returning from 

B  A irreversibly. We then have 
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Note
change

d
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d d
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This is true however close A and B get to each other, so 

irreversibled
d

Q
S

T
³  

 However, for a thermally isolated system, Q = 0d  for any process. 

Therefore, assuming that the universe is thermally isolated: 

universed 0S ³  

 We can re-write the First Law as follows: 

d d dU Q W= +  

But for a reversible change in a gas, we can write 

d d dU T S p V= -  

However, all the quantities in this equation are equations of state – 

therefore, this holds for any change, reversible or irreversible. 

 This implies that U changes when either S or V change – in other 

words, S and V are the natural variables of U, and they are both 

extensive – they depend on the size of the system. T and p, by 

contrast, are variables that are intensive, and that tell us how each of 

these extensive variables affect U. In fact: 

V

S

U
T

S

U
p

V

æ ö¶ ÷ç= ÷ç ÷çè ø¶
æ ö¶ ÷ç= - ÷ç ÷çè ø¶

 

 

Pot-Pourri of facts 

 It is interesting to note that for an adiabatic (reversible adiathermic) 

change, revQ = 0d , and so S = 0d . 

 Body of heat capacity C, from T1  T2: 
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2 2

1 1

2

1

d
d ln

T T

T T

Q C T
S T C

T T T

æ ö÷ç ÷D = = = ç ÷ç ÷çè øò ò  

 Reservoir at temperature T absorbing heat q 
q

S
T

D =  

[Note: q is always reversible for a reservoir, because the heat content is 

so large that any small change can reverse the direction of flow]. 

 

 For a ideal gas, we can write 

Only for gas

d d d

d d dV

U T S p V

C T T S p V

= -

= -
 

Ideal gas law

0

d d
d

d d
d

ln ln

V

V

V

T V
S C p

T T

T V
S C R

T V

S C T R V S

= +

= +

= + +


 

This gives the Entropy of an Ideal Gas, from which we can work out 

the Entropy of mixing. 
 

This expression, however, has an intrinsic problem – S is extensive, but 

V is also extensive in the expression above (T is not). 

 Joule Expansion from V  nV – can be worked out either using the 

expression for S for a gas, or using the fact that S is a state function, 

and that SD  will therefore be the same than for an isothermal 

expansion from V to nV. It turns out it’s 

lnS R nD =  

 This is a generally very useful principle – we can use a reversible 

change between the same two steps to find the change in entropy in an 

irreversible change. 

 The latent heat is the amount of heat needed to convert unit 

mass/mole from one phase to another; 

2 1( )L Q T S S= D = -  

 We can also express heat capacities in terms of entropy 
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d

d

d

d

V
V V

p
p p

Q S
C T

T T

Q S
C T

T T

æ öæ ö ¶ ÷÷ çç= = ÷÷ çç ÷ç ÷çè ø è ø¶
æ öæ ö ¶ ÷÷ çç= = ÷÷ çç ÷ç ÷çè ø è ø¶

 

 The work that can be gotten out of a system through some change is 

given by (note the change in signs due to the fact we’re extracting 

energy) 

d d d d dW Q U T S U= - ³ -  

Clearly, the maximum work can be extracted when the equality holds – 

ie: when the process is reversible. Increase in entropy (ie: 

irreversibility) corresponds to conversion of energy into a less useful 

form than work. 

 

Statistics 

 We note that d d dU T S p V= -  implies that 

1
V

V

U
T

S

S

T U

æ ö¶ ÷ç= ÷ç ÷çè ø¶
æ ö¶ ÷ç= ÷ç ÷çè ø¶

 

If we compare this with the definition of temperature, below 
1 d ln

dBk T E

W
=  

We find good justification to say 

lnBS k= W  

This is an expression for a system that is in a particular macrostate (ie: 

fixed energy) with an associated number of microstates. This is the 

microcanonical ensemble. However… 

 ... we can also consider the canonical ensemble, a system which can be 

in any number of macrostates of energy ie  (ie: any energy – for 

example, by allowing it to exchange energy with a reservoir) each of 

which have ni indistinguishable microstates associated with them, 

where the total number of microstates is, necessarily, = iN nå . 
 

The number of ways of rearranging the system is 
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!

!i
i

N

n
W =


 

And this means that the entropy is given by 

ln ! !

ln

i
i

S k N n

k N N N

é ù
ê ú= -
ê úë û

» -

å
Insignificant

lni i in n n- -
Insignificant

ln ln

ln ln

(ln ln )

ln

ln

i

i i
i

i i i
i i

i j
i

i i

i

i i
i

k N N n n

k n N n n

k n N n

n n
kM

N N

kM P P

é ù
ê ú
ê ú
ê úë û
é ù
ê ú» -
ê úë û
é ù
ê ú= -
ê úë û
é ù
ê ú= -
ê úë û

é ùæ ö÷ê úç= - ÷ç ÷ê úè øë û
= -

å

å

å å

å

å

å

 

Where Pi is the probability of finding the system in macrostate i. And 

therefore, the entropy in any one microstate (ie: actual state of 

existence) of the system is 

lni i
i

S k P P= - å  

 We can use this to elegantly derive the Boltzmann Distribution. What 

we effectively want to do is to maximise S/k (for tidiness) subject to 

1i
i

P =å   and  i i
i

P Ue =å  

So, consider: 

( )ln 1 ( )i i i i i
i

L P P P P Ua b e= - - - - -å  

Choose one of the probabilities Pj: 

0
j

L

P

¶
=

¶
 

ln 1 0

j

j j
j

j

L
P

P

e
P

Z

be

a be

-

¶ é ù= - + - - =ë û¶

 =

 

To find b , we note that 
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2
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ln ln
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i i
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i

e e
S k

Z Z

e e
k e k Z

Z Z

k P k Z

k U k Z

be be

be be
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b e

b
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- -
-
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é ù
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ê úë û

é ù
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Therefore: 

1

1

S
k

U T

kT

b

b

æ ö¶ ÷ç= =÷ç ÷çè ø¶

=
 

As, indeed, expected. 
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Analytical Thermodynamcis 
 

 Thermodynamics Potentials 

 We can make a number of other functions of state by adding to U 

various other combinations of the functions of state p, V, T and S 

such that the resulting quantity has energy dimensions. 

 Most, however, are not very useful. A number, however, are. 

 INTERNAL ENERGY – d d dU T S p V= -  

For processes at a constant volume (isochoric), we have 

revd d d dVU T S Q C T= = =  

As such, if a process involves going from T1 to T2 at constant V: 
2

1

d
T

V
T

U C TD = ò  

 ENTHALPY – d d dH U PV H T S V p= +  = +  

o The natural variables are now entropy and pressure. 

o For isobaric processes (at constant pressure) 

revd d d dpH T S Q C T= = =  

As such, if a process involves going from T1 to T2 at constant p: 
2

1

d
T

p
T

H C TD = ò  

o Also 

p

H
T

S

æ ö¶ ÷ç= ÷ç ÷çè ø¶
  

S

H
V

p

æ ö¶ ÷ç= ÷ç ÷ç ÷¶è ø
 

o Also, in a flow process, if a fluid comes in at pressure p1 and 

volume V1 with energy U1 and leaves at pressure p2 and 

volume V2 with energy U2, then it is enthalpy that is conserved. 

 HELMHOLTZ FREE ENERGY – d d dF U TS H S T p V= -  = - -  

o The natural variables are now temperature and volume. 

o For isothermal processes between V1 and V2: 
2

1

d
V

V
F p VD = -ò  

 GIBBS FREE ENERGY – d d dG H TS G S T V p= -  = - +  

o The natural variables are now pressure and temperature. 
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o If both T and p are constant for a process, G is conserved. 

 Consider a system in contact with surroundings at T0 and p0. Let’s 

transfer energy dU and volume dV from surroundings  system. 

Consider the internal energy of the surroundings, dU0: 

( )0 0 0 0

0
0

0

d d d d

d d
d

U T S p V U

U p V
S

T

= - - = -

+
= -

 

And now, let’s assume that as a result of the change, the entropy of 

the system has changed by dS – then, assuming that the process does 

occur: 

nd2  law

tot 0

0 0

d d +d 0

d d d 0

S S S

U p V T S

= ³

 + - £
 

If we define 0 0A U pV T S= + - , then this means that 

d 0A £  

So A always decreases for a process that occurs, at tends to a minimum 

at equilibrium. 
 

It turns out that dA can be identified with the potentials above, 

whenever their natural variables are constant. 

 The Gibbs-Helmholtz Equations can be derived by writing any one 

potential as the sum of others – for example, to obtain one for H in 

terms of F, write H = F + pV + TS, and convert the p and the S 

into forms involving F, using the differentials. 

 

Maxwell Relations 

 Derive them directly from the potentials. 

 However, remember that 

o The BOTTOM BITS of the equation are the NATURAL 

VARIABLES of the potential they’re from. 

o The TOP BITS are the OTHER VARIABLES of the potential 

they’re from. 

 

Strategy for these problems 
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 Write down a function of state in terms of particular variables. These 

can be “non-natural variables” by expressing one of the differentials as 

a differential itself… eg: 

( / )

d d d

d d d

y

z x

z x y x

z x y

f x

f f
f x z

x z

f f z z
x x y

x z x y

f f z

x z x
¶ ¶

æ ö æ ö¶ ¶÷ ÷ç ç= +÷ ÷ç ç÷ ÷ç çè ø è ø¶ ¶
é ùæ öæ ö æ ö æ ö¶ ¶ ¶ ¶ ÷ç÷ ÷ ÷ê úç ç ç= + + ÷÷ ÷ ÷ çç ç ç ÷÷ ÷ ÷ç ç çê úç ÷è ø è ø è ø¶ ¶ ¶ ¶è øë û

é ùæ ö æ ö æ ö¶ ¶ ¶÷ ÷ ÷ê úç ç ç= +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çê úè ø è ø è ø¶ ¶ ¶ë û
( / )

d d

x

x x

f y

f z
x y

z y
¶ ¶

æ öæ ö¶ ¶ ÷ç÷ç+ ÷÷ çç ÷÷ç ç ÷è ø¶ ¶è ø

 

 Use Maxwell’s relations to transform to easier partial differentials 

 Use one of the following Theorems 

xx x

f f z

y z y

æ ö æ öæ ö¶ ¶ ¶÷ ÷ç ç÷ç=÷ ÷÷ç çç÷ ÷÷çç ç÷ ÷è ø¶ ¶ ¶è ø è ø
 (chain rule 

1

( / )y y

x

z z x

æ ö¶ ÷ç =÷ç ÷çè ø¶ ¶ ¶
 (reciprocal theorem) 

1
x yz

x y z

y z x

æ ö æ ö æ ö¶ ¶ ¶÷ç ÷ ÷ç ç = -÷ ÷ ÷ç ç ç÷ ÷ ÷ç çç ÷ è ø è ø¶ ¶ ¶è ø
 (reciprocity) 

yz x

x x z

y z y

æ ö æ öæ ö¶ ¶ ¶÷ ÷ç ç÷ç= -÷ ÷÷ç çç÷ ÷÷çç ç÷ ÷è ø¶ ¶ ¶è ø è ø
 (corollary of reciprocity) 

 Identify a heat capacity 

 Identify a generalised susceptibility 

This quantifies how much a particular variable changes when a 

generalised force (the differential of U w.r.t. some other parameter) 

is applied. For example, compressibilities (isothermal and adiabatic) 

are 

1
T

T

V

V p
k

æ ö¶ ÷ç= - ÷ç ÷ç ÷¶è ø
   

1
S

S

V

V p
k

æ ö¶ ÷ç= - ÷ç ÷ç ÷¶è ø
 

We can show that / 1T Sk k g= > , which implies that adiabats are 

steeper than isotherms. 
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Statistical Thermodynamics 
 

 Basic Ideas 

 A multi-particle system can be defined as a set of quantum states. 

 A particular configuration (quantum state) is called a microstate 

o Each microstate is equally likely to occur 

o The internal dynamics of the system are such that it can make 

transitions between microstates. 

o Given enough time, the system will explore all possible 

microstates and spend an equal time in each of them (the 

ergodic hypothesis). 

Taken together, these three facts imply that a system will appear to 

choose a macroscopic configuration which maximizes the number of 

microstates. 

 Measurements concern a property of the macrostate of the system, 

comprising of many different microstates, each with the same 

macroscopic property. 

 The number of microstates making up a macrostates is given the 

symbol W . 

 It is possible to find W  as a function of some variable of the system 

around 0W , the maximum, and it is usually found that it peaks 

extremely sharply at that point – the highest probability 

configuration gives the macroscopic state to a high degree of accuracy. 

 

Temperature 

 The 0th Law of Thermodynamics stated that 

Two systems, each separately in thermal 

equilibrium with a third, are also in thermal 

equilibrium with each other 

This allows a definition of temperature as “the property which 

systems in thermal equilibrium have in common”. 
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In a way this law states that “thermometers work”, because it allows 

us to measure the temperature of one body by placing it in contact 

with another body which displays a property that has well-known 

dependence on temperature. 

 Consider two systems in thermal contact with each other 

o With energy (a property of the macrostate) E1 and E2 

o With each of these energy macrostates corresponding to ( )EW  

microstates. 

o With total energy 1 2 2 1d /d 1E E E E E= +  =- . 

 The whole system can therefore be in any one of 1 2( ) ( )E EW W  

microstates. 

 If those two systems have come to Thermal Equlibrium, the number of 

microstates the whole system is in must be at a maximum. So, 

maximising the expression with respect to E1: 

[ ]1 2

1

1 2

1 1 2 2

1 2

1 2

d
( ) ( ) 0

d

1 d 1 d

d d

d ln d ln

d d

E E
E

E E

E E

W W =

W W
=

W W
W W

=

 

 So we see that the function d ln /dEW  must be a constant of the 

system, and must therefore be a function of temperature. We define: 

1 d ln

dBk T E

W
=  

 

The Boltzmann Distribution – Canonical Ensembles 

 Consider a system in equilibrium with a reservoir at temperature T. 

 
And, consider that 

 

E – e 
 

Wr(E – e) 
 

Temperature T 

  e 

Reservoir 

System 
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o The total energy is E, and the energy of the system is e , which 

leaves E e-  to the reservoir. 

o The temperature of the reservoir is constant, as long as e  is 

small. 

o The number of microstates of the reservoir corresponding to 

energy E e-  is ( )r E eW - , and the number of microstates of the 

system corresponding to energy e  is ( )s eW . 

This is known as the canonical ensemble. 

 We can view a gas, for example, as a canonical example, where one 

molecule is the system, and the rest of the gas is the reservoir. 

 The number of microstates the system can be in is therefore 

(system has energy ) ( ) ( )total r sEe e eW = W - W  

 But since e  is small, we can perform a Taylor Expansion: 

[ ] [ ]
[ ] [ ]2

2
2

0, because of
d
assumptions

dln ( ) d ln ( )
ln ( ) ln ( )

d dr

dT

E

E E
E E

E E
e e e

µ =

W W
W - = W - + +


 

And using our definition of temperature: 

[ ] [ ]

/

ln ( ) ln ( )

( ) ( ) B

r
B

k T
r

E E
k T

E E e e

e
e

e -

W - = W -

W - = W
 

 Combining this with the above, we get 
/( ) Bk T

total s e ee -W µ W  

 Now, we said above that the probability of a given macrostate is 

proportional to the number of microstates that make it up. So, 

normalising: 

/

/

( )
(system in energy )

( )

B

B

k T
s

k T
s

e
P

e

e

e

e

e
e

e

-

-

"

W
=

Wå
 

This is the Boltzmann Distribution. 

 In a way, the reason why the probability falls as e  increases is because 

the degeneracy of the reservoir decreases exponentially with e . 
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The Boltzmann Distribution – Other Derivation 

 Consider N distinguishable particles and a set of energy levels je , each 

with degeneracy gj and population Nj. Consider further that the whole 

system has energy U. We can write 

j
j

j j
j

N N

U N e

"

"

=

=

å

å
 

 The number of ways of choosing N1 particles to be in the state 1e  is 

(taking degeneracy into account) 




1 1

1

1 1 1
1 1 1 1Degeneracy

factorNumber of ways Remove all repeat
of choosing counts we deal with

from degeneracy later

! 1 !

( )! ! !( )!
N N

N
N

N N
g g

N N N N N N

-

W = =
- -

 

The number of ways of choosing N2 of the remaining ones is 

21
2 2

2 1 2

( )!

!( )!
NN N

g
N N N N

-
W =

- -
 

Note that when multiplied together, some cancelling occurs. Therefore, 

the total number of configurations is 

!
!

jN
j

j
j j j

g
N

N" "

W = W =   

Notes: 

o We considered the particles to be distinguishable – we 

considered that there was more than one way for Ni particle to 

exist in the state ie . More on this later. 

o We assumed that the degeneracy factor was N
ig . This is true 

only if 

 Now, we “simply” need to minimise lnW  with respect to the Ni, subject 

to the two constraints. The steps are roughly as follows: 

o Take the logarithm. Simplify logarithms using Stirling’s Formula: 

ln ! lnN N N N= -  
o Add the Lagrange undetermined multipliers a and b using the  

two constraints defined above. 

o Differentiate with respect to an arbitrary Ni, and set to 0 – most 

components of each sum will come out of the wash, because 
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they’ll involve other terms than Ni. (Remember to use the 

product rule for the double sum). 

o The result will now be something like 

exp( )i i iN g a be= +  

o To find b, feed this expression back into the expression for lnW , 

and obtain something like 

ln
ln C bU b

U

¶ W
W = -  = -

¶
 

And note that from our statistical definition of temperature 

1 ln

kT U

¶ W
=

¶
 

Which simply gives 
1

b
kT

= -  

o The rest is simple manipulation, and taking a constant out. 

 

Fermi-Dirac Statistics 

 In this case, we consider the statistics of indistinguishable particles like 

fermions, where no two particles can occupy the same quantum state. 

 In such a case 

o The number of ways of getting Ni particles into the ith level is 1 

– all particles are identical, and so there’s only one way of 

getting a certain number in. 

o Within the ith level, the number of particles we have must be < 

the degeneracy of the level (gi), because no two particles can be 

in the same state. So Ni < gi. 

o So iW  is the number of ways of arranging the gi levels amongst 

the Ni particles: 

!

!( )!
i

i
i i i

g

N g N
W =

-
 

 The total number of microstates is therefore 

!

!( )!
i

i i i i

g

N g N
W =

-  

 Solve as above (the constant a in the exponential is usually written 

/a kTm= , where m  is the chemical potential). This gives: 



Physics Revision Notes – Thermodynamics Page 23 of 34 

  © Daniel Guetta, 2008 

( )/ 1i

i
i kT

g
N

e e m-=
+

 

Notes: 

o At low temperature, kTm , states for ie m<  are essentially 

fully filled (ie: i iN g» ), whereas those for ie m>  are essentially 

empty. As 0T  , the distribution approaches a step function, 

with m  being the Fermi energy – the lowest energy up to which 

the states must be filled to accommodate all the particles. 

o At high temperature kTm , the chemical potential effectively 

has no effect. 

 

Bose-Einstein Statistics 

 In this case, we consider the statistics of indistinguishable particles like 

fermions, where two particles can occupy the same quantum state. 

 In such a case 

o Once again, the number of ways of getting Ni particles into the 

ith level is 1. 

o The number of ways of getting the Ni particles in the gi 

different states is equivalent to having Nj + gj – 1 symbols in a 

line, gj – 1 of each are “|”, and asking “how many different 

ways can they be shuffled”. 

o This is given by 

( 1)!1

! ( 1)!
j j

j

j j

N g

N g

+ -
W =

-
 

 Once again, calculations follow and we obtain (making the assumption 

that 1ig  , to remove a “–1” from the denominator): 

( )/ 1i

i
i kT

g
N

e e m-=
-

 

Notes: 

o At high temperature, kTm , this behaves like the Fermi-Dirac 

distribution. 

o As 0T  , the population becomes very small, expect for ie  just 

above m  – this is Bose-Einstein Condensation. 
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The Equipartition Theorem 

 Let the energy, E of a particular system be given by 

2E xa=  
Assuming that x can take any value, the mean energy is given by 

2

2

2

( )d

d

d

1

2
1

2

x

x

B

E EP x x

x e x

e x

k T

ba

ba

a

b

¥

-¥
¥

-

-¥
¥

-

-¥

=

=

=

=

ò
ò
ò  

This result (the whole proof’s a bit longer!) implies that each quadratic 

energy dependence of the system (mode of the system) has an energy 

½kBT associated with it. This is the Equipartition Theorem. 

 There are, however, two assumptions involved in the derivation of this 

result: 

o That the wells are quadratic (the Harmonic Approximation). 

o That the parameter x can take any value, and that the variables 

could be integrated continuously. This is dubious for quantum 

systems with quantised values. 

The Equipartition Theorem is only valid at high 

temperatures so that the thermal energy is 

larger than the energy gap between quantised 

energy levels. 

 

The Partition Function 

 The partition function is the sum over all states of the Boltzmann 

Factor: 

EZ e ab

a

-

"

= å  

However, since the point from which we measure energy is arbitrary, Z 

is defined up to an arbitrary multiplicative constant. 
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 The partition functions only refers to a single particle in the system. It 

may well be coupled to a reservoir of other particles, but it’s a single 

one. 

 Z contains, “zipped up within it”, full information about every property 

of the system 

o The internal energy 

The internal energy is given by 

d /d d ln

d

i

i

E
i i

E
i

E e Z Z
U

e Z

b

b

b
b

-

-

å -
= = = -

å
 

o The Entropy 

We know that /jE
jP e Zb-= , and so using Gibbs’ Expression 

for Entropy, we have 

( )
( )

ln

( ln )

ln

ln

i i
i

i i
i

S k P P

k P E Z

k E Z

k U Z

b

b

b

= -

= +

= +

= +

å

å
 

ln
U

S k Z
T

= +  

o The Helmholtz Energy 

We know that F = U – TS, so 

ln

F

F kT Z

Z e b-

= -

=
 

o The rest can then easily be worked out as follows… 

V

T

V
V V

F U F
S

T T

F
p

V

H U pV

G F pV H TS

U S
C T

T T

æ ö¶ -÷ç= - =÷ç ÷çè ø¶
æ ö¶ ÷ç= - ÷ç ÷çè ø¶

= +

= + = -

æ ö æ ö¶ ¶÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç çè ø è ø¶ ¶
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 If the energy of a particular system depends on various independent 

contributions, ( ) ( )
,

a b
i j i jE E E= + , then the combined Partition Function 

is given by 
( )a b b ba a

i j j ji iE E E EE E
a b

i j i j i j

Z e e e e e Z Zb b bb b- + - -- -= = = =åå åå å å  

So partition functions can be combined by multiplication. 

 

The Ideal Monoatomic Gas 

 Consider a gas in a cubic box of side L. 

o The wavefunction of each atom must be 

( ) ( ) ( )( ) sin sin sinx y zx A k x k y k zy =  

Where 

i
i

n
k

L

p
=  

And the ni are integers (due to the boundary conditions). 

o In k-space, each state (distinct combination of ns) occupies a 

volume 
3

3L

p
 

o The number of states with k in the range k + dk is therefore 

equal to the number of states in the relevant octant in k-space 
2

2
3 3 2

1 1
( )d 4 d d

8 / 2

Vk
g k k k k k

L
p

p p
= ´ ´ =  

o If m is the mass of an atom, then the kinetic energy of the atom 

is given by 

( )
22 2 2

2 2 2

22 2 x y zE n n n
m mL

p
= = + +

k 
 

 The partition function for a single molecule of our ideal gas is therefore 

2 2

( )

0

2
/2

20

3/2

3

( ) ( )d

d
2

2

iE E k
i

i

k m

B

g E e e g k k

Vk
e k

V mk T

b b

b

p

p

¥
- -

¥
-

=

=

æ ö÷ç= ÷ç ÷çè ø

å ò
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For a gas of more than 1 indistinguishable molecule, the partition 

function is 
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!

N

N

Z
Z

N
=  

This is because we can combine the energies as we did in the previous 

section, but we must make sure we do not overcount states. If we 

assume that the gas is dilute and that no more than 1 particle occupies 

each state, then we have overcounted by exactly N! This explains the 

denominator above. 

 We can derive a number of properties for the partition function, all of 

which turn out to be as expected classically. 

 We can also work out an expression for entropy 

( ) ( )2
3 3 5
2 2 22

ln ln ln BmkV
B B B BNS Nk T Nk Nk Nk

p
= + + +


 

This is called the Sackur-Tetrode Equation, and it could not have been 

obtained using classical thermodynamics. It can also be used to 

demonstrate the Gibbs Paradox: 

o The Sackur-Tetrode Equation correctly predicts the entropy 

change of a Joule expansion to be ln2BS NkD = . 

o However, if a vessel is divided into two, with an identical gas on 

each side, the entropy change when the partition is removed 

becomes 0SD = . 

o However, one could argue that the gas on each side of the 

partition has itself undergone a Joule expansion! 

o This demonstrates the importance of realising that 

indistinguishable particles really are indistinguishable – no 

information can be lost when removing the partition in that 

example. 

 Adiabatic changes 

o Consider reversibly compressing a gas, keeping the relative 

populations of the energy levels fixed – ie: adiabatically 

compress it. 

o The energies are proportional to 2/3V - , so they’ll increase, and 
2/3U V -µ . 

o However, 3
2U kT= . 

o Therefore, 3/2 constantTV = , as expected for an adiabatic 

expansion. 
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 Heat and work – we can also consider a general change in the internal 

energy 

d d di i i iU N p pe e= +å  

This includes two terms 

o The first involves changing energy levels but keeping 

populations fixed – this is an adiabatic change, and can be 

interpreted as the reversible work d dW p V= - . 

o The second involves keeping the energy levels fixed but 

changing the populations and therefore the entropy. This can be 

interpreted as the reversible heat d dQ T S= . 

 

The Ideal Diatomic Gas 

 If the gas is now diatomic, we have two additional terms in the energy 

( )
2 2 2

2 2 2 1
22

vibrational E
translational E rotational E

( 1)
( )

2 2x y zE n n n n
mL I

p
w

+
= + + + + +
     

 

 We need to take products to find the combined partition functions (see 

above) and the new contributions to the potentials are therefore 

additive. 

 The actual contributions can be found by writing the expressions for 

the rotational and vibrational partition funtions. Notes: 

o The degeneracy of each rotational energy is 2 1+ . 

o The degeneracy of each vibrational energy is 1. 

 In each case, the limits 0,T  ¥  need to be considered, because the 

general case is rather difficult to evaluate. 

 

Paramagnetism 

 Atoms in crystals may have permanent magnetic dipole moments. 

These are linked to their angular momentum (orbital or spin). 

 In QM, angular momentum is quantised along any given axis as 

zJ m=   where m takes integer spaced values from J to –J, where J is 

the total angular momentum quantum number of the atom. 
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 The upshot of this is that the z-component of magnetic moment is also 

quantised, according to 

z Bg mm m=  

Where /2B ee mm =   is the Bohr Magneton and g is the “Landé g 

factor”, which is O(1). 

 The energy of such a dipole in a magnetic field B along the z-axis is 

zBm . 

 The calculations reveal a number of interesting things (note that m  is 

the magnitude of the dipole moment) 

o Curie’s Law – as T  ¥ , 2 /z B kTm m . 

o As 0T  , zm m  (ie: all magnetic dipoles aligned with the 

field). 

 We can obtain the magnetisation, M and magnetic susceptibility, c  of 

the magnet, given by 

zM n m=  

0M M

H B

m
c = »  
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Photons, etc… 
 

Introduction 

 Consider an evacuated box of volume V at temperature T – a cavity. 

It contains electromagnetic radiation. 

 In thermodynamics, we can treat this as a gas of photons which is 

constantly being emitted/absorbed/reflected at the walls. 

 

Spectral Energy Density 

 It is relatively simple to work out that if the photon gas contains n 

photons per unit volume, the total energy per unit volume in the 

cavity is 

u n w=   

 However, one might ask which frequency ranges this energy is stored in. 

We therefore introduce the spectral energy density, ul , such that the 

energy stored in wavelengths of range l  to +l ld  is 

dul l  

The total energy density is then 

du ul l= ò  

 We can show that this spectrum is totally independent of the kind of 

cavity (shape/size/material) and is a universal function of l  and T by 

considering two cavities, each kept at T by a heat bath, and connected 

by a tube containing a filter that only allows wavelength in the range 

[ , d ]l l l+  though: 

 
By the second law, no heat can flow along the tube (equal 

temperatures). Therefore, any energy flux from right to left must be 

balanced by a flux from left to right. Bearing in mind our expression 

for P (power absorbed per unit area) below, we find that Pleft = Pright, 

and therefore that l,left l,rightu = u . 

T T 

l + dl 
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Banalities 

 First, we note that if the photons are moving in completely arbitrary 

directions, then the fraction of them moving at angles q  to dq q+  to 

any particular direction is 


Solid angle d  subtentedTotal solid
by photons moving in theangles

said directions

d 1 1
2 sin d sin d

4 4 2
p q q q q

p p
W

W
= =


 

Therefore, the number of molecules per unit volume that are: 

o Travelling with a speed v to +v vd . 

o Travelling at angles q  to +q qd  to a certain direction. 

Is given by 

In the photon case,
where 

1 1
( )sin d d sin d

2 2

v c

nf v v nq q q q

=

=


 

Now, if we consider this “certain direction” to be perpendicular to a 

wall, and if we consider particles: 

o Travelling with a speed v. 

o Travelling at an angle q  to the wall. 

Then only those particles closer than v tqcos d  to the wall will hit it in 

time dt. In other words, those particles in a volume v tqcos d . The 

number of such particles is therefore (from above) 
1 1
2 2

Volume Particles per unit volume
concerned

1
2

For a photon gas, and for
unit time

cos d ( )sin d d ( )cos sin d d d

cos sin d

v t nf v v nvf v v t

nc

q q q q q q

q q q

=

=

 


 

To find, therefore, the total flux of photons hitting unit surface area in 

unit time, we integrate this over all angles [Note: in this context, “all 

angles” means 0 /2p , because of the way we defined solid angles 

above – the range /2 0p-   is implicitly included]: 
/2

0

1
cos sin d

2

1

4

nc

nc

p
q q qF =

F =

ò
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Since each photon has energy w , we can also write the average 

power incident per unit area of wall as 

1

4
P ucw= F =  

(See next section for definition of u). 

 We saw above that the number of photons travelling at angles 

[ , dq q q+ ] , in a photon gas, hitting unit area of a wall in unit time was 
1
2 cos sin dnc q q q  

Now, if instead of the number of photons, n, we are interested in the 

“momentum change perpendicular to the wall at each collision and 

relfection”, then we must replace n 

   
Double the momentum, Perpendicular Integrate overMomentum is
because we're recoiling to wall all energiesenergy/c

2 cos
2 cos d

u u
n

c c
e

e

q
q e

"
 =ò  

And we now get that the “momentum change per unit area per unit 

time = pressure” is 
/2

1
2

0

/2
2

0

2 cos
cos sin d

cos sin d

u
p c

c

u

p

p

q
q q q

q q q

=

=

ò

ò
 

1

3
p u=  

 

The Stefan-Boltzmann Law 

 Consider the First Law of Thermodynamics – dU = TdS – pdV. 

Differentiating w.r.t V at constant T: 
Maxwell relation

T T V

U S p
T p T p

V V T

æ ö æ ö æ ö¶ ¶ ¶÷ ÷ ÷ç ç ç= - = -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø¶ ¶ ¶



 

However, ( / )TU V u¶ ¶ =  [by definition, but this can also be proved by 

noting that since U = uV, ( / ) ( / )T TU V u V u V u¶ ¶ = + ¶ ¶ = ], so: 

V

p
u T p

T

æ ö¶ ÷ç= -÷ç ÷çè ø¶
 

But we have shown that 1
3p u= , so 
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4

1 d d d
4

3 d

u u T
u T u

T u T
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é ù
= -  =ê ú
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Feeding this into our expression for power incident per unit area: 

4 41 1

4 4
P uc Ac T Ts

æ ö÷ç= = =÷ç ÷çè ø
 

 Note, also, that if the cavity is in equilibrium, “power incident = 

power emitted”, so the above also gives an expression for the power 

emitted. 

 

Kirchhoff’s Law 

 We wish to discuss how well particular surfaces of a cavity will absorb 

or emit electromagnetic radiation of a particular wavelength. We 

therefore define: 

o The spectral absorptivity la  is the fraction of incident 

radiation absorbed at l . 

o The spectral emissive power el  is a function such that the 

power emitted per unit area of the surface having wavelength in 

the range [ , dl l l+ ] is 
del l  

 Now, in equilibrium, the power absorbed is equal to the power emitted, 

so using our expression for the power incident above, we have that in 

the range [ , dl l l+ ] : 
1

d d
4

4

u c e

e c
u

l l l

l
l

l

l a l

a

æ ö÷ç =÷ç ÷çè ø

=
 

This is Kirchhoff’s Law – it states that /el la  is a universal function of 

l  and T. Therefore, if we fix T, then el laµ . This means that “good 

absorbers are good emitters” and vice versa. 

 For a perfect black body, 1la =  for all l , which also means that the 

black body is the best possible emitters. 

 A cavity whose walls have 1la =  is known as a black body cavity. 
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Statistical Mechanics 

 The black body spectrum can be derived in the usual ways (see QM 

course). 

 To convert the spectrum from one kind of measurement (eg: 

wavelength) to another (eg: frequency), write (for example) 

d du ul nl n=  

 This can be integrated to give 
3 4 2

4
2 3 3 30

d
1 15

k
u T

c e cb w

w p
w

p

¥
= =

-ò 




 

The Stefan-Boltzmann Law. We have therefore obtained 
2 4

2 360
Bk

c

p
s =


 

 


