Classical Thermodynamics

Ideal gases

- Assumptions
o Identical particles in random motion.
o Small solid spheres - occupy negligible volume.
o Elastic collisions.
o No long range forces - only forces during collisions \rightarrow only energy is $\mathrm{KE}, 1 / 2 \boldsymbol{m} \boldsymbol{v}^{2}$ per particle.
- Results
o Pressure is given by $p=\frac{1}{3} n m\left\langle v^{2}\right\rangle$.
o Flux is given by $J=\frac{1}{4} n\langle v\rangle$.
- The Maxwell-Boltzmann Distribution
o $\quad P(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{2} \exp \left(-m v^{2} / 2 k T\right)$
o This gives

$$
\begin{aligned}
& \langle v\rangle=\sqrt{\frac{8 k T}{\pi m}} \\
& \left\langle v^{2}\right\rangle=\frac{3 k T}{m}
\end{aligned}
$$

- Energy...

$$
\text { o } \quad U=\frac{3}{2} R T=\frac{3}{2} N_{A} k T
$$

Definitions

- A system is in Thermal Equilibrium when all its macroscopic observables have ceased to change with time.
- A function of state is any physics quantity that has a well-defined value for each equilibrium state of the system. They are represented by exact differentials.
- Functions of state can be either
o Extensive (proportional to system size) - eg: volume.
o Intensive (independent of system size) - eg: pressure.
o Intensive and extensive variables form conjugate pairs, the product of which is energy.
- The heat capacity is the amount of heat we need to supply to raise the temperature by $\mathbf{d T}$. This can be measured at constant volume or at constant pressure, so

$$
C_{V}=\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{V} \quad C_{p}=\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{p}
$$

- For an ideal gas

$$
p V=n R T
$$

- Stirling's Approximation

$$
\ln N!\approx N \ln N-N
$$

The First Law

- The First Law of Thermodynamics states that

Energy is conserved, and heat and work are both forms of energy

$$
\Delta U=\Delta Q+\Delta W
$$

- Convention:
ΔQ and ΔW are POSITIVE when
energy is given TO the system
- For a differential change

$$
\mathrm{d} U=\mathrm{t} Q+\mathrm{t} W
$$

- The work done compressing a gas is given by

$$
\mathrm{t} W=-p \mathrm{~d} V
$$

And so for a gas, the first law can be written

$$
\mathrm{d} U=\mathrm{t} Q-p \mathrm{~d} V
$$

Heat Capacities

- In general, the internal energy will be a function of temperature and volume, so

$$
\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{~d} V
$$

- Using the form of the first law for a gas, above, we can write

$$
\begin{gathered}
\mathrm{t} Q=\mathrm{d} U+p \mathrm{~d} V \\
\psi Q=\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right] \mathrm{d} V
\end{gathered}
$$

And dividing by $\mathrm{d} T$:

$$
\frac{\mathrm{\psi} Q}{\mathrm{~d} T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right] \frac{\mathrm{d} V}{\mathrm{~d} T}
$$

- By taking the equation above at constant volume and constant pressure (only the $\mathrm{d} V / \mathrm{d} T$ term will matter), we obtain

$$
\begin{gathered}
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \\
C_{p}=C_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right]\left(\frac{\partial V}{\partial T}\right)_{p}
\end{gathered}
$$

- For an ideal gas:

$$
C_{p}=C_{V}+R
$$

- We define

$$
\gamma=\frac{C_{p}}{C_{V}}
$$

Reversibility

- A change is reversible if an infinitesimal change in external conditions would reverse the direction of the change.
- Reversible changes are typically very slow and quasi-static.
- They are also frictionless - no viscosity, turbulence, etc...

Isothermal expansions

- When an expansion is isothermal, the temperature of the system does not change. Therefore, the internal energy of the system does not change, and

$$
\mathrm{t} W=-\mathrm{t} Q
$$

- Therefore, when a gas is expanded isothermally from V_{1} to V_{2} at a temperature T, the heat absorbed by the gas is given by

$$
\begin{aligned}
\Delta Q & =\int \mathrm{t} Q \\
& =-\int \mathrm{t} W \\
& =\int_{V_{1}}^{V_{2}} \underbrace{p}_{=T T / V} \mathrm{~d} V \\
& =R T \int_{V_{1}}^{V_{2}} \frac{1}{V} \mathrm{~d} V
\end{aligned}
$$

$$
\Delta Q=R T \ln \frac{V_{2}}{V_{1}}
$$

- An adiabatic process is both adiathermal (no flow of heat) and reversible, so

$$
\Varangle Q=0
$$

And

$$
\mathrm{d} U=\mathrm{d} W
$$

However, for an ideal gas

$$
\mathrm{d} U=C_{V} \mathrm{~d} T
$$

Therefore

$$
\begin{gathered}
C_{V} \mathrm{~d} T=\mathrm{t} W \\
C_{V} \mathrm{~d} T=-p \mathrm{~d} V \\
C_{V} \mathrm{~d} T=-\frac{R T}{V} \mathrm{~d} V \\
\frac{\mathrm{~d} T}{T}=-\frac{R}{C_{V}} \frac{\mathrm{~d} V}{V} \\
\frac{\mathrm{~d} T}{T}=\overbrace{(1-\gamma)}^{\begin{array}{c}
\text { Obvious from } \\
\text { def }
\end{array}} \begin{array}{l}
\text { of } \gamma
\end{array} \\
\frac{\mathrm{d} V}{V} \\
T V^{\gamma-1}=\text { constant }
\end{gathered}
$$

Other versions can easily be generated using $p V \propto T$.

The Second Law

- The Second Law of Thermodynamics can be stated in two different ways

The Clausius Formulation

No process is possible whose sole result is the transfer of heat from a hotter to a cooler
body.

The Kelvin Formulation

No process is possible whose sole result is the complete conversion of heat into work.

- The equivalence of these two formulations can be shown in two steps
o Violating Kelvin \rightarrow Violating Clausius

Consider a "Kelvin-violator" \boldsymbol{E} connected to a Carnot engine:

We then have

$$
\begin{gathered}
Q_{h}^{\prime}=W \\
Q_{h}=W+Q_{l}
\end{gathered}
$$

But the total heat dumped at T_{h} is given by

$$
Q_{h}-Q_{h}^{\prime}=W+Q_{l}-W=Q_{l}
$$

Thus, the net effect is to transfer heat from \boldsymbol{T}_{l} to \boldsymbol{T}_{h} - this violates Clausius' Formulation.
o Violating Clausius \rightarrow Violating Kelvin
Consider a "Clausius violator" \boldsymbol{E} running next to a Carnot engine:

Overall, no heat is being dumped at \boldsymbol{T}_{l}, but a heat $\boldsymbol{Q}_{h}-\boldsymbol{Q}_{l}$ is drawn from \boldsymbol{T}_{h}. Furthermore, by the First Law

$$
W=Q_{h}-Q_{l}
$$

Which means that the net effect of this engine is to convert heat $\boldsymbol{Q}_{h}-\boldsymbol{Q}_{l}$ into work which Violates Kelvin's Formulation.

Engines

- Engines are systems operating cyclic processes that convert heat into work.
- The Carnot Engine is based on the Carnot Cycle:
o Isothermal expansion - heat Q_{h} absorbed.
o Adiabatic expansion - no heat flow.
o Isothermal compression - heat Q_{l} given out.
o Adiabatic compression - no heat flow
A schematic is as follows:

Where S is some quantity proportional to $p V^{\gamma}$, constant during an adiabatic change.

- By the First Law, the work output must be

$$
W=\oint p \mathrm{~d} V=Q_{h}-Q_{l}
$$

- The efficiency of an engine is defined as

$$
\eta=\frac{\text { What we want }}{\text { What we gave for it }}=\frac{\text { Work done by engine }}{\text { Heat put in }}=\frac{Q_{h}-Q_{l}}{Q_{h}}=1-\frac{Q_{l}}{Q_{h}}
$$

- For a Carnot Cycle, we can show, using the formulae derived above for isotherms and adiabats, that

$$
\frac{Q_{h}}{Q_{l}}=\frac{T_{h}}{T_{l}} \Rightarrow \eta=1-\frac{T_{l}}{T_{h}}
$$

- Note, crucially, that this implies that the quantity Q / T is always the same in a reversible Carnot Cycle, so, for a Carnot Cycle

$$
\oint \frac{\mathrm{tQ}}{T}=0
$$

Furthermore, for any other sort of engine, $\eta_{\text {Engine }} \leq \eta_{\text {Carnot }}$, so

$$
\begin{gathered}
1-\frac{Q_{l}}{Q_{h}} \leq 1-\frac{T_{l}}{T_{h}} \Rightarrow \frac{Q_{h}}{T_{h}} \leq \frac{Q_{l}}{T_{l}} \\
\oint \frac{\mathrm{t} Q}{T} \leq 0
\end{gathered}
$$

We can show that this is true for any cycle - Clausius' Theorem (see below).

- An engine can be run in reverse in two ways:

o Refrigerator

- In this case, the desired aim is the removal of heat from a cold reservoir, and this is done by the provision of work
- Therefore, the efficiency is given by

$$
\eta=\frac{Q_{l}}{W}
$$

- High efficiency can be achieved if $T_{2} \approx T_{1}$.

o Heat pump

- In this case, the desired aim is the dumping of heat at a hot reservoir, and this is done by the porivision of work.
- Therefore, the efficiency is given by

$$
\eta=\frac{Q_{h}}{W}
$$

- This is always greater than 1 , because all work is converted to heat (eg: like in an electric heater), but more is also added, from the cold reservoir!

Carnot's Theorem

- Carnot's Theorem states that

Carnot's Theorem

Of all the heat engines working between two given temperatures, none is more efficient
than a Carnot engine
Proof

Consider an engine E that is more efficient than a Carnot Engine (ie: $\eta_{E}>\eta_{\text {Carnot }}$), whose produced work is used to drive a Carnot engine in reverse. We then have

$$
\begin{gathered}
\eta_{E}>\eta_{\text {Carnot }} \\
\frac{W}{Q_{h}^{\prime}}>\frac{W}{Q_{h}} \\
Q_{h}>Q_{h}^{\prime} \\
Q_{h}-Q_{h}^{\prime}>0
\end{gathered}
$$

The First Law further implies that

$$
W=Q_{h}^{\prime}-Q_{k}^{\prime}=Q_{h}-Q_{l}
$$

And therefore

$$
Q_{h}-Q_{h}^{\prime}=Q_{l}-Q_{l}^{\prime}>0
$$

This means that the net effect of these engines is to transfer energy from T_{l} to T_{h} - this violates the Clausius Formulation.

- A corollary is that

Corollary to Carnot's Theorem

All reversible engines have the same efficiency as a Carnot engine, $\boldsymbol{\eta}_{\text {Carnot }}$
Proof

We now imagine a reversible engine \boldsymbol{R}, with $\eta_{R}<\eta_{\text {Carnot }}$ and drive it backwards, using the work from a Carnot Engine. The overall result will be to transfer heat from \boldsymbol{T}_{l} to \boldsymbol{T}_{h}, in violation of Clausius' Formulation. Thus, since the efficiency of any engine has to be both \leq and \geq that of a Carnot engine, it must be equal.

Clausius' Theorem

- Consider any cycle that
o Absorbs heats $\boldsymbol{d} Q_{i}$ at various points \boldsymbol{i} which have temperature T_{i}.
o Releases, overall, work ΔW, which, by the First Law, must be

$$
\Delta W=\sum_{\text {cycle }} \mathbb{t} Q_{i}
$$

- Further imagine that each of these heats, $\boldsymbol{d} Q_{i}$, are being provided by Carnot Engines, operating from a single reservoir at $\boldsymbol{T}_{\boldsymbol{o}}$ and product work $\boldsymbol{t} \boldsymbol{W}_{i}$ each time. From the discussions above, we know that

$$
\begin{aligned}
\frac{\mathrm{t} Q_{i}}{T_{i}} & =\frac{\mathrm{t} Q_{i}-\mathrm{\#} W_{i}}{T} \\
\mathrm{\#} W_{i} & =\mathrm{\star} Q_{i}\left(\frac{T}{T_{i}}-1\right)
\end{aligned}
$$

- [Note that no assumptions has been made about the sign of $\boldsymbol{t} Q_{i}$, so heat could have been released as well].
- In any case, it looks, at the moment, like all the system is doing is absorbing heat and producing work. This violates Kelvin's Statement. To remedy to this, we must have

$$
\begin{aligned}
& \text { total work produced per cycle }=\Delta W+\sum_{\text {cycle }} \mathrm{t} W_{i} \leq 0 \\
& \qquad T \sum_{\text {cycle }} \frac{\mathrm{t} Q}{T_{i}} \leq 0
\end{aligned}
$$

Since $T>0$, we must therefore have

$$
\oint \frac{\mathrm{đ} Q}{T_{i}} \leq 0
$$

- If the cycle was reversible, we could have run it backwards (with $\left.\psi Q_{i}^{\prime}=-廿 Q_{i}\right)$, and obtained the result with the inequality sign flipped. So, Clausius' Theorem is that

$$
\oint \frac{\mathrm{t} Q}{T_{i}} \leq 0
$$

For any closed cycle, with equality when the cycle is reversible.

Entropy

- We saw that for a reversible cycle, $\int_{\text {cycle }}+Q_{\text {rev }} / T=0$, which means that the integral $\int_{A}^{B} \mathrm{H} Q_{\text {rev }} / T=0$ is path independent. As such, the quantity $\psi Q_{\text {rev }} / T$ is an exact differential, and we can write a new state function, entropy, \boldsymbol{S}, which we define by

$$
\mathrm{d} S=\frac{\mathrm{t} Q_{\text {rev }}}{T}
$$

- Now, consider going from $\mathbf{A} \rightarrow \mathbf{B}$ reversibly, and then returning from $\mathbf{B} \rightarrow \mathbf{A}$ irreversibly. We then have

$$
\begin{aligned}
& \oint_{A \rightarrow B \nrightarrow A} \frac{\star Q}{T} \leq 0 \\
& \oint_{A \rightarrow B} \frac{\mathrm{~d} Q_{\text {rev }}}{T}+\oint_{B \rightarrow A} \frac{\mathrm{~d} Q}{T} \leq 0 \\
& \oint_{B \rightarrow A} \frac{\mathrm{t} Q}{T} \leq \oint_{\substack{B \rightarrow A \\
\text { Sote } \\
\text { dhange }}} \frac{\mathrm{t} Q_{r e v}}{T} \\
& \oint_{B \rightarrow A} \frac{\mathrm{t} Q}{T} \leq \mathrm{d} S
\end{aligned}
$$

This is true however close \boldsymbol{A} and \boldsymbol{B} get to each other, so

$$
\mathrm{d} S \geq \frac{\mathrm{t} Q_{\text {irreversible }}}{T}
$$

- However, for a thermally isolated system, $\mathrm{d} Q=O$ for any process. Therefore, assuming that the universe is thermally isolated:

$$
\mathrm{d} S_{\text {universe }} \geq 0
$$

- We can re-write the First Law as follows:

$$
\mathrm{d} U=\mathrm{t} Q+\mathrm{t} W
$$

But for a reversible change in a gas, we can write

$$
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V
$$

However, all the quantities in this equation are equations of state therefore, this holds for any change, reversible or irreversible.

- This implies that \boldsymbol{U} changes when either \boldsymbol{S} or \boldsymbol{V} change - in other words, \boldsymbol{S} and \boldsymbol{V} are the natural variables of \boldsymbol{U}, and they are both extensive - they depend on the size of the system. \boldsymbol{T} and \boldsymbol{p}, by contrast, are variables that are intensive, and that tell us how each of these extensive variables affect \boldsymbol{U}. In fact:

$$
\begin{aligned}
T & =\left(\frac{\partial U}{\partial S}\right)_{V} \\
p & =-\left(\frac{\partial U}{\partial V}\right)_{S}
\end{aligned}
$$

Pot-Pourri of facts

- It is interesting to note that for an adiabatic (reversible adiathermic) change, $\mathbf{~} \mathbf{Q} \boldsymbol{Q}_{\text {rev }}=\boldsymbol{O}$, and so $\mathrm{d} \boldsymbol{S}=\boldsymbol{O}$.
- Body of heat capacity C, from $T_{1} \rightarrow T_{2}$:

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{\forall Q}{T}=\int_{T_{1}}^{T_{2}} \frac{C}{T} \mathrm{~d} T=C \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

- Reservoir at temperature \boldsymbol{T} absorbing heat \boldsymbol{q}

$$
\Delta S=\frac{q}{T}
$$

[Note: q is always reversible for a reservoir, because the heat content is so large that any small change can reverse the direction of flow].

- For a ideal gas, we can write

$$
\begin{gathered}
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V \\
\underbrace{C_{V} \mathrm{~d} T}_{\text {Only for gas }}=T \mathrm{~d} S-p \mathrm{~d} V \\
\mathrm{~d} S=C_{V} \frac{\mathrm{~d} T}{T}+p \frac{\mathrm{~d} V}{T} \\
\mathrm{~d} S=C_{V} \frac{\mathrm{~d} T}{T}+\overbrace{R}^{\text {Ideal gas law }} \\
S=C_{V} \ln T+R \ln V+S_{0}
\end{gathered}
$$

This gives the Entropy of an Ideal Gas, from which we can work out the Entropy of mixing.

This expression, however, has an intrinsic problem $-\boldsymbol{S}$ is extensive, but V is also extensive in the expression above (T is not).

- Joule Expansion from $\boldsymbol{V} \rightarrow \boldsymbol{n} \boldsymbol{V}$ - can be worked out either using the expression for \boldsymbol{S} for a gas, or using the fact that \boldsymbol{S} is a state function, and that ΔS will therefore be the same than for an isothermal expansion from \boldsymbol{V} to $\boldsymbol{n} \boldsymbol{V}$. It turns out it's

$$
\Delta S=R \ln n
$$

- This is a generally very useful principle - we can use a reversible change between the same two steps to find the change in entropy in an irreversible change.
- The latent heat is the amount of heat needed to convert unit mass/mole from one phase to another;

$$
L=\Delta Q=T\left(S_{2}-S_{1}\right)
$$

- We can also express heat capacities in terms of entropy

$$
\begin{aligned}
C_{V} & =\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V} \\
C_{p} & =\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p}
\end{aligned}
$$

- The work that can be gotten out of a system through some change is given by (note the change in signs due to the fact we're extracting energy)

$$
\mathrm{t} W=\mathrm{t} Q-\mathrm{d} U \geq T \mathrm{~d} S-\mathrm{d} U
$$

Clearly, the maximum work can be extracted when the equality holds ie: when the process is reversible. Increase in entropy (ie: irreversibility) corresponds to conversion of energy into a less useful form than work.

Statistics

- We note that $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$ implies that

$$
\begin{aligned}
T & =\left(\frac{\partial U}{\partial S}\right)_{V} \\
\frac{1}{T} & =\left(\frac{\partial S}{\partial U}\right)_{V}
\end{aligned}
$$

If we compare this with the definition of temperature, below

$$
\frac{1}{k_{B} T}=\frac{\mathrm{d} \ln \Omega}{\mathrm{~d} E}
$$

We find good justification to say

$$
S=k_{B} \ln \Omega
$$

This is an expression for a system that is in a particular macrostate (ie: fixed energy) with an associated number of microstates. This is the microcanonical ensemble. However...

- ... we can also consider the canonical ensemble, a system which can be in any number of macrostates of energy ε_{i} (ie: any energy - for example, by allowing it to exchange energy with a reservoir) each of which have n_{i} indistinguishable microstates associated with them, where the total number of microstates is, necessarily, $\boldsymbol{N}=\sum \boldsymbol{n}_{i}$.

The number of ways of rearranging the system is

$$
\Omega=\frac{N!}{\prod_{i} n_{i}!}
$$

And this means that the entropy is given by

$$
\begin{aligned}
S & =k\left[\ln N!-\sum_{i} n_{i}!\right] \\
& \approx k[N \ln N \overbrace{-N}^{\text {Insignificant }}-\sum_{i} n_{i} \ln n_{i} \overbrace{n_{i}}^{\text {Insignificant }}] \\
& \approx k\left[N \ln N-\sum_{i} n_{i} \ln n_{i}\right] \\
& =k\left[\sum_{i} n_{i} \ln N-\sum_{i} n_{i} \ln n_{i}\right] \\
& =k\left[\sum_{i} n_{i}\left(\ln N-\ln n_{j}\right)\right] \\
& =-k M\left[\sum_{i} \frac{n_{i}}{N} \ln \left(\frac{n_{i}}{N}\right)\right] \\
& =-k M \sum_{i} P_{i} \ln P_{i}
\end{aligned}
$$

Where \boldsymbol{P}_{i} is the probability of finding the system in macrostate \boldsymbol{i}. And therefore, the entropy in any one microstate (ie: actual state of existence) of the system is

$$
S=-k \sum_{i} P_{i} \ln P_{i}
$$

- We can use this to elegantly derive the Boltzmann Distribution. What we effectively want to do is to maximise $\boldsymbol{S} / \boldsymbol{k}$ (for tidiness) subject to

$$
\sum_{i} P_{i}=1 \quad \text { and } \quad \sum_{i} P_{i} \varepsilon_{i}=U
$$

So, consider:

$$
L=\sum_{i}-P_{i} \ln P_{i}-\alpha\left(P_{i}-1\right)-\beta\left(P_{i} \varepsilon_{i}-U\right)
$$

Choose one of the probabilities P_{j} :

$$
\begin{gathered}
\frac{\partial L}{\partial P_{j}}=0 \\
\frac{\partial L}{\partial P_{j}}=-\left[\ln P_{j}+1\right]-\alpha-\beta \varepsilon_{j}=0 \\
\Rightarrow P_{j}=\frac{e^{-\beta \varepsilon_{j}}}{Z}
\end{gathered}
$$

To find β, we note that

$$
\begin{aligned}
S & =-k \sum_{i} \frac{e^{-\beta \varepsilon_{i}}}{Z} \ln \frac{e^{-\beta \varepsilon_{i}}}{Z} \\
& =-k\left[\sum_{i} \frac{e^{-\beta \varepsilon_{i}}}{Z} \ln e^{-\beta \varepsilon_{i}}-k \ln Z \sum_{i} \frac{e^{-\beta \varepsilon_{i}}}{Z}\right] \\
& =k\left[\beta \sum_{i} P_{i} \varepsilon_{i}+k \ln Z\right] \\
& =k \beta U+k^{2} \ln Z
\end{aligned}
$$

Therefore:

$$
\begin{gathered}
k \beta=\left(\frac{\partial S}{\partial U}\right)=\frac{1}{T} \\
\beta=\frac{1}{k T}
\end{gathered}
$$

As, indeed, expected.

Analytical Thermodynamcis

Thermodynamics Potentials

- We can make a number of other functions of state by adding to \boldsymbol{U} various other combinations of the functions of state p, V, T and S such that the resulting quantity has energy dimensions.
- Most, however, are not very useful. A number, however, are.
- Internal energy - $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$

For processes at a constant volume (isochoric), we have

$$
\mathrm{d} U=T \mathrm{~d} S=\mathrm{d} Q_{\mathrm{rev}}=C_{V} \mathrm{~d} T
$$

As such, if a process involves going from T_{1} to T_{2} at constant V :

$$
\Delta U=\int_{T_{1}}^{T_{2}} C_{V} \mathrm{~d} T
$$

- Enthalpy - $H=U+P V$ 有 $H=T \mathrm{~d} S+V \mathrm{~d} p$
o The natural variables are now entropy and pressure.
o For isobaric processes (at constant pressure)

$$
\mathrm{d} H=T \mathrm{~d} S=\mathrm{t} Q_{\mathrm{rev}}=C_{p} \mathrm{~d} T
$$

As such, if a process involves going from T_{1} to T_{2} at constant p :

$$
\Delta H=\int_{T_{1}}^{T_{2}} C_{p} \mathrm{~d} T
$$

o Also

$$
T=\left(\frac{\partial H}{\partial S}\right)_{p} \quad V=\left(\frac{\partial H}{\partial p}\right)_{S}
$$

o Also, in a flow process, if a fluid comes in at pressure \boldsymbol{p}_{1} and volume \boldsymbol{V}_{1} with energy \boldsymbol{U}_{1} and leaves at pressure \boldsymbol{p}_{2} and volume \boldsymbol{V}_{2} with energy \boldsymbol{U}_{2}, then it is enthalpy that is conserved.

- Helmholtz Free Energy - $F=U-T S$ 开 $\Rightarrow \mathrm{d} H=-S \mathrm{~d} T-p \mathrm{~d} V$
o The natural variables are now temperature and volume.
o For isothermal processes between V_{1} and \boldsymbol{V}_{2} :

$$
\Delta F=-\int_{V_{1}}^{V_{2}} p \mathrm{~d} V
$$

- Gibbs Free Energy - $G=H-T S$
o The natural variables are now pressure and temperature.
o If both \boldsymbol{T} and \boldsymbol{p} are constant for a process, \boldsymbol{G} is conserved.
- Consider a system in contact with surroundings at \boldsymbol{T}_{0} and \boldsymbol{p}_{0}. Let's transfer energy $\mathbf{d} \boldsymbol{U}$ and volume $\mathbf{d} \boldsymbol{V}$ from surroundings \rightarrow system. Consider the internal energy of the surroundings, $\mathbf{d} \boldsymbol{U}_{0}$:

$$
\begin{gathered}
\mathrm{d} U_{0}=T_{0} \mathrm{~d} S_{0}-p_{0}(-\mathrm{d} V)=-\mathrm{d} U \\
\mathrm{~d} S_{0}=-\frac{\mathrm{d} U+p_{0} \mathrm{~d} V}{T_{0}}
\end{gathered}
$$

And now, let's assume that as a result of the change, the entropy of the system has changed by $\mathrm{d} S$ - then, assuming that the process does occur:

$$
\begin{gathered}
\mathrm{d} S_{\text {tot }}=\mathrm{d} S_{0}+\mathrm{d} S \overbrace{\geq 0}^{2^{\text {nd }}} \overbrace{0}^{\text {amw }} \\
\Rightarrow \mathrm{d} U+p_{0} \mathrm{~d} V-T_{0} \mathrm{~d} S \leq 0
\end{gathered}
$$

If we define $A=U+p_{0} V-T_{0} S$, then this means that

$$
\mathrm{d} A \leq 0
$$

So A always decreases for a process that occurs, at tends to a minimum at equilibrium.

It turns out that $\mathrm{d} A$ can be identified with the potentials above, whenever their natural variables are constant.

- The Gibbs-Helmholtz Equations can be derived by writing any one potential as the sum of others - for example, to obtain one for \boldsymbol{H} in terms of \boldsymbol{F}, write $\boldsymbol{H}=\boldsymbol{F}+\boldsymbol{p} \boldsymbol{V}+\boldsymbol{T S}$, and convert the \boldsymbol{p} and the \boldsymbol{S} into forms involving \boldsymbol{F}, using the differentials.

Maxwell Relations

- Derive them directly from the potentials.
- However, remember that
o The BOTTOM BITS of the equation are the NATURAL VARIABLES of the potential they're from.
o The TOP BITS are the OTHER VARIABLES of the potential they're from.

Strategy for these problems

- Write down a function of state in terms of particular variables. These can be "non-natural variables" by expressing one of the differentials as a differential itself... eg:

$$
\begin{aligned}
\mathrm{d} f & =\left(\frac{\partial f}{\partial x}\right)_{z} \mathrm{~d} x+\left(\frac{\partial f}{\partial z}\right)_{x} \mathrm{~d} z \\
& =\left[\frac{\partial f}{\partial x}\right)_{z} \mathrm{~d} x+\left(\frac{\partial f}{\partial z}\right)_{x}\left[\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial z}{\partial y}\right)_{x} \mathrm{~d} y\right] \\
& =\underbrace{\left.\left[\left(\frac{\partial f}{\partial x}\right)_{z}+\left(\frac{\partial f}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)\right)_{y}\right] \mathrm{d} x+\underbrace{\left(\frac{\partial f}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial y}\right)_{x}}_{(\partial f / \partial)_{x}} \mathrm{~d} y}_{(\partial f / \partial x)_{y}}
\end{aligned}
$$

- Use Maxwell's relations to transform to easier partial differentials
- Use one of the following Theorems

$$
\begin{gathered}
\left(\frac{\partial f}{\partial y}\right)_{x}=\left(\frac{\partial f}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial y}\right)_{x} \quad(\text { chain rule } \\
\left(\frac{\partial x}{\partial z}\right)_{y}=\frac{1}{(\partial z / \partial x)_{y}} \text { (reciprocal theorem) } \\
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \text { (reciprocity) } \\
\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}(\text { corollary of reciprocity })
\end{gathered}
$$

- Identify a heat capacity
- Identify a generalised susceptibility

This quantifies how much a particular variable changes when a generalised force (the differential of U w.r.t. some other parameter) is applied. For example, compressibilities (isothermal and adiabatic) are

$$
\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \quad \kappa_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{S}
$$

We can show that $\kappa_{T} / \kappa_{S}=\gamma>1$, which implies that adiabats are steeper than isotherms.

Statistical Thermodynamics

Basic Ideas

- A multi-particle system can be defined as a set of quantum states.
- A particular configuration (quantum state) is called a microstate
o Each microstate is equally likely to occur
o The internal dynamics of the system are such that it can make transitions between microstates.
o Given enough time, the system will explore all possible microstates and spend an equal time in each of them (the ergodic hypothesis).
Taken together, these three facts imply that a system will appear to choose a macroscopic configuration which maximizes the number of microstates.
- Measurements concern a property of the macrostate of the system, comprising of many different microstates, each with the same macroscopic property.
- The number of microstates making up a macrostates is given the symbol Ω.
- It is possible to find Ω as a function of some variable of the system around Ω_{0}, the maximum, and it is usually found that it peaks extremely sharply at that point - the highest probability configuration gives the macroscopic state to a high degree of accuracy.

Temperature

- The $0^{\text {th }}$ Law of Thermodynamics stated that

Two systems, each separately in thermal equilibrium with a third, are also in thermal
equilibrium with each other
This allows a definition of temperature as "the property which systems in thermal equilibrium have in common".

In a way this law states that "thermometers work", because it allows us to measure the temperature of one body by placing it in contact with another body which displays a property that has well-known dependence on temperature.

- Consider two systems in thermal contact with each other
o With energy (a property of the macrostate) E_{1} and E_{2}
o With each of these energy macrostates corresponding to $\Omega(E)$ microstates.
o With total energy $E=E_{1}+E_{2} \Rightarrow \mathrm{~d} E_{2} / \mathrm{d} E_{1}=-1$.
- The whole system can therefore be in any one of $\Omega\left(E_{1}\right) \Omega\left(E_{2}\right)$ microstates.
- If those two systems have come to Thermal Equlibrium, the number of microstates the whole system is in must be at a maximum. So, maximising the expression with respect to E_{1} :

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} E_{1}}\left[\Omega\left(E_{1}\right) \Omega\left(E_{2}\right)\right]=0 \\
\frac{1}{\Omega_{1}} \frac{\mathrm{~d} \Omega_{1}}{\mathrm{~d} E_{1}}=\frac{1}{\Omega_{2}} \frac{\mathrm{~d} \Omega_{2}}{\mathrm{~d} E_{2}} \\
\frac{\mathrm{~d} \ln \Omega_{1}}{\mathrm{~d} E_{1}}=\frac{\mathrm{d} \ln \Omega_{2}}{\mathrm{~d} E_{2}}
\end{gathered}
$$

- So we see that the function $\mathrm{d} \ln \Omega / \mathrm{d} E$ must be a constant of the system, and must therefore be a function of temperature. We define:

$$
\frac{1}{k_{B} T}=\frac{\mathrm{d} \ln \Omega}{\mathrm{~d} E}
$$

The Boltzmann Distribution - Canonical Ensembles

- Consider a system in equilibrium with a reservoir at temperature T.

And, consider that
o The total energy is E, and the energy of the system is ε, which leaves $E-\varepsilon$ to the reservoir.
o The temperature of the reservoir is constant, as long as ε is small.
o The number of microstates of the reservoir corresponding to energy $E-\varepsilon$ is $\Omega_{r}(E-\varepsilon)$, and the number of microstates of the system corresponding to energy ε is $\Omega_{s}(\varepsilon)$.

This is known as the canonical ensemble.

- We can view a gas, for example, as a canonical example, where one molecule is the system, and the rest of the gas is the reservoir.
- The number of microstates the system can be in is therefore

$$
\Omega_{\text {total }}(\text { system has energy } \varepsilon)=\Omega_{r}(E-\varepsilon) \Omega_{s}(\varepsilon)
$$

- But since ε is small, we can perform a Taylor Expansion:

$$
\ln \left[\Omega_{r}(E-\varepsilon)\right]=\ln [\Omega(E)]-\frac{\mathrm{d} \ln [\Omega(E)]}{\mathrm{d} E} \varepsilon+\underbrace{\frac{\mathrm{d}^{2} \ln [\Omega(E)]}{\mathrm{d} E^{2}} \varepsilon^{2}}_{\substack{\alpha \frac{d T}{d E}=0, \text { because of } \\ \text { assumptions }}}+\cdots
$$

And using our definition of temperature:

$$
\begin{aligned}
\ln \left[\Omega_{r}(E-\varepsilon)\right] & =\ln [\Omega(E)]-\frac{\varepsilon}{k_{B} T} \\
\Omega_{r}(E-\varepsilon) & =\Omega(E) e^{-\varepsilon / k_{B} T}
\end{aligned}
$$

- Combining this with the above, we get

$$
\Omega_{\text {total }} \propto \Omega_{s}(\varepsilon) e^{-\varepsilon / k_{B} T}
$$

- Now, we said above that the probability of a given macrostate is proportional to the number of microstates that make it up. So, normalising:

$$
P(\text { system in energy } \varepsilon)=\frac{\Omega_{s}(\varepsilon) e^{-\varepsilon / k_{B} T}}{\sum_{\forall \varepsilon} \Omega_{s}(\varepsilon) e^{-\varepsilon / k_{B} T}}
$$

This is the Boltzmann Distribution.

- In a way, the reason why the probability falls as ε increases is because the degeneracy of the reservoir decreases exponentially with ε.

The Boltzmann Distribution - Other Derivation

- Consider N distinguishable particles and a set of energy levels ε_{j}, each with degeneracy g_{j} and population N_{j}. Consider further that the whole system has energy U. We can write

$$
\begin{array}{r}
N=\sum_{\forall j} N_{j} \\
U=\sum_{\forall j} N_{j} \varepsilon_{j}
\end{array}
$$

- The number of ways of choosing N_{1} particles to be in the state ε_{1} is (taking degeneracy into account)

The number of ways of choosing N_{2} of the remaining ones is

$$
\Omega_{2}=\frac{\left(N-N_{1}\right)!}{N_{2}!\left(N-N_{1}-N_{2}\right)!} g_{2}^{N_{2}}
$$

Note that when multiplied together, some cancelling occurs. Therefore, the total number of configurations is

$$
\Omega=\prod_{\forall j} \Omega_{j}=N!\prod_{\forall j} \frac{g_{j}^{N_{j}}}{N_{j}!}
$$

Notes:
o We considered the particles to be distinguishable - we considered that there was more than one way for N_{i} particle to exist in the state ε_{i}. More on this later.
o We assumed that the degeneracy factor was g_{i}^{N}. This is true only if

- Now, we "simply" need to minimise $\ln \Omega$ with respect to the N_{i}, subject to the two constraints. The steps are roughly as follows:
o Take the logarithm. Simplify logarithms using Stirling's Formula:

$$
\ln N!=N \ln N-N
$$

o Add the Lagrange undetermined multipliers a and b using the two constraints defined above.
o Differentiate with respect to an arbitrary N_{i}, and set to 0 - most components of each sum will come out of the wash, because
they'll involve other terms than N_{i}. (Remember to use the product rule for the double sum).
o The result will now be something like

$$
N_{i}=g_{i} \exp \left(a+b \varepsilon_{i}\right)
$$

o To find b, feed this expression back into the expression for $\ln \Omega$, and obtain something like

$$
\ln \Omega=C-b U \Rightarrow \frac{\partial \ln \Omega}{\partial U}=-b
$$

And note that from our statistical definition of temperature

$$
\frac{1}{k T}=\frac{\partial \ln \Omega}{\partial U}
$$

Which simply gives

$$
b=-\frac{1}{k T}
$$

o The rest is simple manipulation, and taking a constant out.

Fermi-Dirac Statistics

- In this case, we consider the statistics of indistinguishable particles like fermions, where no two particles can occupy the same quantum state.
- In such a case
o The number of ways of getting $\boldsymbol{N}_{\boldsymbol{i}}$ particles into the $\boldsymbol{i}^{\text {th }}$ level is $\mathbf{1}$ - all particles are identical, and so there's only one way of getting a certain number in.
o Within the $\boldsymbol{i}^{\text {th }}$ level, the number of particles we have must be \leq the degeneracy of the level $\left(\boldsymbol{g}_{\boldsymbol{i}}\right)$, because no two particles can be in the same state. So $\boldsymbol{N}_{i} \leq \boldsymbol{g}_{\boldsymbol{i}}$.
o So Ω_{i} is the number of ways of arranging the \boldsymbol{g}_{i} levels amongst the \boldsymbol{N}_{i} particles:

$$
\Omega_{i}=\frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}
$$

- The total number of microstates is therefore

$$
\Omega=\prod_{i} \frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}
$$

- Solve as above (the constant a in the exponential is usually written $a=\mu / k T$, where μ is the chemical potential). This gives:

$$
N_{i}=\frac{g_{i}}{e^{\left(\varepsilon_{i}-\mu\right) / k T}+1}
$$

Notes:
o At low temperature, $\mu \gg k T$, states for $\varepsilon_{i}<\mu$ are essentially fully filled (ie: $N_{i} \approx g_{i}$), whereas those for $\varepsilon_{i}>\mu$ are essentially empty. As $T \rightarrow 0$, the distribution approaches a step function, with μ being the Fermi energy - the lowest energy up to which the states must be filled to accommodate all the particles.
o At high temperature $\mu \ll k T$, the chemical potential effectively has no effect.

Bose-Einstein Statistics

- In this case, we consider the statistics of indistinguishable particles like fermions, where two particles can occupy the same quantum state.
- In such a case
o Once again, the number of ways of getting \boldsymbol{N}_{i} particles into the $\boldsymbol{i}^{\text {th }}$ level is $\mathbf{1}$.
o The number of ways of getting the \boldsymbol{N}_{i} particles in the \boldsymbol{g}_{i} different states is equivalent to having $\boldsymbol{N}_{j}+\boldsymbol{g}_{j}-\mathbf{1}$ symbols in a line, $\boldsymbol{g}_{j}-1$ of each are "", and asking "how many different ways can they be shuffled".
o This is given by

$$
\Omega_{j}=\frac{1}{N_{j}!} \frac{\left(N_{j}+g_{j}-1\right)!}{\left(g_{j}-1\right)!}
$$

- Once again, calculations follow and we obtain (making the assumption that $g_{i} \gg 1$, to remove a " -1 " from the denominator):

$$
N_{i}=\frac{g_{i}}{e^{\left(\varepsilon_{i}-\mu\right) / k T}-1}
$$

Notes:
o At high temperature, $\mu \ll k T$, this behaves like the Fermi-Dirac distribution.
o As $T \rightarrow 0$, the population becomes very small, expect for $\varepsilon_{i} j u s t$ above μ - this is Bose-Einstein Condensation.

The Equipartition Theorem

- Let the energy, E of a particular system be given by

$$
E=\alpha x^{2}
$$

Assuming that x can take any value, the mean energy is given by

$$
\begin{aligned}
\langle E\rangle & =\int_{-\infty}^{\infty} E P(x) \mathrm{d} x \\
& =\frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\beta \alpha x^{2}} \mathrm{~d} x}{\int_{-\infty}^{\infty} e^{-\beta \alpha x^{2}} \mathrm{~d} x} \\
& =\frac{1}{2 \beta} \\
& =\frac{1}{2} k_{B} T
\end{aligned}
$$

This result (the whole proof's a bit longer!) implies that each quadratic energy dependence of the system (mode of the system) has an energy $1 / 2 \boldsymbol{k}_{B} \boldsymbol{T}$ associated with it. This is the Equipartition Theorem.

- There are, however, two assumptions involved in the derivation of this result:

0 That the wells are quadratic (the Harmonic Approximation).
o That the parameter x can take any value, and that the variables could be integrated continuously. This is dubious for quantum systems with quantised values.

The Equipartition Theorem is only valid at high temperatures so that the thermal energy is larger than the energy gap between quantised energy levels.

The Partition Function

- The partition function is the sum over all states of the Boltzmann Factor:

$$
Z=\sum_{\forall \alpha} e^{-\beta E_{\alpha}}
$$

However, since the point from which we measure energy is arbitrary, Z is defined up to an arbitrary multiplicative constant.

- The partition functions only refers to a single particle in the system. It may well be coupled to a reservoir of other particles, but it's a single one.
- Z contains, "zipped up within it", full information about every property of the system

o The internal energy

The internal energy is given by

$$
U=\frac{\sum_{i} E_{i} e^{-\beta E_{i}}}{\sum_{i} e^{-\beta E_{i}}}=\frac{-\mathrm{d} Z / \mathrm{d} \beta}{Z}=-\frac{\mathrm{d} \ln Z}{\mathrm{~d} \beta}
$$

o The Entropy

We know that $P_{j}=e^{-\beta E_{j}} / Z$, and so using Gibbs' Expression for Entropy, we have

$$
\begin{aligned}
S & =-k \sum_{i} P_{i} \ln P_{i} \\
& =k \sum_{i} P_{i}\left(\beta E_{i}+\ln Z\right) \\
& =k(\beta\langle E\rangle+\ln Z) \\
& =k(\beta U+\ln Z) \\
& S=\frac{U}{T}+k \ln Z
\end{aligned}
$$

o The Helmholtz Energy
We know that $F=U-T S$, so

$$
\begin{gathered}
F=-k T \ln Z \\
Z=e^{-\beta F}
\end{gathered}
$$

o The rest can then easily be worked out as follows...

$$
\begin{gathered}
S=-\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{U-F}{T} \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T} \\
H=U+p V \\
G=F+p V=H-T S \\
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}
\end{gathered}
$$

- If the energy of a particular system depends on various independent contributions, $E_{i, j}=E_{i}^{(a)}+E_{j}^{(b)}$, then the combined Partition Function is given by

$$
Z=\sum_{i} \sum_{j} e^{-\beta\left(E_{i}^{a}+E_{j}^{b}\right)}=\sum_{i} \sum_{j} e^{-\beta E_{i}^{a}} e^{-\beta E_{j}^{b}}=\sum_{i} e^{-\beta E_{i}^{a}} \sum_{j} e^{-\beta E_{j}^{b}}=Z_{a} Z_{b}
$$

So partition functions can be combined by multiplication.

The Ideal Monoatomic Gas

- Consider a gas in a cubic box of side L.
o The wavefunction of each atom must be

$$
\psi(x)=A \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right)
$$

Where

$$
k_{i}=\frac{n_{i} \pi}{L}
$$

And the $\boldsymbol{n}_{\boldsymbol{i}}$ are integers (due to the boundary conditions).
o In k-space, each state (distinct combination of $n s$) occupies a volume

$$
\frac{\pi^{3}}{L^{3}}
$$

o The number of states with k in the range $k+\mathrm{d} k$ is therefore equal to the number of states in the relevant octant in k-space

$$
g(k) \mathrm{d} k=\frac{1}{8} \times 4 \pi k^{2} \mathrm{~d} k \times \frac{1}{\pi^{3} / L^{3}}=\frac{V k^{2}}{2 \pi^{2}} \mathrm{~d} k
$$

o If m is the mass of an atom, then the kinetic energy of the atom is given by

$$
E=\frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

- The partition function for a single molecule of our ideal gas is therefore

$$
\begin{aligned}
\sum_{i} g\left(E_{i}\right) e^{-\beta E_{i}} & =\int_{0}^{\infty} e^{-\beta E(k)} g(k) \mathrm{d} k \\
& =\int_{0}^{\infty} e^{-\beta \hbar^{2} k^{2} / 2 m} \frac{V k^{2}}{2 \pi^{2}} \mathrm{~d} k \\
& =\frac{V}{\hbar^{3}}\left(\frac{m k_{B} T}{2 \pi}\right)^{3 / 2}
\end{aligned}
$$

For a gas of more than 1 indistinguishable molecule, the partition function is

$$
Z_{N}=\frac{Z^{N}}{N!}
$$

This is because we can combine the energies as we did in the previous section, but we must make sure we do not overcount states. If we assume that the gas is dilute and that no more than 1 particle occupies each state, then we have overcounted by exactly N ! This explains the denominator above.

- We can derive a number of properties for the partition function, all of which turn out to be as expected classically.
- We can also work out an expression for entropy

$$
S=\frac{3}{2} N k_{B} \ln T+N k_{B} \ln \left(\frac{V}{N}\right)+\frac{3}{2} N k_{B} \ln \left(\frac{m k_{B}}{2 \pi \hbar^{2}}\right)+\frac{5}{2} N k_{B}
$$

This is called the Sackur-Tetrode Equation, and it could not have been obtained using classical thermodynamics. It can also be used to demonstrate the Gibbs Paradox:
o The Sackur-Tetrode Equation correctly predicts the entropy change of a Joule expansion to be $\Delta S=N k_{B} \ln 2$.
o However, if a vessel is divided into two, with an identical gas on each side, the entropy change when the partition is removed becomes $\Delta S=0$.
o However, one could argue that the gas on each side of the partition has itself undergone a Joule expansion!

0 This demonstrates the importance of realising that indistinguishable particles really are indistinguishable - no information can be lost when removing the partition in that example.

- Adiabatic changes
o Consider reversibly compressing a gas, keeping the relative populations of the energy levels fixed - ie: adiabatically compress it.
o The energies are proportional to $V^{-2 / 3}$, so they'll increase, and $U \propto V^{-2 / 3}$.
o However, $U=\frac{3}{2} k T$.
o Therefore, $T V^{3 / 2}=$ constant, as expected for an adiabatic expansion.
- Heat and work - we can also consider a general change in the internal energy

$$
\mathrm{d} U=N \sum p_{i} \mathrm{~d} \varepsilon_{i}+\varepsilon_{i} \mathrm{~d} p_{i}
$$

This includes two terms
o The first involves changing energy levels but keeping populations fixed - this is an adiabatic change, and can be interpreted as the reversible work $\mathrm{d} W=-p \mathrm{~d} V$.
o The second involves keeping the energy levels fixed but changing the populations and therefore the entropy. This can be interpreted as the reversible heat $\mathrm{d} Q=T \mathrm{~d} S$.

The Ideal Diatomic Gas

- If the gas is now diatomic, we have two additional terms in the energy

$$
E=\underbrace{\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)}_{\text {translational } \mathrm{E}}+\underbrace{\frac{\ell(\ell+1) \hbar^{2}}{2 I}}_{\text {rotational } \mathrm{E}}+\underbrace{\left(n+\frac{1}{2}\right) \hbar \omega}_{\text {vibrational } \mathrm{E}}
$$

- We need to take products to find the combined partition functions (see above) and the new contributions to the potentials are therefore additive.
- The actual contributions can be found by writing the expressions for the rotational and vibrational partition funtions. Notes:
o The degeneracy of each rotational energy is $2 \ell+1$.
o The degeneracy of each vibrational energy is 1 .
- In each case, the limits $T \rightarrow 0, \infty$ need to be considered, because the general case is rather difficult to evaluate.

Paramagnetism

- Atoms in crystals may have permanent magnetic dipole moments. These are linked to their angular momentum (orbital or spin).
- In QM, angular momentum is quantised along any given axis as $J_{z}=m \hbar$ where m takes integer spaced values from J to $-J$, where J is the total angular momentum quantum number of the atom.
- The upshot of this is that the z-component of magnetic moment is also quantised, according to

$$
\mu_{z}=g \mu_{B} m
$$

Where $\mu_{B}=e \hbar / 2 m_{e}$ is the Bohr Magneton and g is the "Landé \boldsymbol{g} factor", which is $\mathbf{O}(1)$.

- The energy of such a dipole in a magnetic field \boldsymbol{B} along the \boldsymbol{z}-axis is $\mu_{z} B$.
- The calculations reveal a number of interesting things (note that μ is the magnitude of the dipole moment)
o Curie's Law - as $T \rightarrow \infty,\left\langle\mu_{z}\right\rangle \rightarrow \mu^{2} B / k T$.
o As $T \rightarrow 0,\left\langle\mu_{z}\right\rangle \rightarrow \mu$ (ie: all magnetic dipoles aligned with the field).
- We can obtain the magnetisation, M and magnetic susceptibility, χ of the magnet, given by

$$
\begin{gathered}
M=n\left\langle\mu_{z}\right\rangle \\
\chi=\frac{M}{H} \approx \frac{\mu_{0} M}{B}
\end{gathered}
$$

Photons, etc...

Introduction

- Consider an evacuated box of volume \boldsymbol{V} at temperature \boldsymbol{T} - a cavity. It contains electromagnetic radiation.
- In thermodynamics, we can treat this as a gas of photons which is constantly being emitted/absorbed/reflected at the walls.

Spectral Energy Density

- It is relatively simple to work out that if the photon gas contains \boldsymbol{n} photons per unit volume, the total energy per unit volume in the cavity is

$$
u=n\langle\hbar \omega\rangle
$$

- However, one might ask which frequency ranges this energy is stored in. We therefore introduce the spectral energy density, u_{λ}, such that the energy stored in wavelengths of range $\boldsymbol{\lambda}$ to $\boldsymbol{\lambda}+\mathrm{d} \boldsymbol{\lambda}$ is

$$
u_{\lambda} \mathrm{d} \lambda
$$

The total energy density is then

$$
u=\int u_{\lambda} \mathrm{d} \lambda
$$

- We can show that this spectrum is totally independent of the kind of cavity (shape/size/material) and is a universal function of $\boldsymbol{\lambda}$ and \boldsymbol{T} by considering two cavities, each kept at \boldsymbol{T} by a heat bath, and connected by a tube containing a filter that only allows wavelength in the range $[\lambda, \lambda+\mathrm{d} \lambda]$ though:

By the second law, no heat can flow along the tube (equal temperatures). Therefore, any energy flux from right to left must be balanced by a flux from left to right. Bearing in mind our expression for \boldsymbol{P} (power absorbed per unit area) below, we find that $\boldsymbol{P}_{\text {left }}=\boldsymbol{P}_{\text {right }}$, and therefore that $\boldsymbol{u}_{l, \text { left }}=\boldsymbol{u}_{l, \text { right }}$.

Banalities

- First, we note that if the photons are moving in completely arbitrary directions, then the fraction of them moving at angles θ to $\theta+\mathrm{d} \theta$ to any particular direction is

Therefore, the number of molecules per unit volume that are:
o Travelling with a speed \boldsymbol{v} to $\boldsymbol{v}+\mathbf{d} \boldsymbol{v}$.
o Travelling at angles $\boldsymbol{\theta}$ to $\boldsymbol{\theta}+\mathrm{d} \boldsymbol{\theta}$ to a certain direction. Is given by

$$
\frac{1}{2} n f(v) \sin \theta \mathrm{d} v \mathrm{~d} \theta=\underbrace{\frac{1}{2} n \sin \theta \mathrm{~d} \theta}_{\begin{array}{c}
\text { In the photon case, } \\
\text { where } v=c
\end{array}}
$$

Now, if we consider this "certain direction" to be perpendicular to a wall, and if we consider particles:
o Travelling with a speed \boldsymbol{v}.
o Travelling at an angle $\boldsymbol{\theta}$ to the wall.
Then only those particles closer than $\boldsymbol{v} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta} \mathrm{d} \boldsymbol{t}$ to the wall will hit it in time $\mathrm{d} t$. In other words, those particles in a volume $\boldsymbol{v} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta} \mathrm{d} t$. The number of such particles is therefore (from above)

$$
\begin{aligned}
\underbrace{v \cos \theta \mathrm{~d} t}_{\begin{array}{c}
\text { Volume } \\
\text { concerned }
\end{array}} \underbrace{\frac{1}{2} n f(v) \sin \theta \mathrm{d} v \mathrm{~d} \theta}_{\text {Particles per unit volume }} & =\frac{1}{2} n v f(v) \cos \theta \sin \theta \mathrm{d} v \mathrm{~d} \theta \mathrm{~d} t \\
& =\underbrace{\frac{1}{2} n c \cos \theta \sin \theta \mathrm{~d} \theta}_{\begin{array}{c}
\text { For a photon gas, and for } \\
\text { unit time }
\end{array}}
\end{aligned}
$$

To find, therefore, the total flux of photons hitting unit surface area in unit time, we integrate this over all angles [Note: in this context, "all angles" means $0 \rightarrow \pi / 2$, because of the way we defined solid angles above - the range $-\pi / 2 \rightarrow 0$ is implicitly included]:

$$
\begin{gathered}
\Phi=\frac{1}{2} \int_{0}^{\pi / 2} n c \cos \theta \sin \theta \mathrm{~d} \theta \\
\Phi=\frac{1}{4} n c
\end{gathered}
$$

Since each photon has energy $\langle\hbar \omega\rangle$, we can also write the average power incident per unit area of wall as

$$
P=\hbar \omega \Phi=\frac{1}{4} u c
$$

(See next section for definition of u).

- We saw above that the number of photons travelling at angles $[\theta, \theta+d \theta]$, in a photon gas, hitting unit area of a wall in unit time was

$$
\frac{1}{2} n c \cos \theta \sin \theta \mathrm{~d} \theta
$$

Now, if instead of the number of photons, n, we are interested in the "momentum change perpendicular to the wall at each collision and relfection", then we must replace n

$$
n \rightarrow \int_{\forall \varepsilon} \underbrace{2}_{\begin{array}{c}
\text { Double the momentum, } \\
\text { because were recoiling }
\end{array}} \underbrace{\frac{u_{\varepsilon}}{c}}_{\substack{\text { Momentum is is } \\
\text { energy }}} \underbrace{\cos \theta}_{\begin{array}{c}
\text { erpendicullar Integrate over } \\
\text { to wall }
\end{array}} \underbrace{\mathrm{d} \varepsilon}_{\begin{array}{c}
\text { all energies }
\end{array}}=\frac{2 u \cos \theta}{c}
$$

And we now get that the "momentum change per unit area per unit time $=$ pressure" ${ }^{\prime}$ is

$$
\begin{aligned}
& p=\int_{0}^{\pi / 2} \frac{2 u \cos \theta}{c} \frac{1}{2} c \cos \theta \sin \theta \mathrm{~d} \theta \\
&=\int_{0}^{\pi / 2} u \cos ^{2} \theta \sin \theta \mathrm{~d} \theta \\
& p=\frac{1}{3} u
\end{aligned}
$$

The Stefan-Boltzmann Law

- Consider the First Law of Thermodynamics $-\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$. Differentiating w.r.t V at constant T :

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p=T\left(\frac{\partial p}{\partial T}\right)_{V}^{\text {Maxwell relation }}-p
$$

However, $(\partial U / \partial V)_{T}=u$ [by definition, but this can also be proved by noting that since $\left.U=u V,(\partial U / \partial V)_{T}=u+V(\partial u / \partial V)_{T}=u\right]$, so:

$$
u=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

But we have shown that $p=\frac{1}{3} u$, so

$$
\begin{gathered}
u=\frac{1}{3}\left[T \frac{\mathrm{~d} u}{\mathrm{~d} T}-u\right] \Rightarrow \frac{\mathrm{d} u}{u}=4 \frac{\mathrm{~d} T}{T} \\
\Downarrow \\
u=A T^{4}
\end{gathered}
$$

Feeding this into our expression for power incident per unit area:

$$
P=\frac{1}{4} u c=\left(\frac{1}{4} A c\right) T^{4}=\sigma T^{4}
$$

- Note, also, that if the cavity is in equilibrium, "power incident = power emitted", so the above also gives an expression for the power emitted.

Kirchhoff's Law

- We wish to discuss how well particular surfaces of a cavity will absorb or emit electromagnetic radiation of a particular wavelength. We therefore define:
o The spectral absorptivity α_{λ} is the fraction of incident radiation absorbed at $\boldsymbol{\lambda}$.
o The spectral emissive power e_{λ} is a function such that the power emitted per unit area of the surface having wavelength in the range $[\lambda, \lambda+\mathrm{d} \lambda]$ is

$$
e_{\lambda} \mathrm{d} \lambda
$$

- Now, in equilibrium, the power absorbed is equal to the power emitted, so using our expression for the power incident above, we have that in the range $[\lambda, \lambda+\mathrm{d} \lambda]$:

$$
\begin{gathered}
\left(\frac{1}{4} u_{\lambda} \mathrm{d} \lambda c\right) \alpha_{\lambda}=e_{\lambda} \mathrm{d} \lambda \\
\frac{e_{\lambda}}{\alpha_{\lambda}}=\frac{c}{4} u_{\lambda}
\end{gathered}
$$

This is Kirchhoff's Law - it states that $e_{\lambda} / \alpha_{\lambda}$ is a universal function of $\boldsymbol{\lambda}$ and \boldsymbol{T}. Therefore, if we fix \boldsymbol{T}, then $e_{\lambda} \propto \alpha_{\lambda}$. This means that "good absorbers are good emitters" and vice versa.

- For a perfect black body, $\alpha_{\lambda}=1$ for all $\boldsymbol{\lambda}$, which also means that the black body is the best possible emitters.
- A cavity whose walls have $\alpha_{\lambda}=1$ is known as a black body cavity.

Statistical Mechanics

- The black body spectrum can be derived in the usual ways (see QM course).
- To convert the spectrum from one kind of measurement (eg: wavelength) to another (eg: frequency), write (for example)

$$
u_{\lambda} \mathrm{d} \lambda=u_{\nu} \mathrm{d} \nu
$$

- This can be integrated to give

$$
u=\frac{\hbar}{\pi^{2} c^{3}} \int_{0}^{\infty} \frac{\omega^{3}}{e^{\beta \hbar \omega}-1} \mathrm{~d} \omega=\frac{k^{4} \pi^{2}}{15 \hbar^{3} c^{3}} T^{4}
$$

The Stefan-Boltzmann Law. We have therefore obtained

$$
\sigma=\frac{\pi^{2} k_{B}^{4}}{60 c^{2} \hbar^{3}}
$$

