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Waves 

Generalities 

Basics 
 A wave is the means by which information about a 

disturbance in one place is carried to another without 

bulk translation of the intervening medium. 

 To derive the wave equation, proceed as follows: 

o Consider a wave travelling in the positive x 

direction such that at t = 0, the function f(x) 

describes the shape of the wave, such that 

( , 0) ( )x f xy =  

o After time t has elapsed, the wave will have 

moved a distance vt to the right (where v is 

the velocity of the wave). As such 

( , ) ( ) ( , 0)x t f x vt x vty y= - = -  

o If we let u = x – vt, then we have 

( , ) ( )x t f uy =  

And by the chain rule 
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o Equating our terms for 2 2d /df u : 
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 Important notes on the wave equation: 

o It applies to any sort of wave motion, of any 

form – we have not specified the form of f. 
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o It is linear in y , which means that the 

principle of superposition applies. 

 In general, we consider harmonic waves. Any other 

waveform can be Fourier analysed into a number of 

such harmonic waves. Harmonic waves take the form 

( )( )( , ) Re i t kxx t A e wy -=  

Where ( )t kxw -  is the phase of the wave, and 
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Each of the two parts of this equality arise as follows: 

o k is the rate at which the phase changes with 

position. w  is the rate at which the phase 

changes with time, and vp is the rate at which it 

moves with time. The first equality follows. 

o At fixed time t, the phase of the wave changes 

by 2p  when the distance changes by l  – the 

second equality follows. 

And 

2w pn=  

 

Polarisation 
 In transverse waves, the displacement of the medium 

is perpendicular to the direction of motion of the 

wave. There are therefore two orthogonal directions 

along which the displacement can take place. The 

amplitude and polarisation of the waves along these 

two directions define the polarisation of the wave. 

 Consider a wave travelling in the z direction. The x 

and y components of the wave take the form 
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The wave can then be polarised in a number of ways. 
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 Linear polarisation – every point on the string 

oscillates parallel to a given line. We have: 

o 0f =  or an integer multiple of p . 

o The wave oscillates with amplitude 
2 2
x yA A A= +  at an angle ( )arctan /y xA A  to 

the x axis. 

 Circular polarisation – sometimes, the 

displacement will follow a circular path in the x-y 

plane. For this to happen, 

o /2f p=  

o Ax = Ay 

 Elliptical polarisation – this is the most general 

way a wave can be polarised, for any parameters. The 

displacement follows an elliptical path in the x-y 

plane, as follows:  

 
Where 
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Impedance 
 The concept of wave impedance is used to define the 

relationship between the force and the wave response: 

driving force
Impedance

velocity response
=  

It is extremely important to note that the velocity 

response is the rate of change of displacement in the 

medium, not the speed of propagation of the wave. 

 The power fed into a wave is given by the product of 

the driving force and velocity response. As such 
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o If the impedance is real, the force and velocity 

are in phase and the power input is maximised. 

o If the impedance is purely imaginary (eg: below 

the cut-off frequency in plasmas and 

waveguides), no energy can be fed into the 

medium. 

 We can use the impedance to find the average power 

input into the wave. Let u be the transverse velocity. 

For an oscillator, the mean power input is given by 

( )*1
Re

2avP = Fu  

Given that F = Zu: 
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Assuming that Z is real, and that the wave is 

harmonic with frequency w , we therefore get 

2 2
0

1
Mean power

2
Z Aw=  

 

Reflection and Transmission 
 Whenever a wave encounters a change in impedance 

in the medium though which it is travelling, some of 

its energy will be reflected and some will be 

transmitted. 

 Consider a wave travelling in one medium incident on 

another medium, as follows: 
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Assume that the waves are polarised in the x–y plane, 

and that the waves all have the form 
( )
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 We can go through a process called phase-matching. 

At all times, the component of the waves parallel to 

the interface (the x component) must be continuous 

across the boundary – therefore: 

, , ,

( sin ) ( sin ) ( sin )
0, 0, 0,cos cos cosi i i r r r t t t

i x r x t x
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Because these must be true for all values of r and t, 

we must have that 
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We now simply use the fact that / pk vw=  to deduce 

that, since all the w  are equal and the wave speed 

must be the same for the incident and reflected wave 

(since they travel in the same medium) 
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And therefore 
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This is Snell’s Law 

 The results obtained using phase matching apply to all 

waves reflecting at a boundary. However, to deduce 

any results regarding the amplitude of the various 

waves, information is required as to the boundary 

conditions at the interface, which will necessarily be 

different for different kinds of waves. 

 A further complication results from the polarisation of 

the wave involved – waves polarised perpendicular to 

the x–y plane will have a parallel component 
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independent of iq , whereas those polarised parallel to 

the plane will not. 

 In the simple case, however, in which 0iq = , the 

following two equations are obtained: 

o The first one involves the continuity of the 

wave at the boundary. 

i r ty y y+ =  

o The second one involves the continuity of one 

other quantity at the boundary. Usually, that 

quantity is the “force”, or other equivalent 

quantity. This therefore yields 

1 1 2i r tZ Z Zy y y¢ ¢ ¢- =  

Integrating: 

1 1 2i r tZ Z Zy y y- =  

Where Z1 and Z2 are the impedances of the 

media through which the wave is travelling. 

Solving these equations, we find that the amplitude 

transmission and reflection coefficients are 
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A few notes: 

o These expressions are for the amplitude term. 

When dealing with electromagnetic radiation, 

they must be squared to obtain the intensity 

coefficient. 

o Similarly, if one needs expressions for the 

“force” term, then the impedances in the 

expressions above each need to be reciprocated 

(ie: 1/i iZ Z ), to reflect the fact that 1/Z 

terms will appear in the “displacement 

matching” equations. 
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o If either the impedances are complex, then 

there are phase differences between the 

incident, reflected and transmitted waves. 

 We showed, above, that the rate at which energy is 

transferred in a harmonic wave is given by 

2 21

2
Z Aw  

Using these results and r and t above, it is trivial to 

work out the ratios of transmitted and reflected 

energies at the boundary. If the impedances are 

complex, the alternative expression 2 21
2 Re( )Z Aw  must 

be used. 

 Often, we need to transmit waves from one medium to 

another (or to extract energy at the boundary of the 

medium in which the wave is travelling), but we want 

to make sure as little reflects back as possible. To do 

this, we want to try as hard as possible to match the 

impedances as well as possible. Two particular 

examples of how this is done are as follows: 

o In optics, we want to design lenses that reflect 

as little light as possible. Here, it is difficult to 

match the impedance of air and glass, but what 

we can do is use a little trick called a “ /4l  

coupler”: 

 
The idea is to have the reflected wave from the 

2–3 interface interfere destructively with the 

reflected wave at the 1–2 interface, giving no 

reflection. It’s reasonably obvious that the 

width of the intervening layer should be /4l , 

but it’s harder to see that 2 1 3Z Z Z= . This is 

used on camera lenses (a technique known as 

Medium 1 Medium 2 Medium 3 

/4l
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“blooming”), but total removal of reflection can 

only work for one wavelength, which explains 

the purplish glow from many camera lenses. 

o Another technique involves the gradual change 

of impedance from one medium to another. The 

reflected waves at each different boundary will 

have different phases, and will cancel each 

other out. An example of such a technique is 

that of gently widening horns in old 

gramophones and clarinets, going from the 

inside of the instrument to the air outside. 

 

3D Waves 
 To define a wave in 3D, we need to specify the shape 

and orientation of the wavefronts. The simplest form 

of 3D wave is a plane wave, of infinite extent, and 

whose wavefronts are planes with perpendicular vector 

k. The wave can then be written: 
( )( , ) i tt Ae wy - ⋅= k rr  

And the wave equation becomes: 
2
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 Another example is a spherical wave, wave by a point-

disturbance at the origin (r = 0): 

( )( , ) i t kA
t e

r
wy -= rr  

The intensity (proportional to 2y ) decays as r–2, thus 

conserving energy, since the wavefronts are spheres 

surrounding the origin. 

 

Dispersive Waves 
 So far, we have assumed that the speed of waves is 

independent of the frequency. This is true for 

electromagnetic waves in a vacuum. In other cases, 
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though, the wave speed (or phase velocity), 

/pv kw= , depends on the frequency of the wave. 

These waves are known as dispersive waves. 

 Dispersion often arises from the fact that the medium 

through which the wave travels has a resonance at a 

particular frequency which can be excited by the 

passage of the wave. 

 The way the phase velocity depends on frequency is 

called the dispersion relation: 

o In normal dispersion, waves of higher frequency 

travel slower. In other words, the gradient of a 

graph of w  again k gets less. 

o In anomalous dispersion, the situation is 

reversed. 

 Important examples include: 

o Optical waves in media such as glass (c.f. 

Snell’s Law and prisms). 

o Surface waves in deep water. 

 An important example involves wave packets. 

o Infinite wavetrains are inherently featureless 

(even turning them “on” and “off” means that 

they’re no longer infinite). All real waves 

(carrying information) have a beginning and an 

end – ie: their amplitude varies with time. Each 

“pulse” represents a wave packet. 

o To make up this wave packet, we need to 

superimpose waves with a range of frequencies 

and wavenumbers ( kD ) [cf: Fourier analysis]. 

The sharper the “pulse”, the more frequencies 

are needed. 

o It is, in fact, important to note that the range 

of frequencies in the wave packet is inversely 

proportional to the packet width. So: 

1/in pulse of pulsetnD = D  
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o In a dispersive medium, the different 

components will not travel at the same speed – 

the wavepacket will spread out and eventually 

disappear. 

o Another consequence is that the wavegroup 

itself (= the point of maximum amplitude in 

the wavegroup) will move at a speed different 

from the phase velocity. This group velocity is 

the speed at which energy moves through the 

medium, and so it’s a crucial parameter. 

 For the simple case of two superimposed waves, the 

difference between the group and phase velocity can 

be seen by combining two waves of frequency w w+D  

and w w-D  and wavevectors k k+D  and k k-D . 

The envelope is seen to move at a group velocity 

/ kwD D . 

 In a more general case of wavegroups, we can 

determine the speed of the wavegroup (group velocity) 

by consider the speed at which the point of maximum 

amplitude moves. At time t, this corresponds to the 

point at which the phase, t kxw f- +  is the same for 

all waves (ie: of all w ). Therefore: 

d
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 We can easily find the relationship between the phase 

and group velocity as follows: 

dd

d d
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p
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In terms of 2 /kl p= : 
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 Often, a much easier way of finding the group velocity 

from the phase velocity is to write the phase velocity 

in the form pkv w=  and differentiating directly with 

respect to k. 

 

Examples of Waves 

Waves on a string 
 Consider a small element of string of length xD  and 

mass xrD , with longitudinal tension T: 

 
The restoring force on the left-hand-side of the 

element is 1sinT q , which, in the limit of small 

displacement is 1tan x x
T T yq ¶

¶= . The total restoring 

force is therefore: 
2
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Using Newton’s Second Law: 
2 2
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Which is the wave equation, with speed /v T r= . 
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 We can now find an expression for the impedance of a 

wave on a string: 
transverse driving force

Impedance
transverse velocity

=  

In the case of a string, 

Transverse driving force sinT T
x

y
q

¶
= - » -

¶
 

So: 

Impedance
T

x

t

y

y

¶
¶= - ¶
¶

 

But when deriving the wave equation, we saw that, for 

a wave travelling in the +ve x-direction: 

1

x v t

y y¶ ¶
= -

¶ ¶
 

And so: 

Impedance
T

T v
v

r r= = =  

For a wave travelling in the –ve x direction, the 

impedance is simply given by –T/v. 

 It is important, in such problems, to carefully consider 

the sign of the derivatives used. 

 We can also formally rationalise the requirement that 

the force be continuous at the boundary. If we 

consider an infinitesimal mass element at the 

boundary, and if the forces were not matched, this 

infinitesimal element would have infinite acceleration – 

clearly impossible. 

 The energy in the vibrating string, ranging from point 

a to point b, consists of two components: 

o The kinetic energy, given by 
2

d
2
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o The potential energy given by 
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d
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A nice way to rationalise this expression is by 

considering a vibrating string, and noticing that 

the total extension in the string as a result of 

the vibrations is 

2d 1 1 d
b

a
S y x¢= + -ò  

Carrying out a Binomial Expansion: 

21
d d

2

b

a
S y x¢= ò  

And therefore, assuming the tension is constant 

throughout (we would otherwise need an 

Extension2 component), the potential energy is 

given by: 

2d d
2

b

a

T
U y x¢= ò  

We can use these expressions to obtain one for the 

rate of change of energy in the string (ie: the power 

transmitted): 
2 2
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Using the wave equation (Ty yr¢¢ = ): 
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This is in the form of Stress Velocity´ , which is a 

recurring result in elastic systems. 

 

 

Sound waves 
 Sound is a longitudinal wave. The direction of the 

displacement is along the direction of travel of the 

wave. Transmission occurs by compression and 
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rarefaction of the medium in which the wave is 

travelling. 

 Consider an element in a column of gas, cross-section 

xD , and at a pressure p when no wave is propagating: 

 
Let’s now consider a wave travelling through the 

medium, with displacement ( , )a x t  and pressure 

( , )x ty : 

 
 The volume change of the element is therefore given 

by: 

( )
a
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And the fractional change in volume is then given by 
a
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 Now, the force in the positive x-direction caused by 

the pressure imbalance in the wave is given by 

( ) ( )p S p S

S

x S
x

y y y

y
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+ D - + +D D
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= - D D
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 We also note that in a sound wave, the pressure 

changes occurs so quickly that no heat is exchanged 

with the surroundings. The changes are adiabatic. As 

such, we have that 

constantpV g =  

With /p vC Cg = , and taking a value of 1.4 for air. 

Differentiating: 

x x x+D

( )p Sy y+ +D D( )p Sy+ D

x a+ x x a a+D + +D
+ve x 

x x x+D

p SDp SD
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But dp is simply the pressure change associated with 

the wave passing, and /V VD  is simply the fractional 

change in volume. As such: 

a
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x
y g
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Differentiating: 
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 Feeding this in to our result for “force” on the element 

of gas, above: 
2

2
Force

a
p x S

x
g

¶
= D D

¶
 

Applying Newton’s Law to this element of gas, of mass 

x SrD D : 
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And we therefore get: 
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 This is the wave equation, with 

p RT
v

m

g g
r

= =  

This implies that the speed of sound primarily depends 

on m, the molar mass. g  will also have an effect, but 

less so than m. 

 Using the boxed relation above, we can also analyse 

sound waves in terms of pressure variations rather 

than in terms of displacement variations. For a 

harmonic wave ( )
0

i t kxa a e w -= , we have that 

i pkay g=  

In other words, the pressure leads the displacement by 

/2p , and has amplitude 0pkag . 
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Sound waves in solids and liquids 
 Longitudinal waves can also be supported in solids and 

liquids. In both cases, we need a relation between the 

pressure due to the wave and the strain in the 

medium: 

p

a
K

x
y

¶
= -

¶
 

Where K is the relevant modulus (in a gas, we found 

that it was equal to pg ). This gives a velocity: 

K
v

r
=  

 In gasses and liquids, even though the pressure is 

isotropic, the expansion and rarefaction only takes 

place in the direction of passage of the wave. Hence, 

the fractional volume change is directly proportional 

to the change in length of the element (ie: 

/ /V V a xD = ¶ ¶ ). The relevant modulus is then the 

bulk modulus, B. 

 In solids, things are more complicated, because when 

longitudinal compression occurs, the solid can also 

expand in the transverse direction (the ratio of the 

two strains is known as Poisson’s Ratio). In bulk 

solids, where no sideways expansion is possible, a 

larger pressure is required to produce a longitudinal 

strain, giving a larger modulus. In any case, the 

relevant modulus is the Young’s Modulus – the ratio 

of the longitudinal stress (pressure) to the longitudinal 

strain: 

d

/

p
Y

a x
=

¶ ¶
 

 The acoustic impedance in such materials is also given 

by Z vr= . 

 


