Vector Calculus

Suffix Notation

- We define the Knonecker Delta and the Levi-Civita permutation symbol as

$$
\delta_{i j}=\left\{\begin{array}{cc}
1 & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

$\varepsilon_{i j k}=\left\{\begin{array}{cc}1 & \text { if }(i, j, k) \text { is an even permuation of }(1,2,3) \\ -1 & \text { if }(i, j, k) \text { is an odd permuation of }(1,2,3) \\ 0 & \text { otherwise }\end{array}\right.$

- We then have that

$$
\begin{gathered}
\boldsymbol{a} \times \boldsymbol{b}=\varepsilon_{i j k} a_{j} b_{k} \\
\operatorname{det} \boldsymbol{A}=\varepsilon_{i j k} A_{1 i} A_{2 j} A_{3 k}
\end{gathered}
$$

- The general identity

$$
\varepsilon_{i j k} \varepsilon_{l m n}=\left|\begin{array}{lll}
\delta_{i l} & \delta_{i m} & \delta_{i n} \\
\delta_{j l} & \delta_{j m} & \delta_{j n} \\
\delta_{k l} & \delta_{k m} & \delta_{k n}
\end{array}\right|
$$

Can be established by the following argument:
o It is equal to 1 when $(i, j, k)=(l, m, n)=(1,2,3)$ (the matrix, in that case, is simply identity matrix).
o Changes sign when any of (i, j, k) or (l, m, n) are interchanged (by the rules of determinants).
o This last property also implies that if any of the (i, j, k) or (l, m, n) are equal, it is equal to 0 . [Swapping those two equal indices gives $x=-x$, which gives $x=0]$.
These properties ensure that the RHS and LHS are equal for any index.

- If we contract the identity once by setting $l=i$, we get

$$
\varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}
$$

This is the most useful form to remember.

Vector Differential Operators

- Grad

0 If we consider a scalar field, $\Phi(x, y, z)=\Phi(\boldsymbol{r})$,
Taylor's Theorem states that
$\Phi(x+\delta x, y+\delta y, z+\delta z)=\Phi(x, y, z)+\frac{\partial \Phi}{\partial x} \delta_{x}+\frac{\partial \Phi}{\partial y} \delta_{y}+\frac{\partial \Phi}{\partial z} \delta_{z}+O\left(\delta x^{2}, \delta x \delta y, \ldots\right)$
Or

$$
\Phi(\boldsymbol{r}+\delta \boldsymbol{r})=\Phi(\boldsymbol{r})+(\nabla \Phi) \cdot \delta \boldsymbol{r}+O\left(|\delta \boldsymbol{r}|^{2}\right)
$$

Where

$$
\begin{gathered}
\nabla=\frac{\partial}{\partial x} \boldsymbol{e}_{x}+\frac{\partial}{\partial y} \boldsymbol{e}_{y}+\frac{\partial}{\partial z} \boldsymbol{e}_{z} \\
\nabla=\boldsymbol{e}_{i} \frac{\partial}{\partial x_{i}}
\end{gathered}
$$

And for an infinitesimal increment, we can write

$$
\mathrm{d} \Phi=(\nabla \Phi) \cdot \mathrm{d} \boldsymbol{r}
$$

And the grad operator is $\nabla \Phi$.
o The geometrical interpretation of the grad operator is that

$$
\hat{t} \cdot \nabla \Phi
$$

Is the directional derivative - the rate of change of Φ with distance in the direction $\hat{\boldsymbol{t}}$.
o Note that

- The derivative is maximal in the direction $\boldsymbol{t} \| \nabla \Phi$.
- The derivative is zero in directions such that $t \perp \nabla \Phi$. These directions therefore lie in the plane tangent to the surface $\Phi=$ constant.

In other words, $\nabla \Phi$ is in the direction of increase of the grad field.
o Furthermore

- The unit vector normal to the surface $\Phi=$ constant is then $\boldsymbol{n}=\nabla \Phi /|\nabla \Phi|$.
- The rate of change of Φ with arclength s along a curve is $\boldsymbol{t} \cdot \nabla \Phi$ where $\boldsymbol{t}=\mathrm{d} \boldsymbol{r} / \mathrm{d} s$ is the unit tangent vector to the curve.

- Other Differential Operators

o The divergence of a vector field is the scalar field

$$
\nabla \cdot \boldsymbol{F}=\left(\boldsymbol{e}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot \boldsymbol{F}=\frac{\partial F_{i}}{\partial x_{i}}
$$

o The curl of a vector field is the vector field

$$
\nabla \times \boldsymbol{F}=\left(\boldsymbol{e}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot \boldsymbol{F}=\boldsymbol{e}_{i} \varepsilon_{i j k} \frac{\partial F_{k}}{\partial x_{i}}
$$

This can also be written as a determinant

$$
\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}
\boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

o The Laplacian of a scalar field is the scalar field

$$
\nabla^{2} \Phi=\nabla \cdot(\nabla \Phi)=\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{i}}
$$

The Laplacian of a vector field is

$$
\nabla^{2} \boldsymbol{F}=\boldsymbol{e}_{i} \frac{\partial^{2} F_{i}}{\partial x_{j} \partial x_{j}}
$$

- Vector Differential Identities
o There are a number of identities relating different vector differential operators.
o Two operators, one field

$$
\begin{gathered}
\nabla \cdot(\nabla \Phi)=\nabla^{2} \Phi \\
\nabla \cdot(\nabla \times \boldsymbol{F})=0 \\
\nabla \times(\nabla \Phi)=\boldsymbol{0} \\
\nabla \times(\nabla \times \boldsymbol{F})=\nabla(\nabla \cdot \boldsymbol{F})-\nabla^{2} \boldsymbol{F}
\end{gathered}
$$

o One operator, two fields

$$
\begin{gathered}
\nabla(\Psi \Phi)=\Psi \nabla \Phi+\Phi \nabla \Psi \\
\nabla \cdot(\Phi \boldsymbol{F})=(\nabla \Phi) \cdot \boldsymbol{F}+\Phi \nabla \cdot \boldsymbol{F} \\
\nabla \times(\Phi \boldsymbol{F})=(\nabla \Phi) \times \boldsymbol{F}+\Phi \nabla \times \boldsymbol{F} \\
\nabla \cdot(\boldsymbol{F} \times \boldsymbol{G})=\boldsymbol{G} \cdot(\nabla \times \boldsymbol{F})-\boldsymbol{F} \cdot(\nabla \times \boldsymbol{G}) \\
\nabla \times(\boldsymbol{F} \times \boldsymbol{G})=(\boldsymbol{G} \cdot \nabla) \boldsymbol{F}-\boldsymbol{G}(\nabla \cdot \boldsymbol{F})-(\boldsymbol{F} \cdot \nabla) \boldsymbol{G}+\boldsymbol{F}(\nabla \cdot \boldsymbol{G}) \\
\nabla(\boldsymbol{F} \cdot \boldsymbol{G})=(\boldsymbol{G} \cdot \nabla) \boldsymbol{F}+\boldsymbol{G} \times(\nabla \times \boldsymbol{F})+(\boldsymbol{F} \cdot \nabla) \boldsymbol{G}+\boldsymbol{F} \times(\nabla \times \boldsymbol{G})
\end{gathered}
$$

o As a result of some of these identities, we have the interesting fact that:

- If a vector field \boldsymbol{F} is irrotational $(\nabla \times \boldsymbol{F}=\boldsymbol{O})$, it can be written as the gradient of a scalar potential $-\boldsymbol{F}=\nabla \Phi$.
- If a vector field \boldsymbol{F} is solenoidal $(\nabla \cdot \boldsymbol{F}=0)$, it can be written as the curl of a vector potential $-\boldsymbol{F}=\nabla \times \boldsymbol{G}$.

Integral Theorems

- The gradient theorem states that

$$
\int_{r_{1} \rightarrow \boldsymbol{r}_{2}}(\nabla \Phi) \cdot \mathrm{d} \boldsymbol{r}=\Phi\left(\boldsymbol{r}_{2}\right)-\Phi\left(\boldsymbol{r}_{\boldsymbol{1}}\right)
$$

- The divergence theorem (Gauss' Theorem) states that

$$
\int_{V}(\nabla \cdot \boldsymbol{F}) \mathrm{d} V=\oint_{S} \boldsymbol{F} \mathrm{~d} \boldsymbol{S}
$$

Where V is the volume bounded by the closed surface
S, and the vector surface element is $\mathrm{d} \boldsymbol{S}=\boldsymbol{n} \mathrm{d} S$, where
n is the outward unit normal vector.
For multiply connected volumes (eg: spherical shells),
all the surfaces must be considered.
Related results are as follows:

$$
\begin{aligned}
\int_{V}(\nabla \Phi) \mathrm{d} V & =\int_{S} \Phi \mathrm{~d} \boldsymbol{S} \\
\int_{V}(\nabla \times \boldsymbol{F}) \mathrm{d} V & =\int_{S} \mathrm{~d} \boldsymbol{S} \times \boldsymbol{F}
\end{aligned}
$$

The rule is, effectively, to replace the ∇ in the volume integral by \boldsymbol{n} in the surface one, and the $\mathrm{d} V$ by a $\mathrm{d} S$.

- The curl theorem (Stokes' Theorem) states that

$$
\int_{S}(\nabla \times F) \cdot \mathrm{d} \boldsymbol{S}=\int_{C} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}
$$

Where S is an open surface bounded by the closed curve C. The direction of $\mathrm{d} \boldsymbol{S}$ and $\mathrm{d} \boldsymbol{r}$ are chosen so that they form a right-handed system.

Again, a multiply connected surface (such as an annulus) maybe have more than one bounding curve.

- We can use these integral theorems to get geometrical interpretations of grad, div and curl.
o Consider the gradient theorem to a tiny line segment $\delta \boldsymbol{r}=\hat{\boldsymbol{t}} \delta s$. Since the variation of Φ and \hat{t} along the line are negligible, we have

$$
\begin{gathered}
\boldsymbol{t} \cdot(\nabla \Phi) \delta s \approx \delta \Phi \\
\boldsymbol{t} \cdot(\nabla \Phi)=\lim _{\delta s \rightarrow 0} \frac{\partial \Phi}{\partial s}
\end{gathered}
$$

The rate of change with distance.
o Applying the divergence theorem to an arbitrarily small volume δV bounded by δS :

$$
\nabla \cdot \boldsymbol{F}=\lim _{\partial V \rightarrow 0} \frac{1}{\delta V} \int_{\delta S} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{S}
$$

The efflux per unit volume.
o Finally, applying the url theorem to an arbitrarily small open surface δS with a unit normal vector \boldsymbol{n} and bounded by a curve δC, we find:

$$
\boldsymbol{n} \cdot(\nabla \times \boldsymbol{F})=\lim _{\delta S \rightarrow 0} \frac{1}{\delta S} \int_{\delta C} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}
$$

The circulation per unit area.

Orthogonal Curvilinear Coordinates

- Cartesian coordinates can be replaced with any independent set of coordinates
$\left(q_{1}\left[x_{1}, x_{2}, x_{3}\right], q_{2}\left[x_{1}, x_{2}, x_{3}\right], q_{3}\left[x_{1}, x_{2}, x_{3}\right]\right) . \quad$ Curvilinear (as opposed to rectilinear) means that the coordinates "axes" are curves.
- In general, curvilinear coordinates, the line element is given by

$$
\mathrm{d} \boldsymbol{r}=\boldsymbol{h}_{1} \mathrm{~d} q_{1}+\boldsymbol{h}_{2} \mathrm{~d} q_{2}+\boldsymbol{h}_{3} \mathrm{~d} q_{3}
$$

Where:

$$
\boldsymbol{h}_{i}=\boldsymbol{e}_{i} h_{i}=\frac{\partial \boldsymbol{r}}{\partial q_{i}} \quad \text { (No sum) }
$$

This determines the displacement associated with an increment in q_{i}. We have
o h_{i} is the scale factor associated with the coordinate q_{i}. It converts the coordinate increment (which might be an angle, for example) into a length. This depends on position.
o e_{i} is the corresponding unit vector. In general, this will also depend on positive.

If, at any point, $h_{i}=0$, then we have a coordinate singularity - however much we change the component q_{i}, we go nowhere.

- To find the surfaces described by keeping a certain coordinate constant, assume that it is constant and twiddle with the expressions obtained to get something recognisable. (Eliminate all non-Cartesian variables except for the one we want to keep constant). To prove that they are perpendicular, show that (for example) $\partial z /\left.\partial x\right|_{u} \partial z /\left.\partial x\right|_{v}=-1$.
- The Jacobian of (x, y, z) with respect to $\left(q_{1}, q_{2}, q_{3}\right)$ is defined as:

$$
J=\frac{\partial(x, y, z)}{\partial\left(q_{1}, q_{2}, q_{3}\right)}=\left|\begin{array}{lll}
\partial x / \partial q_{1} & \partial x / \partial q_{2} & \partial x / \partial q_{3} \\
\partial y / \partial q_{1} & \partial y / \partial q_{2} & \partial y / \partial q_{3} \\
\partial z / \partial q_{1} & \partial z / \partial q_{2} & \partial z / \partial q_{3}
\end{array}\right|
$$

The columns of the Jacobian are the vectors \boldsymbol{h}_{i} as defined above. Therefore

$$
J=\boldsymbol{h}_{1} \cdot \boldsymbol{h}_{2} \times \boldsymbol{h}_{\boldsymbol{3}}
$$

- The volume element in a general curvilinear coordinate system is therefore

$$
\mathrm{d} V=\left|\frac{\partial(x, y, z)}{\partial\left(q_{1}, q_{2}, q_{3}\right)}\right| \mathrm{d} q_{1} \mathrm{~d} q_{2} \mathrm{~d} q_{3}
$$

The Jacobian therefore appears whenever changing variables in a multiple integral. The modulus sign appears because when changing the limits of integration, one is likely to place them in the right direction (ie: upper limits greater than lower limits), even if q actually decreases as x increases.

- If we consider three sets of n variables, α_{i}, β_{i} and γ_{i}, then, by the chain rule for partial differentiation:

$$
\frac{\partial \alpha_{i}}{\partial \gamma_{j}}=\sum_{k=1}^{n} \frac{\partial \alpha_{i}}{\partial \beta_{k}} \frac{\partial \beta_{k}}{\partial \gamma_{j}}
$$

Taking the determinant of this matrix equation, we find that:

$$
\frac{\partial\left(\alpha_{1}, \cdots, \alpha_{n}\right)}{\partial\left(\gamma_{1}, \cdots, \gamma_{n}\right)}=\frac{\partial\left(\alpha_{1}, \cdots, \alpha_{n}\right)}{\partial\left(\beta_{1}, \cdots, \beta_{n}\right)} \frac{\partial\left(\beta_{1}, \cdots, \beta_{n}\right)}{\partial\left(\gamma_{1}, \cdots, \gamma_{n}\right)}
$$

In other words, the Jacobian of a composite transformation is the product of the Jacobians of the transformations of which it is composed. In the special case where $\gamma_{i}=\alpha_{i}$ for all i, we get a rule for the inversion of a Jacobian.

- Things are made easier when the coordinates we choose are orthogonal:

$$
\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}
$$

and right-handed

$$
e_{1} \times e_{2}=e_{3}
$$

In this case
o The line element is given by $\mathrm{d} \boldsymbol{r}=\boldsymbol{e}_{1} h_{1} \mathrm{~d} q_{1}$
o The surface element is given by

$$
\mathrm{d} \boldsymbol{S}=\boldsymbol{e}_{3} h_{1} h_{2} \mathrm{~d} q_{1} \mathrm{~d} q_{2} .
$$

o The volume element is given by $\mathrm{d} V=h_{1} h_{2} h_{3} \mathrm{~d} q_{1} \mathrm{~d} q_{2} \mathrm{~d} q_{3}$.
o The Jacobian is simply $J=h_{1} h_{2} h_{3}$.

- In general

$$
\begin{gathered}
\nabla \Phi=\frac{\boldsymbol{e}_{1}}{h_{1}} \frac{\partial \Phi}{\partial q_{1}}+\frac{\boldsymbol{e}_{2}}{h_{2}} \frac{\partial \Phi}{\partial q_{2}}+\frac{\boldsymbol{e}_{3}}{h_{3}} \frac{\partial \Phi}{\partial q_{3}} \\
\nabla \cdot \boldsymbol{F}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(h_{2} h_{3} F_{1}\right)+\frac{\partial}{\partial q_{2}}\left(h_{3} h_{1} F_{2}\right)+\frac{\partial}{\partial q_{3}}\left(h_{1} h_{2} F_{3}\right)\right] \\
\nabla \times \boldsymbol{F}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \boldsymbol{e}_{1} & h_{2} \boldsymbol{e}_{2} & h_{3} e_{3} \\
\partial / \partial q_{1} & \partial / \partial q_{2} & \partial / \partial q_{3} \\
h_{1} F_{1} & h_{2} F_{2} & h_{3} F_{3}
\end{array}\right| \\
\nabla^{2} \Phi=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \Phi}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial \Phi}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \Phi}{\partial q_{3}}\right)\right]
\end{gathered}
$$

- Commonly used orthogonal coordinate systems are:

o Cartesian coordinates

o Cylindrical polar coordinates

Where:

- $0<\rho<\infty, 0 \leq \phi<2 \pi,-\infty<z<\infty$.
- $\boldsymbol{r}=(x, y, z)=(\rho \cos \phi, \rho \sin \phi, z)$
- $\boldsymbol{h}_{\rho}=\frac{\partial \boldsymbol{r}}{\partial \rho}=(\cos \phi, \sin \phi, 0)$
- $\boldsymbol{h}_{\phi}=\frac{\partial \boldsymbol{r}}{\partial \phi}=(-\rho \sin \phi, \rho \cos \phi, 0)$
- $\boldsymbol{h}_{z}=\frac{\partial \boldsymbol{r}}{\partial z}=(0,0,1)$
- $h_{\rho}=1 \quad e_{\rho}=(\cos \phi, \sin \phi, 0)$
- $h_{\phi}=\rho \quad \boldsymbol{e}_{\phi}=(-\sin \phi, \cos \phi, 0)$
- $h_{z}=1 \quad \boldsymbol{e}_{z}=(0,0,1)$
- $\mathrm{d} V=\rho \mathrm{d} \rho \mathrm{d} \phi \mathrm{d} z$
- The system is singular on the axis $\rho=0$.

o Spherical polar coordinates

Where:

- $0<r<\infty, 0<\theta<\pi, 0 \leq \phi<2 \pi$.
- $\boldsymbol{r}=(x, y, z)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$
- $\boldsymbol{h}_{r}=\frac{\partial \boldsymbol{r}}{\partial r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
- $\boldsymbol{h}_{\theta}=\frac{\partial \boldsymbol{r}}{\partial \theta}=(r \cos \theta \cos \phi, r \cos \theta \sin \phi,-r \sin \theta)$
- $\boldsymbol{h}_{\phi}=\frac{\partial \boldsymbol{r}}{\partial \phi}=(-r \sin \theta \sin \phi, r \sin \theta \cos \phi, 0)$
- $h_{r}=1 \quad \boldsymbol{e}_{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
- $h_{\theta}=r \quad \boldsymbol{e}_{\theta}=(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta)$
- $h_{\phi}=r \sin \theta \quad \boldsymbol{e}_{z}=(-\sin \phi, \cos \phi, 0)$
- $\mathrm{d} V=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi$
- The system is singular on the axis $r=0, \theta=0$ and $\theta=\pi$.
- Related to cylindrical polars by

$$
\begin{aligned}
& \rho=r \sin \theta \\
& z=r \cos \theta
\end{aligned}
$$

