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Vector Calculus

Suffix Notation

e We define the Knonecker Delta and the Levi-Civita

permutation symbol as

1 if i = j
i~ o otherwise
1 if (4, j,k) is an even permuation of (1,2,3)
Ejn =11 if (i,7,k) is an odd permuation of (1,2, 3)
0 otherwise

e We then have that
axb=c¢,ab,

det A = 5i]‘kA1zA2jA3k
e The general identity
62'1 im n
8ijk(c;lmn = 6]'1 jm jn
5kl 5km 6kn

Can be established by the following argument:

o It is equal to 1 when (i,4,k) = (I,m,n) = (1,2,3)
(the matrix, in that case, is simply identity
matrix).

0 Changes sign when any of (i,7,k) or (l,m,n) are
interchanged (by the rules of determinants).

0 This last property also implies that if any of
the (4,7,k) or (I,m,n) are equal, it is equal to 0.
[Swapping those two equal indices gives
r = — x, which gives z = 0)].

These properties ensure that the RHS and LHS are
equal for any index.
e If we contract the identity once by setting [ = i, we

get

EkEimn = 0

mn Jm

6]m - 6 5

jn"km
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This is the most useful form to remember.

Vector Differential Operators

e GRAD
o If we consider a scalar field, ®(z,y,2) = ®(r),

Taylor’s Theorem states that
0P 0P

O(x + dz,y + Oy, 2 + 62) = P(z,y,2) +8_6x +-—9, +8_5Z + O(62°,626y,...)

x oy
Or
O(r + 6r) = D(r) + (V) - 67 + O(|5r|2)
Where
0 0

0
V=—"e +—e +—
8w61 8ye‘” azez

S
oz,

And for an infinitesimal increment, we can
write
dP=(V®)-dr
And the grad operator is V.
0 The geometrical interpretation of the grad
operator is that
t-Vo
Is the directional derivative — the rate of
change of ® with distance in the direction & .
0 Note that

» The derivative is maximal in the
direction ¢ || V®.

» The derivative is zero in directions such
that ¢ L V®. These directions therefore
lie in the plane tangent to the surface
® = constant .

In other words, V® is in the direction of
increase of the grad field.

0 Furthermore
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* The unit vector normal to the surface
® = constant is then n = V®/|VY|.
» The rate of change of ® with arclength s
along a curve is t-V®  where
t = dr/ds is the unit tangent vector to
the curve.
e OTHER DIFFERENTIAL OPERATORS

0 The divergence of a vector field is the scalar

field
vop_[e ] p_oF
oz, oz,
0 The curl of a vector field is the vector field
VxF = eii -F = eiei.k%
oz, " O,

This can also be written as a determinant

(S € e

fi y z
VxF =|0/0x 0/0y 0]0z
FEF F
0 The Laplacian of a scalar field is the scalar field
2
Vo =V (VD) = oo
O0x,0x,
The Laplacian of a vector field is
2
V’F = e, ok
Jz 0,

e VECTOR DIFFERENTIAL IDENTITIES
O There are a number of identities relating
different vector differential operators.

0 Two operators, one field

V- (V®) = Vo
V- (VxF)=0
Vx(V®)=0

Vx(VxF)=V(V-F)-VF
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0 One operator, two fields
V(UP) = IV + VU

V- (®F)=(V®)-F +dV.F
VX (®F)=(VP)x F +dV X F
V- (FxG)=G-(VxF)—F-(VxG)

Vx(FxG)=(G-V)F -GV -F)—(F-V)G+F(V-G)
V(F-G)=(G-V)F+Gx(VxF)+(F-V)G+Fx(VxG)

0 As a result of some of these identities, we have
the interesting fact that:

» If a vector field F 1is irrotational
(VXxF =0), it can be written as the
gradient of a scalar potential - F = V®.

» If a wvector field F is solenoidal
(V-F =0), it can be written as the curl
of a vector potential - F = V xG .

Integral Theorems
e The gradient theorem states that
[ (V) dr = B(r) — ()
e The divergence theorem (Gauss’ Theorem) states that

fv(v-F)dvzgﬁ;Fds

Where V is the volume bounded by the closed surface
S, and the vector surface element is dS = ndS, where

n is the outward unit normal vector.

For multiply connected volumes (eg: spherical shells),

all the surfaces must be considered.

Related results are as follows:

fv(wb)dvzfscpds
[ (xmdv = [ dSxF
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The rule is, effectively, to replace the V in the volume
integral by m in the surface one, and the dV by a dS.
e The curl theorem (Stokes’ Theorem) states that

fS(VxF)-dS:fCF-dr

Where § is an open surface bounded by the closed
curve C. The direction of d.S and dr are chosen so

that they form a right-handed system.

Again, a multiply connected surface (such as an
annulus) maybe have more than one bounding curve.

e We can use these integral theorems to get geometrical
interpretations of grad, div and curl.

0 Consider the gradient theorem to a tiny line
segment 6r = t8s. Since the variation of @
and t along the line are negligible, we have

t-(VP)os ~ 6@
t- (Vo) = lima—q)

6s—0 aS

The rate of change with distance.
O Applying the divergence theorem to an
arbitrarily small volume 6V bounded by 65 :

V-F:Iimi F.ds
ov—0 Y Jés

The efflux per unit volume.

0 Finally, applying the url theorem to an
arbitrarily small open surface 65 with a unit
normal vector m and bounded by a curve 6C,

we find:

n~(V><F):limL F.dr
55—0 §8 J s

The circulation per unit area.
Orthogonal Curvilinear Coordinates

e Cartesian coordinates can be replaced with any

independent set of coordinates
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(¢,[z), 20, 2], 0] 2, 2y, 2] @[ 2, 25,2, ]) . Curvilinear  (as
opposed to rectilinear) means that the coordinates
“axes” are curves.

e In general, curvilinear coordinates, the line element is

given by
dr = h,dq, + h,dg, + h,dg,
Where:
or
h, =eh = — (No sum)
dg,

This determines the displacement associated with an
increment in ¢. We have
O h;, is the scale factor associated with the
coordinate ¢. It converts the coordinate
increment (which might be an angle, for
example) into a length. This depends on
position.
O e, is the corresponding unit vector. In general,
this will also depend on positive.
If, at any point, h, = 0, then we have a coordinate
singularity — however much we change the component
q;,, we go nowhere.

e To find the surfaces described by keeping a certain
coordinate constant, assume that it is constant and
twiddle with the expressions obtained to get something
recognisable. (Eliminate all non-Cartesian variables
except for the one we want to keep constant). To
prove that they are perpendicular, show that (for
example) 9z /0z| 9z /0z| =—1.

e The Jacobian of (z,y,z) with respect to (q,,q,,q;) is
defined as:

Jx/dq, Ox/dq, Ox/0q,
=|0y/0q, Oy/0q, Oy/0q,
0z/0q, 0z/0q, 0z/0q,

(z,y,2)
0(4,,0,,45)

J =
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The columns of the Jacobian are the vectors h, as
defined above. Therefore
J=hh,xh,
e The volume element in a general -curvilinear
coordinate system is therefore
O(z,y, 2)
94,59, 45)

The Jacobian therefore appears whenever changing

dV = dg, dg,dg,

variables in a multiple integral. The modulus sign
appears because when changing the limits of
integration, one is likely to place them in the right
direction (ie: upper limits greater than lower limits),
even if ¢q actually decreases as x increases.

o If we consider three sets of n variables, «,, 8, and 7,,

then, by the chain rule for partial differentiation:

Oa; < 0a; 9B,
9y, = 96, 9,
Taking the determinant of this matrix equation, we

find that:
a(alv"'aan) a(ala"'van> 8(517"'757:)

8(717"'5’771) B a(ﬁla"'vﬁn) 8(717"'5’771)

In other words, the Jacobian of a composite

transformation is the product of the Jacobians of the
transformations of which it is composed. In the special
case where v, =, for all i, we get a rule for the
inversion of a Jacobian.

e Things are made easier when the coordinates we

choose are orthogonal:

and right-handed
e xXe, =e,
In this case

0 The line element is given by dr = e hdg

0 The surface element is given by

dS = e, hh,dgdg,.
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O The  volume  element is given by
dV = hhh,dgdg,dg,.
0 The Jacobian is simply J = hh,h, .
e In general
vp_a0® 0% e 00
h 8¢, hy gy,  hy g,
1 0 0 0
V. F = — (WhF) + —(hl F) + — E
Ty B+ 5 R E) 4G 9]
hie, h,e, hye,
VxF=——|0/0q 8/dq, 0]0q,
1 3
hWE - hE hE
vip_ L |0 [h2h3 a<1>]+ d [h3h1 a<1>]+ d [mhz P
Mhohy |Og, | Iy Dg, 9¢,\ hy, 9q, 9¢;\ hy Og,

e Commonly used orthogonal coordinate systems are:

0 Cartesi

an coordinates

0 Cylindrical polar coordinates

Where:
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0<p<oo,0<p<2T, —c0<2<X.

r= (ZE,y,Z) = (pCOS¢7pSin¢7Z)

h, :g—::(cosgb,singb,O)
h, —ﬁ—(— sin ¢, p cos ¢,0)
b T a¢ - :0 ?:0 )
or
h=2"—0,01
=2 001)
h, =1 e, = (cos ¢,sin ¢,0)
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= h,=p e, = (—sin¢,cos ¢,0)

= h =1 e, =(0,0,1)

= dV =pdpdedz

» The system is singular on the axis
p=0.

0 Spherical polar coordinates
z

(z,9,2)

r

< t
N
N
N
N
N
N
N
N

" 0<r<oo,0<f<m,0<¢<2m.
» 7 =(z,y,2) = (rsinfcosp,rsinfsin ¢,r cosh)

1
1
1
1
I
I
I
1
1
1
1
I
I
I
N

* h = ? = (sin 0 cos ¢, sin @ sin ¢, cos 0)
r

or : .
* h,= i (r cos @ cos ¢, 1 cos O sin ¢, —rsin 0)

or o .
* h,=—=(—rsinfsing,rsinfcos¢,0)

d¢
= h =1 e, = (sin 6 cos ¢, sin @ sin ¢, cos b))
= h=r e, = (cos B cos ¢,cosf sin ¢, —sin 6)

= h,=rsinf e, =(—sing,cos®,0)
= dV =r’sinf drdfde
» The system is singular on the axis
r=0,0=0and 6 =7.
= Related to cylindrical polars by
p =rsind

z =rcosf
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