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Variational Methods

Constrained Maximisation

e Consider a function f(z) in three dimensions, and
apply a small displacement 6x = x4+ dy+---.
Taylor’s Theorem states that:

flx+ éx) = f(m)+ﬁ6x+ﬁay+...
(9.’17 8y

So:
0 Jy

x

As the displacement shrinks to 0:
df =Vf.-dz
e At an extremum, f must be stationary — the first
variation of df must vanish for all directions. This can
only occur if
e However, if we are trying to maximise with respect to
a constraint g(x) =c, then the first variation in df

must also vanish, but not in all directions.

This means that Vf no longer needs to be 0, but

needs to be perpendicular to the surface defined by
g(@) =c.
However, the normal to the surface g(z)=c is given

by Vg. As such, Vf needs to be parallel to Vg. In

other words, Vf = AVg. Therefore, we need to solve
V(f=Ag)=0

g9(x) = c

An extension to a higher number of constraints is

simple [V(f —Ag—ph—--)=0]
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The Euler-Lagrange Equations

e A functional is a real-valued mapping whose

arguments are functions — ie:

F' : one or more functions — R
e We only consider functionals of the form

= j;bf(x,y,y’)dx
Where y is a function of z.
e Our task is to find the form of y which makes
stationary our functional with fixed values of y at the

end-points.

To do this, we consider changing y to some “nearby”
function y(z)+ éy(z) and calculate the corresponding

change 6F in F.
6F = Fly + éy] — Fly]

= [ fy + buyf + 69 )da— [ fay)dr

Taylor expansion, ignoring higher order terms

—f f@yy >+§—f6y+§f, y>’dx—ﬁbf<x,y,y' da
of of
:L oy —(0y da:—i—f 6ydx

Must be 0, because
y is fixed at end-points
and so dy vanishes at
end-points
——t—

= [5—5,53/[ f = [ ](5 dz —I—f 6yd:1:

Lo
o |0y dz |0y

And since we want O0F =0 for all possible small

variations 6y, we must have

55 ~iclon]
oy dz|oy

This is the Euler-Lagrange Equation.
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Note: the partial derivatives are formal — we evaluate
them assuming that ¢’ and y are unrelated. However,
the complete derivative needs to be done “properly”.

e If there are n dependent functions, then the expression

above becomes

5F = Zf {ay d$[§§]}5 do

Which makes it clear that every variable needs to
satisfy the Euler-Lagrange Equation independently.
e Consider a few simplifying cases:
0 fdoes not contain y explicitely
In that case, the Euler-Lagrange equation

becomes:

— = constant

Y
O fdoes not contain x explicitly

Using the chain rule on f, we have

d
_f:g+ﬁy/+a_f/ "
dz 0Oz Oy oy

Then, obtaining Jf/0dy from the E-L

equation:
df _~of ,d|0f| Of 4
de oz 0 ds oy') 0y Y
0 0
o Ao
Oor dz\~ Oy
So:
A, 00 o
dz oy’ 0
If fhas no explicit « depence, then
f— y'a—f, = constant
dy

(Or, for n-variables:

f— Z yt = constant )

i
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Constrained Variation

e Consider a situation in which we want to find the
stationary value of F[y| subject to G[y] = c.
e In that case, simply construct the new functional

Fly] = AGly]

And minimise it, using G[y| = ¢ to eliminate .

Physical Examples

e Fermat’s Principle, in optics, states that the path of a
ray of light will follow a path such that the total
optical path length (Physical length x Refractive

indez) is stationary. In other words, minimising

B
fA u(r)di
e Hamilton’s Principle of Least Action states that if a
mechanical system is uniquely defined by a number of
coordinates ¢q; and time, and only experiences forces
derivable from a potential, then the motion of such a

system is such as to make
tl . .
L= j; L(Qv"'qrz,aqlf"qrz,vt)dt

stationary. L is the Lagrangian of the system, defined

by its kinetic energy T and potential energy V as:
L=T-V

Sturm-Liouville Problems — Introduction

e We show that the following three problems are
equivalent:
0 Find the eigenvalues and eigenfunctions that

solve the Sturm-Liouville problem:

—[py] +aqy = Moy
Between a and b where, in that interval
" p(x)=0
= w(x)>0
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0 Find the functions y(z) for which

)= [ oy + ') da

is stationary subject to

b
G[y]zfa py'dz =1
0 Find the functions y(z) for which

Ay =g

is stationary. A is the Rayleigh Quotient.
Furthermore, if y satisfies the appropriate boundary
constraints for Sturm-Liouville problems, the value of
Fly] and Aly| are the eigenvalues of the problem.
e EQUIVALENCE OF (1) AND (2)
To solve (2), we need to find the stationary
function of the functional F —\G. By the E-L

equations, this happens where

d
a(%y’) = 2qy — 2\py

d
——(py") +qy = Apy
dzx

Which is, indeed, the Sturm-Liouville equation.

Furthermore, multiplying by y and integrating:

Just the above, multiplied by y and integrated

b d b '
[ —y—(y) +ay’ de = [ Npy’dz = XGly] = A
a d:L' a
So:

b d b
Az—fa ya(py')d%ﬁ; qy* dz
=0 because of BC
b b
= —[wy] + f y'py' dz + f gy’ dz
= fbpy’2 +qy*da

= Fly]
So we do indeed see that the values of F[y|] are the

eigenvalues.
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T G+6G G

:F+6F[1
G
F+6F[1
G
_8F FéG

T @

~
~

5GY' F
E] G
5G) F
E]_E

This means that 6A is stationary only if
6F _ FoG
G G®

sp_ oG
G

OF — AOG

=0
=0

The eigenvalue equivalence can be obtained using

similar logic.

NOTE: in sooth, the first and third methods do not

impose G[y] = 1, whereas the second method does,

but that can easily be fixed by a quick re-scaling

of y — ay. This doesn’t affect the linear equation

in (1), nor does it change the ratio in (3), so the

eigenvalues are still the same.

Sturm-Liouville Problems - Rayleigh-

Ritz Method

e Since the eigenvalues A\

of

K3

the Sturm-Liouville

equation are the stationary values of A (assuming the

boundary conditions work), any evaluation of A

should give a value that lies between the highest and

lowest

eigenvalues

of the

Liouville equation:
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e This allows us to develop a systematic method to
estimate the lowest eigenvalue of a Sturm-Liouville
Equation:

0 Re-formulate the problem as a variational
principle.

0 Using whatever clues are available (eg:
symmetry considerations, general Theorems like
“the ground state has no nodes”, etc...) we
make an educated guess at the true
eigenfunction with the lowest eigenvalue.

0 It is preferable for the trial to have as many
adjustable parameters as possible (for example,
by using linear combinations of trial solutions).

o Calculate Aly,;,], which will depend on these
adjustable parameters — we then calculate the
minimum of A w.r.t. these parameters.

0 We can then state that the lowest eigenvalue is
N <A

e The approximation is good:

0 If y,. is close to the true eigenfunction (say
within O(e) of it) then the calculated A
be within O(¢®).

i Wil

0 We can improve the approximation by
introducing more adjustable parameters.

0 If more adjustable parameters fail to
significantly improve the approximation, we
can reasonably be sure that the approximation
is good.

0 If the trial solution contains the exact y, as a

special case, then A . would be exact.

e To find higher eigenvalues, we simply use trial
solutions that are orthogonal to all previous trial

solutions.
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Sturm-Liouville Problems — Perturbed

Operators
e Assume that y, is an eigenfunction of
~(py") +ay = Aoy
e Now consider a new problem:
—(py') +dy = My
Where

p=p+obp

e Now, for this new equation:
F+6F

G +6G
1(, G
= (F+6F)—[1-Z

( )G[ G]

[F 6F][ 6G]
==+ —|1-=
¢ ¢l ¢
_F _F§G  6F

———
G & G
§G SF
A —
G G

1
= A+ —[6F - X6G
Z[6F =266

A+ 6\ = Ay, + 6y) =

(To first order).

e However, A, and therefore A\ is stationary with

respect to first-order perturbations in y,. Therefore:
b
[ (6p)y? + (Bay = AGw)y; da
b
[ oy da

O\ =

Practical Tips

e In 3D problems in space, when trying to find

maximum values in a certain area and on it, proceed

as follows:
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0 Solve the problem with the constraint that the
points must be on the surface of the volume.
0 Solve the problem with no constraint, and just
pick up the solutions in the volume.
e To find the geodesics on a surface:
0 Find an expression for dr in an appropriate

coordinate system.
B
o Find an expression for fA |dr| in the said

coordinate system, ignoring products of
infinitesimal quantities.

0 Get one of the “d”s out of the square root, to
form a normal integral.

0 Deduce what A and B are.

e When using Fermat’s Principle, evaluate d/ as follows:

0 di=.[da’ +dy’

0 dimdnfir (T

0 di=dzy1+2?, where 2(x) is the path
followed by the light.

e In general, it’s better not to expand out expressions in
the functional — they can be differentiated just fine as-
is.

e Notes about Lagrangians in spherical polars

0 The 6 E-L equation will always reveal that

.
r°0 = constant
This is the conservation of angular momentum.

e Any variable “missing” from the Langrangian implies

a conserved quantity.
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