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Variational Methods 
 

Constrained Maximisation 
 Consider a function ( )f x  in three dimensions, and 

apply a small displacement x yd d d= + +x  . 

Taylor’s Theorem states that: 

( ) ( )
f f

f f x y
x y

d d
¶ ¶

+ = + + ¶ +
¶ ¶

x x x  

So: 

f f
x y f

x y
d d d

¶ ¶
= + ¶ + =  ⋅ +

¶ ¶
f x  

As the displacement shrinks to 0: 

d df f=  ⋅ x  

 At an extremum, f must be stationary – the first 

variation of df must vanish for all directions. This can 

only occur if 

f = 0  

 However, if we are trying to maximise with respect to 

a constraint ( )g c=x , then the first variation in df 

must also vanish, but not in all directions. 
 

This means that f  no longer needs to be 0, but 

needs to be perpendicular to the surface defined by 

( )g c=x . 
 

However, the normal to the surface ( )g c=x  is given 

by g . As such, f  needs to be parallel to g . In 

other words, f gl =  . Therefore, we need to solve 

( )

( )

f g

g c

l - =

=

0

x
 

An extension to a higher number of constraints is 

simple [ ( )f g hl m - - - = 0 ] 
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The Euler-Lagrange Equations 
 A functional is a real-valued mapping whose 

arguments are functions – ie: 

: one or more functionsF    
 We only consider functionals of the form 

[ ] ( , , )d
b

a
F y f x y y x¢= ò  

Where y is a function of x. 

 Our task is to find the form of y which makes 

stationary our functional with fixed values of y at the 

end-points. 
 

To do this, we consider changing y to some “nearby” 

function ( ) ( )y x y xd+  and calculate the corresponding 

change Fd  in F. 

Taylor expansion, ignoring higher order terms

[ ] [ ]

( , , ( ) )d ( , , )d

( , , ) ( ) d ( , , )d

( ) d d

b b

a a

b b

a a

b

a a

F F y y F y

f x y y y y x f x y y x

f f
f x y y y y x f x y y x

y y

f f
y x y x

y y

d d

d d

d d

d d

= + -

¢ ¢ ¢= + + -

¶ ¶¢ ¢ ¢= + + -
¢¶ ¶

¶ ¶¢= +
¢¶ ¶

ò ò

ò ò

ò



Must be 0, because
 is fixed at end-points
and so  vanishes at

end-points

d
d d

d

d
d

d

b

y
y

b
b b

a a
a

b

a

f f f
y y x y x

y x y y

f f
y x

y x y

d

d d d

d

é ù æ ö¶ ¶ ¶÷çê ú= - +÷ç ÷ç ÷ê ú¢ ¢¶ ¶ ¶è øë û
ì üæ öï ï¶ ¶ï ï÷ç= - ÷í ýç ÷ç ÷ï ï¢¶ ¶è øï ïî þ

ò

ò ò

ò



And since we want 0Fd =  for all possible small 

variations yd , we must have 

d

d

f f

y x y

æ ö¶ ¶ ÷ç= ÷ç ÷ç ÷¢¶ ¶è ø
 

This is the Euler-Lagrange Equation. 
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Note: the partial derivatives are formal – we evaluate 

them assuming that y ¢  and y are unrelated. However, 

the complete derivative needs to be done “properly”. 

 If there are n dependent functions, then the expression 

above becomes 

1

d
d

d

n b

i
a

i i i

f f
F y x

y x y
d d

=

ì üæ öï ï¶ ¶ ÷ï ïç ÷= - çí ý÷ç ÷çï ï¶ ¶è øï ïî þ
åò  

Which makes it clear that every variable needs to 

satisfy the Euler-Lagrange Equation independently. 

 Consider a few simplifying cases: 

o f does not contain y explicitely 

In that case, the Euler-Lagrange equation 

becomes: 

constant
f

y

¶
=

¢¶
 

o f does not contain x explicitly 

Using the chain rule on f, we have 

d

d

f f f f
y y

x x y y

¶ ¶ ¶¢ ¢¢= + +
¢¶ ¶ ¶

 

Then, obtaining /f y¶ ¶  from the E-L 

equation: 

d d

d d

d

d

f f f f
y y

x x x y y

f f
y

x x y

æ ö¶ ¶ ¶÷ç¢ ¢¢= + +÷ç ÷ç ÷¢ ¢¶ ¶ ¶è ø
æ ö¶ ¶ ÷ç ¢= + ÷ç ÷ç ÷¢¶ ¶è ø

 

So: 

d

d

f f
f y

x y x

æ ö¶ ¶÷ç ¢- =÷ç ÷ç ÷¢¶ ¶è ø
 

If f has no explicit x depence, then 

constant
f

f y
y

¶¢- =
¢¶

 

(Or, for n-variables: 

1

constant
n

i
i i

f
f y

y=

¶¢- =
¢¶å ) 
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Constrained Variation 
 Consider a situation in which we want to find the 

stationary value of F[y] subject to G[y] = c. 

 In that case, simply construct the new functional 

[ ] [ ]F y G yl-  

And minimise it, using G[y] = c to eliminate l . 

 

Physical Examples 
 Fermat’s Principle, in optics, states that the path of a 

ray of light will follow a path such that the total 

optical path length (Physical length × Refractive 

index) is stationary. In other words, minimising 

( )d
B

A
lmò r  

 Hamilton’s Principle of Least Action states that if a 

mechanical system is uniquely defined by a number of 

coordinates qi and time, and only experiences forces 

derivable from a potential, then the motion of such a 

system is such as to make 
1

0
1 1( , , , , )d

t

n n
t

L q q q q t t= ò     

stationary. L is the Lagrangian of the system, defined 

by its kinetic energy T and potential energy V as: 

L T V= -  
 

Sturm-Liouville Problems – Introduction 
 We show that the following three problems are 

equivalent: 

o Find the eigenvalues and eigenfunctions that 

solve the Sturm-Liouville problem: 

py qy ylr¢é ù¢- + =ë û  

Between a and b where, in that interval 

 ( ) 0p x ¹  
 ( ) 0w x >  
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o Find the functions y(x) for which 

2 2[ ] [ ] d
b

a
F y py qy x¢= +ò  

is stationary subject to 

2[ ] d 1
b

a
G y y xr= =ò  

o Find the functions y(x) for which 

[ ]
[ ]

[ ]

F y
y

G y
L =  

is stationary. L  is the Rayleigh Quotient. 

Furthermore, if y satisfies the appropriate boundary 

constraints for Sturm-Liouville problems, the value of 

[ ]F y  and [ ]yL  are the eigenvalues of the problem. 

 EQUIVALENCE OF (1) AND (2) 

To solve (2), we need to find the stationary 

function of the functional F Gl- . By the E-L 

equations, this happens where 

d
(2 ) 2 2

d

d
( )

d

py qy y
x

py qy y
x

lr

lr

¢ = -

¢- + =
 

Which is, indeed, the Sturm-Liouville equation. 

Furthermore, multiplying by y and integrating: 
Just the above, multiplied by  and integrated

2 2d
( ) d d [ ]

d

y

b b

a a
y py qy x y x G y

x
lr l l¢- + = = =ò ò


 

So: 

2

0 because of BC

2

2 2

d
( )d d

d

d d

d

[ ]

b b

a a

b bb

a a a

b

a

y py x qy x
x

ypy y py x qy x

py qy x

F y

l

=

¢= - +

é ù¢ ¢ ¢= - + +ë û

¢= +

=

ò ò

ò ò

ò


 

So we do indeed see that the values of F[y] are the 

eigenvalues. 
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 Equivalency of (2) and (3) 

Consider 

1

2

1

1

F F F

G G G

F F G F

G G G

F F G F

G G G
F F G

G G

d
d

d
d d

d d

d d

-

+
L = -

+
æ ö+ ÷ç= + -÷ç ÷çè ø
æ ö+ ÷ç» - -÷ç ÷çè ø

» -

 

This means that dL  is stationary only if 

2

0

0

F F G

G G
F G

F
G

F G

d d

d
d

d d

=

- =

-L =

 

The eigenvalue equivalence can be obtained using 

similar logic. 

 

NOTE: in sooth, the first and third methods do not 

impose G[y] = 1, whereas the second method does, 

but that can easily be fixed by a quick re-scaling 

of y ya . This doesn’t affect the linear equation 

in (1), nor does it change the ratio in (3), so the 

eigenvalues are still the same. 

 

Sturm-Liouville Problems – Rayleigh-

Ritz Method 

 Since the eigenvalues il  of the Sturm-Liouville 

equation are the stationary values of L  (assuming the 

boundary conditions work), any evaluation of L  

should give a value that lies between the highest and 

lowest eigenvalues of the corresponding Sturm-

Liouville equation: 

min maxl l£ L <  

One of minl  or maxl  will be infinite. 



  Page 7 of 9 

Maths Revision Notes © Daniel Guetta, 2008 

 This allows us to develop a systematic method to 

estimate the lowest eigenvalue of a Sturm-Liouville 

Equation: 

o Re-formulate the problem as a variational 

principle. 

o Using whatever clues are available  (eg: 

symmetry considerations, general Theorems like 

“the ground state has no nodes”, etc…) we 

make an educated guess at the true 

eigenfunction with the lowest eigenvalue. 

o It is preferable for the trial to have as many 

adjustable parameters as possible (for example, 

by using linear combinations of trial solutions). 

o Calculate trial[ ]yL , which will depend on these 

adjustable parameters – we then calculate the 

minimum of L  w.r.t. these parameters. 

o We can then state that the lowest eigenvalue is 

0 minl £ L . 

 The approximation is good: 

o If ytrial is close to the true eigenfunction (say 

within ( )O e  of it) then the calculated minL  will 

be within ( )2O e . 

o We can improve the approximation by 

introducing more adjustable parameters. 

o If more adjustable parameters fail to 

significantly improve the approximation, we 

can reasonably be sure that the approximation 

is good. 

o If the trial solution contains the exact y0 as a 

special case, then minL  would be exact. 

 To find higher eigenvalues, we simply use trial 

solutions that are orthogonal to all previous trial 

solutions. 
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Sturm-Liouville Problems – Perturbed 

Operators 

 Assume that yl  is an eigenfunction of 

( )py qy ylr¢ ¢- + =  

 Now consider a new problem: 

ˆˆ ˆ ˆ( )py qy ylr¢ ¢- + =  

Where 

ˆ

ˆ

ˆ

p p p

q q q

d

d

r r dr

= +

= +

= +

 

 Now, for this new equation: 

[ ]

2

ˆ( )

1
( ) 1

1

1

F F
y y

G G
G

F F
G G

F F G

G G G
F F G F

G G G
G F

G G

F G
G

l

d
l dl d

d
d

d

d d

d d

d d
l l

l d ld

+
+ = L + =

+
æ ö÷ç= + - ÷ç ÷çè ø

æ öæ ö÷ ÷ç ç= + -÷ ÷ç ç÷ ÷ç çè øè ø

= - +

= - +

= + -

 

(To first order). 

 However, L , and therefore l  is stationary with 

respect to first-order perturbations in yl . Therefore: 

2 2 2

2

( ) ( ) ( ) d

d

b

a
b

a

p y q y w y x

y x

l l l

l

d d l d
dl

r

¢ + -
=
ò

ò
 

 

Practical Tips 
 In 3D problems in space, when trying to find 

maximum values in a certain area and on it, proceed 

as follows: 
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o Solve the problem with the constraint that the 

points must be on the surface of the volume. 

o Solve the problem with no constraint, and just 

pick up the solutions in the volume. 

 To find the geodesics on a surface: 

o Find an expression for dr in an appropriate 

coordinate system. 

o Find an expression for d
B

Aò r  in the said 

coordinate system, ignoring products of 

infinitesimal quantities. 

o Get one of the “d”s out of the square root, to 

form a normal integral. 

o Deduce what A and B are. 

 When using Fermat’s Principle, evaluate dl as follows: 

o 2 2d d dl x y= +  

o ( )2d
dd d 1 y
xl x= +  

o 2d d 1l x z ¢= + , where z(x) is the path 

followed by the light. 

 In general, it’s better not to expand out expressions in 

the functional – they can be differentiated just fine as-

is. 

 Notes about Lagrangians in spherical polars 

o The q  E-L equation will always reveal that 

2 constantr q =  
This is the conservation of angular momentum. 

 Any variable “missing” from the Langrangian implies 

a conserved quantity. 

 


