Variational Methods

Constrained Maximisation

- Consider a function $f(\boldsymbol{x})$ in three dimensions, and apply a small displacement $\delta \boldsymbol{x}=\delta x+\delta y+\cdots$.
Taylor's Theorem states that:

$$
f(\boldsymbol{x}+\delta \boldsymbol{x})=f(\boldsymbol{x})+\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \partial y+\cdots
$$

So:

$$
\delta \boldsymbol{f}=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \partial y+\cdots=\nabla f \cdot \delta \boldsymbol{x}+\cdots
$$

As the displacement shrinks to $\mathbf{0}$:

$$
\mathrm{d} f=\nabla f \cdot \mathrm{~d} \boldsymbol{x}
$$

- At an extremum, f must be stationary - the first variation of $\mathrm{d} f$ must vanish for all directions. This can only occur if

$$
\nabla f=\boldsymbol{0}
$$

- However, if we are trying to maximise with respect to a constraint $g(\boldsymbol{x})=c$, then the first variation in $\mathrm{d} f$ must also vanish, but not in all directions.

This means that ∇f no longer needs to be 0 , but needs to be perpendicular to the surface defined by $g(x)=c$.

However, the normal to the surface $g(\boldsymbol{x})=c$ is given by ∇g. As such, ∇f needs to be parallel to ∇g. In other words, $\nabla f=\lambda \nabla g$. Therefore, we need to solve

$$
\begin{gathered}
\nabla(f-\lambda g)=\boldsymbol{0} \\
g(\boldsymbol{x})=c
\end{gathered}
$$

An extension to a higher number of constraints is simple $[\nabla(f-\lambda g-\mu h-\cdots)=\boldsymbol{O}]$

The Euler-Lagrange Equations

- A functional is a real-valued mapping whose arguments are functions - ie:

$$
F: \text { one or more functions } \rightarrow \mathbb{R}
$$

- We only consider functionals of the form

$$
F[y]=\int_{a}^{b} f\left(x, y, y^{\prime}\right) \mathrm{d} x
$$

Where y is a function of x.

- Our task is to find the form of \boldsymbol{y} which makes stationary our functional with fixed values of \boldsymbol{y} at the end-points.

To do this, we consider changing y to some "nearby" function $y(x)+\delta y(x)$ and calculate the corresponding change δF in F.

$$
\begin{aligned}
\delta F & =F[y+\delta y]-F[y] \\
& =\int_{a}^{b} f\left(x, y+\delta y, y^{\prime}+(\delta y)^{\prime}\right) \mathrm{d} x-\int_{a}^{b} f\left(x, y, y^{\prime}\right) \mathrm{d} x \\
& =\int_{a}^{b} \stackrel{\text { Taylor expansion, ignoring higher order terms }}{ } f\left(x, y, y^{\prime}\right)+\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}}(\delta y)^{\prime} \mathrm{d} x-\int_{a}^{b} f\left(x, y, y^{\prime}\right) \mathrm{d} x \\
& =\int_{a}^{b} \frac{\partial f}{\partial y^{\prime}}(\delta y)^{\prime} \mathrm{d} x+\int_{a}^{b} \frac{\partial f}{\partial y} \delta y \mathrm{~d} x
\end{aligned}
$$

Must be 0, because
y is fixed at end-points
and so δy vanishes at

$$
\begin{aligned}
& =\overbrace{\left[\frac{\partial f}{\partial y^{\prime}} \delta y\right]_{a}^{b}}^{\text {end-points }}-\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right) \delta y \mathrm{~d} x+\int_{a}^{b} \frac{\partial f}{\partial y} \delta y \mathrm{~d} x \\
& =\int_{a}^{b}\left\{\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right\} \delta y \mathrm{~d} x
\end{aligned}
$$

And since we want $\delta F=0$ for all possible small variations δy, we must have

$$
\frac{\partial f}{\partial y}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)
$$

This is the Euler-Lagrange Equation.

Note: the partial derivatives are formal - we evaluate them assuming that y^{\prime} and y are unrelated. However, the complete derivative needs to be done "properly".

- If there are \boldsymbol{n} dependent functions, then the expression above becomes

$$
\delta F=\sum_{i=1}^{n} \int_{a}^{b}\left\{\frac{\partial f}{\partial y_{i}}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y_{i}}\right)\right\} \delta y_{i} \mathrm{~d} x
$$

Which makes it clear that every variable needs to satisfy the Euler-Lagrange Equation independently.

- Consider a few simplifying cases:
o f does not contain y explicitely
In that case, the Euler-Lagrange equation becomes:

$$
\frac{\partial f}{\partial y^{\prime}}=\text { constant }
$$

- f does not contain x explicitly

Using the chain rule on f, we have

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}
$$

Then, obtaining $\partial f / \partial y$ from the E-L equation:

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} x} & =\frac{\partial f}{\partial x}+y^{\prime} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right)
\end{aligned}
$$

So:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right)=\frac{\partial f}{\partial x}
$$

If f has no explicit \boldsymbol{x} depence, then

$$
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=\text { constant }
$$

(Or, for n-variables:

$$
\left.f-\sum_{i=1}^{n} y_{i}^{\prime} \frac{\partial f}{\partial y_{i}^{\prime}}=\text { constant }\right)
$$

Constrained Variation

- Consider a situation in which we want to find the stationary value of $F[y]$ subject to $G[y]=c$.
- In that case, simply construct the new functional

$$
F[y]-\lambda G[y]
$$

And minimise it, using $G[y]=c$ to eliminate $\boldsymbol{\lambda}$.

Physical Examples

- Fermat's Principle, in optics, states that the path of a ray of light will follow a path such that the total optical path length (Physical length \times Refractive index) is stationary. In other words, minimising

$$
\int_{A}^{B} \mu(\boldsymbol{r}) \mathrm{d} l
$$

- Hamilton's Principle of Least Action states that if a mechanical system is uniquely defined by a number of coordinates $\boldsymbol{q}_{\boldsymbol{i}}$ and time, and only experiences forces derivable from a potential, then the motion of such a system is such as to make

$$
\mathcal{L}=\int_{t_{0}}^{t_{1}} L\left(q_{1}, \cdots q_{n}, \dot{q}_{1}, \cdots \dot{q}_{n}, t\right) \mathrm{d} t
$$

stationary. L is the Lagrangian of the system, defined by its kinetic energy \boldsymbol{T} and potential energy \boldsymbol{V} as:

$$
L=T-V
$$

Sturm-Liouville Problems - Introduction

- We show that the following three problems are equivalent:
o Find the eigenvalues and eigenfunctions that solve the Sturm-Liouville problem:

$$
-\left[p y^{\prime}\right]^{\prime}+q y=\lambda \rho y
$$

Between a and b where, in that interval

- $p(x) \neq 0$
- $w(x)>0$
o Find the functions $y(x)$ for which

$$
F[y]=\int_{a}^{b}\left[p y^{\prime 2}+q y^{2}\right] \mathrm{d} x
$$

is stationary subject to

$$
G[y]=\int_{a}^{b} \rho y^{2} \mathrm{~d} x=1
$$

o Find the functions $y(x)$ for which

$$
\Lambda[y]=\frac{F[y]}{G[y]}
$$

is stationary. Λ is the Rayleigh Quotient.
Furthermore, if y satisfies the appropriate boundary constraints for Sturm-Liouville problems, the value of $F[y]$ and $\Lambda[y]$ are the eigenvalues of the problem.

- Equivalence of (1) and (2)

To solve (2), we need to find the stationary
function of the functional $F-\lambda G$. By the E-L equations, this happens where

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(2 p y^{\prime}\right)=2 q y-2 \lambda \rho y \\
& -\frac{\mathrm{d}}{\mathrm{~d} x}\left(p y^{\prime}\right)+q y=\lambda \rho y
\end{aligned}
$$

Which is, indeed, the Sturm-Liouville equation. Furthermore, multiplying by \boldsymbol{y} and integrating:

$$
\overbrace{\int_{a}^{b}-y \frac{\mathrm{~d}}{\mathrm{~d} x}\left(p y^{\prime}\right)+q y^{2} \mathrm{~d} x=\int_{a}^{b} \lambda \rho y^{2} \mathrm{~d} x}^{\text {Just the above, multiplied by } y \text { and integrated }}=\lambda G[y]=\lambda
$$

So:

$$
\begin{aligned}
\lambda & =-\int_{a}^{b} y \frac{\mathrm{~d}}{\mathrm{~d} x}\left(p y^{\prime}\right) \mathrm{d} x+\int_{a}^{b} q y^{2} \mathrm{~d} x \\
& =\stackrel{\text { because of } \mathrm{BC}}{-\left[y p y^{\prime}\right]_{a}^{b}}+\int_{a}^{b} y^{\prime} p y^{\prime} \mathrm{d} x+\int_{a}^{b} q y^{2} \mathrm{~d} x \\
& =\int_{a}^{b} p y^{\prime 2}+q y^{2} \mathrm{~d} x \\
& =F[y]
\end{aligned}
$$

So we do indeed see that the values of $F[y]$ are the eigenvalues.

- Equivalency of (2) and (3)

Consider

$$
\begin{aligned}
\delta \Lambda & =\frac{F+\delta F}{G+\delta G}-\frac{F}{G} \\
& =\frac{F+\delta F}{G}\left(1+\frac{\delta G}{G}\right)^{-1}-\frac{F}{G} \\
& \approx \frac{F+\delta F}{G}\left(1-\frac{\delta G}{G}\right)-\frac{F}{G} \\
& \approx \frac{\delta F}{G}-\frac{F \delta G}{G^{2}}
\end{aligned}
$$

This means that $\delta \Lambda$ is stationary only if

$$
\begin{gathered}
\frac{\delta F}{G}=\frac{F \delta G}{G^{2}} \\
\delta F-\frac{F \delta G}{G}=0 \\
\delta F-\Lambda \delta G=0
\end{gathered}
$$

The eigenvalue equivalence can be obtained using similar logic.

Note: in sooth, the first and third methods do not impose $G[y]=1$, whereas the second method does, but that can easily be fixed by a quick re-scaling of $y \rightarrow \alpha y$. This doesn't affect the linear equation in (1), nor does it change the ratio in (3), so the eigenvalues are still the same.

Sturm-Liouville Problems - RayleighRitz Method

- Since the eigenvalues λ_{i} of the Sturm-Liouville equation are the stationary values of Λ (assuming the boundary conditions work), any evaluation of Λ should give a value that lies between the highest and lowest eigenvalues of the corresponding SturmLiouville equation:

$$
\lambda_{\min } \leq \Lambda<\lambda_{\max }
$$

One of $\lambda_{\min }$ or $\lambda_{\max }$ will be infinite.

- This allows us to develop a systematic method to estimate the lowest eigenvalue of a Sturm-Liouville Equation:
o Re-formulate the problem as a variational principle.
o Using whatever clues are available (eg: symmetry considerations, general Theorems like "the ground state has no nodes", etc...) we make an educated guess at the true eigenfunction with the lowest eigenvalue.
o It is preferable for the trial to have as many adjustable parameters as possible (for example, by using linear combinations of trial solutions).
o Calculate $\Lambda\left[y_{\text {trial }}\right]$, which will depend on these adjustable parameters - we then calculate the minimum of Λ w.r.t. these parameters.
o We can then state that the lowest eigenvalue is $\lambda_{0} \leq \Lambda_{\text {min }}$.
- The approximation is good:

0 If $y_{\text {trial }}$ is close to the true eigenfunction (say within $\boldsymbol{O}(\varepsilon)$ of it) then the calculated $\Lambda_{\text {min }}$ will be within $\boldsymbol{O}\left(\varepsilon^{2}\right)$.
o We can improve the approximation by introducing more adjustable parameters.
0 If more adjustable parameters fail to significantly improve the approximation, we can reasonably be sure that the approximation is good.

0 If the trial solution contains the exact \boldsymbol{y}_{0} as a special case, then $\Lambda_{\text {min }}$ would be exact.

- To find higher eigenvalues, we simply use trial solutions that are orthogonal to all previous trial solutions.

Sturm-Liouville Problems - Perturbed

Operators

- Assume that y_{λ} is an eigenfunction of

$$
-\left(p y^{\prime}\right)^{\prime}+q y=\lambda \rho y
$$

- Now consider a new problem:

$$
-\left(\hat{p} y^{\prime}\right)^{\prime}+\hat{q} y=\hat{\lambda} \hat{\rho} y
$$

Where

$$
\begin{aligned}
& \hat{p}=p+\delta p \\
& \hat{q}=q+\delta q \\
& \hat{\rho}=\rho+\delta \rho
\end{aligned}
$$

- Now, for this new equation:

$$
\begin{aligned}
\lambda+\delta \lambda=\hat{\Lambda}\left(y_{\lambda}+\delta y\right) & =\frac{F+\delta F}{G+\delta G} \\
& =(F+\delta F) \frac{1}{G}\left(1-\frac{\delta G}{G}\right) \\
& =\left(\frac{F}{G}+\frac{\delta F}{G}\right)\left(1-\frac{\delta G}{G}\right) \\
& =\frac{F}{G}-\frac{F \delta G}{G^{2}}+\frac{\delta F}{G} \\
& =\lambda-\lambda \frac{\delta G}{G}+\frac{\delta F}{G} \\
& =\lambda+\frac{1}{G}[\delta F-\lambda \delta G]
\end{aligned}
$$

(To first order).

- However, Λ, and therefore λ is stationary with respect to first-order perturbations in y_{λ}. Therefore:

$$
\delta \lambda=\frac{\int_{a}^{b}(\delta p) y_{\lambda}^{\prime 2}+(\delta q) y_{\lambda}^{2}-\lambda(\delta w) y_{\lambda}^{2} \mathrm{~d} x}{\int_{a}^{b} \rho y_{\lambda}^{2} \mathrm{~d} x}
$$

Practical Tips

- In 3D problems in space, when trying to find maximum values in a certain area and on it, proceed as follows:
o Solve the problem with the constraint that the points must be on the surface of the volume.
o Solve the problem with no constraint, and just pick up the solutions in the volume.
- To find the geodesics on a surface:
o Find an expression for $\mathrm{d} \boldsymbol{r}$ in an appropriate coordinate system.
o Find an expression for $\int_{A}^{B}|\mathrm{~d} \boldsymbol{r}|$ in the said coordinate system, ignoring products of infinitesimal quantities.
o Get one of the "d"s out of the square root, to form a normal integral.
o Deduce what A and B are.
- When using Fermat's Principle, evaluate $\mathrm{d} l$ as follows:
o $\quad \mathrm{d} l=\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}$
o $\quad \mathrm{d} l=\mathrm{d} x \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}$
o $\mathrm{d} l=\mathrm{d} x \sqrt{1+z^{\prime 2}}$, where $z(x)$ is the path followed by the light.
- In general, it's better not to expand out expressions in the functional - they can be differentiated just fine asis.
- Notes about Lagrangians in spherical polars
o The θ E-L equation will always reveal that

$$
r^{2} \dot{\theta}=\text { constant }
$$

This is the conservation of angular momentum.

- Any variable "missing" from the Langrangian implies a conserved quantity.

