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Sturm-Liouville Theory

Introduction

e The Sturm-Liouville Equation is a homogeneous

second order linear ODE:
[p(x)y’(x)]/ — q(2)y(z) + Ap(z)y(z) = 0

[py'] —qy+ oy =0
Together with the homogeneous boundary conditions
ay'(a) + ayy(a) = 0
By'(0) + Byy(b) = 0
And
0 At least one of the as is non-zero, and likewise
for the 3s.
O p, q and w are functions such that
* pis real, positive and differentiable.
= ¢is real and continuous
= p is real, positive and continuous, and is
called the weight function.
e The Sturm-Liouville Equation can also be written
Where L is the Sturm-Liouville Operator:
o]+ o)

L ——
dz

e The definition of an Hermitian operator is

[ @lco@] dx = ["2f@) o) da

Feeding the Sturm-Liouville Operator in to the LHS:
b, / b, / b,
—j; f [(pg’) +qg dx:—fu f (pg') dx—j; fag da

We can integrate the first term by parts twice:
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fbf (pg') dz =[f (pg")] —fb(f*)’pg’dx

Z[f*(pg')]a ~[(r'Ypa] + f pl gdz
And now, assuming that the boundary terms are both

0, we have:

fa F(pg!) dz = f 17 ol gda

And therefore, the LHS above becomes:

—ff dx——f gdi—ffggd:t
= f 'g+af g da
— f L (2) ; g(z) dz

(The last step holds because all the functions are real).

As such, the Sturm-Liouville Operator is Hermitian if

and only if:
[/ (pg] =0

(¢4 )pg]a =0
These are satisfied if, for all solutions y and ¢ of the

equation,

z=b

vpg), =0

=a

NOTE: if p = 0 at the endpoints, then
0 These points are singularities of the equation.
0 The boundary condition above is automatically
satisfied.
0 We require, however, that the solution be

regular (analytic) at the endpoints.

Formalities

e The inner product between two functions f and g is

defined as

(f19) f fgpds
e The adjoint, L' of an operator L is defined by

(f1Lg)= <£Tf | g> + Boundary terms
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IfL=r" , then the operator is self-adjoint.
e If an operator is self-adjoint and the boundary terms
vanish, then the operator is said to be Hermitian:
(f1Lg)=(LS]g)
e Consider an Hermitian operator L, with
Ly =Xy
Lz =z
Taking inner products:
(2| Ly) =Xz |y)
(y|Lz)=nlylz)
Complex-conjugating the second one:
(Lzly)=n'(z]y)
Using the self-adjointness of the operator:
(| Ly)=u ()

Subtracting this from the very first equation above

gives:

A=p){z]y)=0
Now, let’s first assume that z = y and therefore
A = p. Then:

A=Ay ly)=0
Assuming that our eigenvector are mnon-trivial,

<y[y>¢0,andso

*

A=A

The eigenvalues are real. Now, if z = y:

A =p)(z]y)=0

And now assuming that the eigenvalues are distinct,

we have

<z|y>:0

The eigenvectors are orthogonal.

Transforming into Sturm-Liouville Form

e Consider a general linear second order ODE:

y" + g(x)y" + h(x)y + Ap(z)y =0

Maths Revision Notes © Daniel Guetta, 2008



Page 4 of 6

e We can then define the integrating factor

p(z) = eXp( f gdx)
So that

o p'=pg

0 p is always positive
e Multiplying the ODE through by p:

py" + pgy’ + phy + Appy = 0
(py")' + phy 4+ Appy = 0

e This is in Sturm-Liouville form.
e Care must be taken to ensure that the constraints on

p, g and p are satisfied (eg: positive, finite, etc...)

Completeness of Eigenfunctions

e The space of eigenfunctions is complete — the
eigenfunctions form a basis for the vector space of
functions satisfying the boundary conditions.

o Therefore, any function f(z) on the said interval that
satisfies the boundary conditions (and even if it

doesn’t!) can be expressed as

@) = a9, ()

n=0

e Take the inner product with the eigenfunction y,,

o0

(. | f) = Za W 1) =a, (Yo | ¥,)
(v, | f)

= a’m — 7 1\
<ym ‘ ym>

e Assume that the y, are unit normalised — we then

have:

o0

fl@) =3y, | Fu.(2)

n=0

o0

=3 [0 ©A©u(©)dE v, (2)

n=0

= [ FOu© v (O, (x)de

n=0

Which gives the completeness relation:
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Zyn )y, (2) = 6(z — &)

n=0

Inhomogeneous Problems - Green’s

Functions

e (Consider the inhomogeneous problem
Ly=f
e This time, though, divide £ by p, so that
Ly, = Ay,
(ie: hide the weight function in £)
e Consider the eigenfunction expansions of y and f:

=>a,y, y(z)=> by,
n=0

n=0

e Substituting into the ODE yields:

an e =Dy,

n=0 n=0

e Taking the inner product of both sides:
bm)\m <ym | ym> = a, <ym | ym>

= bm)\m - m = M (*)
<ym | ym>
L = (9, | 1)
XY | 9)

e Therefore, the solution is given by:

o) = ol

n=0 )\71 <yn | yn>

e Assuming that the eigenfunctions are unit normalised:

(f Y (€ df)yn( )

Where

o As expected
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LG(5,6) = p(©) v (O, (x) = 8(z — €)

n=0

(Using the completeness relation).
e Problems obviously arise if A = 0. Consider two
cases:
o If <yk | f> = 0, there is no solution. This could,
physically, correspond to resonance of the mode
y, when the forcing function fis applied.
o If <yk |f>: 0, then the equation marked (*)
above is mnot inconsistent, and there are

solutions (though not unique ones) of the form

Yy = Z<yn_|f>yn + Ayk

n=k )\n <yn | yn>

Legendre Polynomials
¢ Legendre’s Equation is
(1—2")y" —2zy" + (L +1)y =0
Which, in Sturm-Liouville form is
(A—2*)y'] + et +1)y =0
e We restrict -1 < x < 1, to keep p = 1 — z° positive.
At the end-points, p = 0, so the only boundary
condition we need is analyticity at the endpoints.
e The solutions, P,, are chosen such that
P1)=1
Which means that
2

P |P)=
<n|n> 2n+1

e The Legendre Polynomials can be generated by noting

that P, is an m'-order polynomial, that it must be

orthogonal to all previous polynomials and that P,(1)
=1.
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