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Sturm-Liouville Theory 
 

Introduction 
 The Sturm-Liouville Equation is a homogeneous 

second order linear ODE: 
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Together with the homogeneous boundary conditions 
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And 

o At least one of the a s is non-zero, and likewise 

for the b s. 

o p, q and w are functions such that 

 p is real, positive and differentiable. 

 q is real and continuous 

 r  is real, positive and continuous, and is 

called the weight function. 

 The Sturm-Liouville Equation can also be written 

y ylr=  

Where   is the Sturm-Liouville Operator: 
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 The definition of an Hermitian operator is 
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Feeding the Sturm-Liouville Operator in to the LHS: 
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We can integrate the first term by parts twice: 
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And now, assuming that the boundary terms are both 

0, we have: 
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And therefore, the LHS above becomes: 
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(The last step holds because all the functions are real). 

As such, the Sturm-Liouville Operator is Hermitian if 

and only if: 
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These are satisfied if, for all solutions y and g of the 

equation, 
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NOTE: if p = 0 at the endpoints, then 

o These points are singularities of the equation. 

o The boundary condition above is automatically 

satisfied. 

o We require, however, that the solution be 

regular (analytic) at the endpoints. 

 

Formalities 
 The inner product between two functions f and g is 

defined as 

*| d
b

a
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 The adjoint, 
†
  of an operator   is defined by 

†
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If 
†

=  , then the operator is self-adjoint. 

 If an operator is self-adjoint and the boundary terms 

vanish, then the operator is said to be Hermitian: 

| |f g f g=   

 Consider an Hermitian operator  , with 
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Taking inner products: 
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Complex-conjugating the second one: 
*| |z y z ym=  

Using the self-adjointness of the operator: 
*| |z y z ym=  

Subtracting this from the very first equation above 

gives: 

*( ) | 0z yl m- =  

Now, let’s first assume that z = y and therefore 

l m= . Then: 
*( ) | 0y yl l- =  

Assuming that our eigenvector are non-trivial, 

| 0y y ¹ , and so 

*l l=  

The eigenvalues are real. Now, if z y¹ : 

( ) | 0z yl m- =  

And now assuming that the eigenvalues are distinct, 

we have 

| 0z y =  

The eigenvectors are orthogonal. 

 

Transforming into Sturm-Liouville Form 
 Consider a general linear second order ODE: 
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 We can then define the integrating factor 

( )( ) exp dp x g x= ò  

So that 

o p pg¢ =  

o p is always positive 

 Multiplying the ODE through by p: 
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 This is in Sturm-Liouville form. 

 Care must be taken to ensure that the constraints on 

p, q and r  are satisfied (eg: positive, finite, etc…) 

 

Completeness of Eigenfunctions 
 The space of eigenfunctions is complete – the 

eigenfunctions form a basis for the vector space of 

functions satisfying the boundary conditions. 

 Therefore, any function f(x) on the said interval that 

satisfies the boundary conditions (and even if it 

doesn’t!) can be expressed as 
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 Take the inner product with the eigenfunction ym 
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 Assume that the yn are unit normalised – we then 

have: 
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Which gives the completeness relation: 
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Inhomogeneous Problems – Green’s 

Functions 
 Consider the inhomogeneous problem 

y f=  

 This time, though, divide   by r , so that 

n n ny yl=  

(ie: hide the weight function in  ) 

 Consider the eigenfunction expansions of y and f: 
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 Substituting into the ODE yields: 
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 Taking the inner product of both sides: 
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 Therefore, the solution is given by: 
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 Assuming that the eigenfunctions are unit normalised: 
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Where 
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 As expected 
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(Using the completeness relation). 

 Problems obviously arise if 0kl = . Consider two 

cases: 

o If | 0ky f ¹ , there is no solution. This could, 

physically, correspond to resonance of the mode 

yk when the forcing function f is applied. 

o If | 0ky f = , then the equation marked (*) 

above is not inconsistent, and there are 

solutions (though not unique ones) of the form 
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Legendre Polynomials 
 Legendre’s Equation is 

2(1 ) 2 ( 1) 0x y xy y¢¢ ¢- - + + =   

Which, in Sturm-Liouville form is 

2(1 ) ( 1) 0x y y¢é ù¢- + + =ë û    

 We restrict –1 < x < 1, to keep p = 1 – x2 positive. 

At the end-points, p = 0, so the only boundary 

condition we need is analyticity at the endpoints. 

 The solutions, Pn, are chosen such that 
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Which means that 
2
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 The Legendre Polynomials can be generated by noting 

that Pn is an nth-order polynomial, that it must be 

orthogonal to all previous polynomials and that Pn(1) 

= 1. 

 


