Sturm-Liouville Theory

Introduction

- The Sturm-Liouville Equation is a homogeneous second order linear ODE:

$$
\begin{gathered}
{\left[p(x) y^{\prime}(x)\right]^{\prime}-q(x) y(x)+\lambda \rho(x) y(x)=0} \\
{\left[p y^{\prime}\right]^{\prime}-q y+\lambda \rho y=0}
\end{gathered}
$$

Together with the homogeneous boundary conditions

$$
\begin{aligned}
& \alpha_{1} y^{\prime}(a)+\alpha_{2} y(a)=0 \\
& \beta_{1} y^{\prime}(b)+\beta_{2} y(b)=0
\end{aligned}
$$

And
o At least one of the $\alpha \mathrm{s}$ is non-zero, and likewise for the $\beta \mathrm{s}$.
o $\quad p, q$ and w are functions such that

- $\quad p$ is real, positive and differentiable.
- q is real and continuous
- $\quad \rho$ is real, positive and continuous, and is called the weight function.
- The Sturm-Liouville Equation can also be written

$$
\mathcal{L} y=\lambda \rho y
$$

Where \mathcal{L} is the Sturm-Liouville Operator:

$$
\mathcal{L}=-\left[\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d}}{\mathrm{~d} x}\right)+q(x)\right]
$$

- The definition of an Hermitian operator is

$$
\int_{a}^{b} f^{*}(x)[\mathcal{L} g(x)] \mathrm{d} x=\int_{a}^{b}[\mathcal{L} f(x)]^{*} g(x) \mathrm{d} x
$$

Feeding the Sturm-Liouville Operator in to the LHS:

$$
-\int_{a}^{b} f^{*}\left[\left(p g^{\prime}\right)^{\prime}+q g\right] \mathrm{d} x=-\int_{a}^{b} f^{*}\left(p g^{\prime}\right)^{\prime} \mathrm{d} x-\int_{a}^{b} f^{*} q g \mathrm{~d} x
$$

We can integrate the first term by parts twice:

$$
\begin{aligned}
\int_{a}^{b} f^{*}\left(p g^{\prime}\right)^{\prime} \mathrm{d} x & =\left[f^{*}\left(p g^{\prime}\right)\right]_{a}^{b}-\int_{a}^{b}\left(f^{*}\right)^{\prime} p g^{\prime} \mathrm{d} x \\
& =\left[f^{*}\left(p g^{\prime}\right)\right]_{a}^{b}-\left[\left(f^{*}\right)^{\prime} p g\right]_{a}^{b}+\int_{a}^{b}\left[\left(f^{*}\right)^{\prime} p\right]^{\prime} g \mathrm{~d} x
\end{aligned}
$$

And now, assuming that the boundary terms are both 0 , we have:

$$
\int_{a}^{b} f^{*}\left(p g^{\prime}\right)^{\prime} \mathrm{d} x=\int_{a}^{b}\left[\left(f^{*}\right)^{\prime} p\right]^{\prime} g \mathrm{~d} x
$$

And therefore, the LHS above becomes:

$$
\begin{aligned}
-\int_{a}^{b} f^{*}(x)[\mathcal{L} g(x)] \mathrm{d} x & =-\int_{a}^{b}\left[\left(f^{*}\right)^{\prime} p\right]^{\prime} g \mathrm{~d} x-\int_{a}^{b} f^{*} q g \mathrm{~d} x \\
& =-\int_{a}^{b}\left[p\left(f^{*}\right)^{\prime}\right]^{\prime} g+q f^{*} g \mathrm{~d} x \\
& =-\int_{a}^{b}[\mathcal{L} f(x)]^{*} g(x) \mathrm{d} x
\end{aligned}
$$

(The last step holds because all the functions are real).
As such, the Sturm-Liouville Operator is Hermitian if and only if.

$$
\begin{aligned}
& {\left[f^{*}\left(p g^{\prime}\right)\right]_{a}^{b}=0} \\
& {\left[\left(f^{*}\right)^{\prime} p g\right]_{a}^{b}=0}
\end{aligned}
$$

These are satisfied if, for all solutions y and g of the equation,

$$
\left[y^{*} p g\right]_{x=a}^{x=b}=0
$$

Note: if $p=0$ at the endpoints, then
o These points are singularities of the equation.
o The boundary condition above is automatically satisfied.
o We require, however, that the solution be regular (analytic) at the endpoints.

Formalities

- The inner product between two functions f and g is defined as

$$
\langle f \mid g\rangle=\int_{a}^{b} f^{*} g \rho \mathrm{~d} x
$$

- The adjoint, \mathcal{L}^{\dagger} of an operator \mathcal{L} is defined by

$$
\langle f \mid \mathcal{L} g\rangle=\left\langle\mathcal{L}^{\dagger} f \mid g\right\rangle+\text { Boundary terms }
$$

If $\mathcal{L}=\mathcal{L}^{\dagger}$, then the operator is self-adjoint.

- If an operator is self-adjoint and the boundary terms vanish, then the operator is said to be Hermitian:

$$
\langle f \mid \mathcal{L} g\rangle=\langle\mathcal{L} f \mid g\rangle
$$

- Consider an Hermitian operator \mathcal{L}, with

$$
\begin{aligned}
\mathcal{L} y & =\lambda y \\
\mathcal{L} z & =\mu z
\end{aligned}
$$

Taking inner products:

$$
\begin{aligned}
\langle z \mid \mathcal{L} y\rangle & =\lambda\langle z \mid y\rangle \\
\langle y \mid \mathcal{L} z\rangle & =\mu\langle y \mid z\rangle
\end{aligned}
$$

Complex-conjugating the second one:

$$
\langle\mathcal{L} z \mid y\rangle=\mu^{*}\langle z \mid y\rangle
$$

Using the self-adjointness of the operator:

$$
\langle z \mid \mathcal{L} y\rangle=\mu^{*}\langle z \mid y\rangle
$$

Subtracting this from the very first equation above gives:

$$
\left(\lambda-\mu^{*}\right)\langle z \mid y\rangle=0
$$

Now, let's first assume that $z=y$ and therefore $\lambda=\mu$. Then:

$$
\left(\lambda-\lambda^{*}\right)\langle y \mid y\rangle=0
$$

Assuming that our eigenvector are non-trivial, $\langle y \mid y\rangle \neq 0$, and so

$$
\lambda=\lambda^{*}
$$

The eigenvalues are real. Now, if $z \neq y$:

$$
(\lambda-\mu)\langle z \mid y\rangle=0
$$

And now assuming that the eigenvalues are distinct, we have

$$
\langle z \mid y\rangle=0
$$

The eigenvectors are orthogonal.

Transforming into Sturm-Liouville Form

- Consider a general linear second order ODE:

$$
y^{\prime \prime}+g(x) y^{\prime}+h(x) y+\lambda \rho(x) y=0
$$

- We can then define the integrating factor

$$
p(x)=\exp \left(\int g \mathrm{~d} x\right)
$$

So that
o $p^{\prime}=p g$
o p is always positive

- Multiplying the ODE through by p :

$$
\begin{gathered}
p y^{\prime \prime}+p g y^{\prime}+p h y+\lambda p \rho y=0 \\
\left(p y^{\prime}\right)^{\prime}+p h y+\lambda p \rho y=0
\end{gathered}
$$

- This is in Sturm-Liouville form.
- Care must be taken to ensure that the constraints on p, q and ρ are satisfied (eg: positive, finite, etc...)

Completeness of Eigenfunctions

- The space of eigenfunctions is complete - the eigenfunctions form a basis for the vector space of functions satisfying the boundary conditions.
- Therefore, any function $f(x)$ on the said interval that satisfies the boundary conditions (and even if it doesn't!) can be expressed as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} y_{n}(x)
$$

- Take the inner product with the eigenfunction y_{m}

$$
\begin{aligned}
\left\langle y_{m} \mid f\right\rangle= & \sum_{n=0}^{\infty} a_{n}\left\langle y_{m} \mid y_{n}\right\rangle=a_{m}\left\langle y_{m} \mid y_{m}\right\rangle \\
& \Rightarrow a_{m}=\frac{\left\langle y_{m} \mid f\right\rangle}{\left\langle y_{m} \mid y_{m}\right\rangle}
\end{aligned}
$$

- Assume that the y_{n} are unit normalised - we then have:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty}\left\langle y_{n} \mid f\right\rangle y_{n}(x) \\
& =\sum_{n=0}^{\infty} \int_{a}^{b} y_{n}^{*}(\xi) f(\xi) w(\xi) \mathrm{d} \xi y_{n}(x) \\
& =\int_{a}^{b} f(\xi) w(\xi) \sum_{n=0}^{\infty} y_{n}^{*}(\xi) y_{n}(x) \mathrm{d} \xi
\end{aligned}
$$

Which gives the completeness relation:

$$
w(\xi) \sum_{n=0}^{\infty} y_{n}^{*}(\xi) y_{n}(x)=\delta(x-\xi)
$$

Inhomogeneous Problems - Green's

Functions

- Consider the inhomogeneous problem

$$
\mathcal{L} y=f
$$

- This time, though, divide \mathcal{L} by ρ, so that

$$
\mathcal{L} y_{n}=\lambda_{n} y_{n}
$$

(ie: hide the weight function in \mathcal{L})

- Consider the eigenfunction expansions of y and f :

$$
f(x)=\sum_{n=0}^{\infty} a_{n} y_{n} \quad y(x)=\sum_{n=0}^{\infty} b_{n} y_{n}
$$

- Substituting into the ODE yields:

$$
\sum_{n=0}^{\infty} b_{n} \lambda_{n} y_{n}=\sum_{n=0}^{\infty} a_{n} y_{n}
$$

- Taking the inner product of both sides:

$$
\begin{gather*}
b_{m} \lambda_{m}\left\langle y_{m} \mid y_{m}\right\rangle=a_{m}\left\langle y_{m} \mid y_{m}\right\rangle \\
\Rightarrow b_{m} \lambda_{m}=a_{m}=\frac{\left\langle y_{m} \mid f\right\rangle}{\left\langle y_{m} \mid y_{m}\right\rangle} \tag{}\\
\Rightarrow b_{m}=\frac{\left\langle y_{m} \mid f\right\rangle}{\lambda_{m}\left\langle y_{m} \mid y_{m}\right\rangle}
\end{gather*}
$$

- Therefore, the solution is given by:

$$
y(x)=\sum_{n=0}^{\infty} \frac{\left\langle y_{n} \mid f\right\rangle}{\lambda_{n}\left\langle y_{n} \mid y_{n}\right\rangle} y_{n}
$$

- Assuming that the eigenfunctions are unit normalised:

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}}\left(\int_{a}^{b} y_{n}^{*}(\xi) f(\xi) \rho(\xi) \mathrm{d} \xi\right) y_{n}(x) \\
& =\int_{a}^{b} \sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} y_{n}^{*}(\xi) \rho(\xi) y_{n}(x) f(\xi) \mathrm{d} \xi \\
& =\int_{a}^{b} G(x, \xi) f(\xi) \mathrm{d} \xi
\end{aligned}
$$

Where

$$
G(x, \xi)=\rho(\xi) \sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} y_{n}^{*}(\xi) y_{n}(x)
$$

- As expected

$$
\mathcal{L} G(x, \xi)=\rho(\xi) \sum_{n=0}^{\infty} y_{n}^{*}(\xi) y_{n}(x)=\delta(x-\xi)
$$

(Using the completeness relation).

- Problems obviously arise if $\lambda_{k}=0$. Consider two cases:

0 If $\left\langle y_{k} \mid f\right\rangle \neq 0$, there is no solution. This could, physically, correspond to resonance of the mode y_{k} when the forcing function f is applied.
o If $\left\langle y_{k} \mid f\right\rangle=0$, then the equation marked $\left(^{*}\right)$ above is not inconsistent, and there are solutions (though not unique ones) of the form

$$
y=\sum_{n \neq k} \frac{\left\langle y_{n} \mid f\right\rangle}{\lambda_{n}\left\langle y_{n} \mid y_{n}\right\rangle} y_{n}+A y_{k}
$$

Legendre Polynomials

- Legendre's Equation is

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\ell(\ell+1) y=0
$$

Which, in Sturm-Liouville form is

$$
\left[\left(1-x^{2}\right) y^{\prime}\right]^{\prime}+\ell(\ell+1) y=0
$$

- We restrict $-\mathbf{1}<\boldsymbol{x}<\mathbf{1}$, to keep $\boldsymbol{p}=\mathbf{1}-\boldsymbol{x}^{2}$ positive.

At the end-points, $\boldsymbol{p}=\mathbf{0}$, so the only boundary condition we need is analyticity at the endpoints.

- The solutions, \boldsymbol{P}_{n}, are chosen such that

$$
P_{n}(1)=1
$$

Which means that

$$
\left\langle P_{n} \mid P_{n}\right\rangle=\frac{2}{2 n+1}
$$

- The Legendre Polynomials can be generated by noting that \boldsymbol{P}_{n} is an $\boldsymbol{n}^{t h}$-order polynomial, that it must be orthogonal to all previous polynomials and that $P_{n}(1)$ $=1$.

