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Sturm-Liouville Theory 
 

Introduction 
 The Sturm-Liouville Equation is a homogeneous 

second order linear ODE: 
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Together with the homogeneous boundary conditions 
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And 

o At least one of the a s is non-zero, and likewise 

for the b s. 

o p, q and w are functions such that 

 p is real, positive and differentiable. 

 q is real and continuous 

 r  is real, positive and continuous, and is 

called the weight function. 

 The Sturm-Liouville Equation can also be written 

y ylr=�  

Where   is the Sturm-Liouville Operator: 
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 The definition of an Hermitian operator is 
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Feeding the Sturm-Liouville Operator in to the LHS: 
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We can integrate the first term by parts twice: 
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And now, assuming that the boundary terms are both 

0, we have: 
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And therefore, the LHS above becomes: 
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(The last step holds because all the functions are real). 

As such, the Sturm-Liouville Operator is Hermitian if 

and only if: 
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These are satisfied if, for all solutions y and g of the 

equation, 
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NOTE: if p = 0 at the endpoints, then 

o These points are singularities of the equation. 

o The boundary condition above is automatically 

satisfied. 

o We require, however, that the solution be 

regular (analytic) at the endpoints. 

 

Formalities 
 The inner product between two functions f and g is 

defined as 

*| d
b

a
f g f g xr= ò  

 The adjoint, 
†
  of an operator   is defined by 

†
| | Boundary termsf g f g= +   
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If 
†

=  , then the operator is self-adjoint. 

 If an operator is self-adjoint and the boundary terms 

vanish, then the operator is said to be Hermitian: 

| |f g f g=   

 Consider an Hermitian operator  , with 

y y

z z

l

m

=

=




 

Taking inner products: 
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Complex-conjugating the second one: 
*| |z y z ym=  

Using the self-adjointness of the operator: 
*| |z y z ym=  

Subtracting this from the very first equation above 

gives: 

*( ) | 0z yl m- =  

Now, let’s first assume that z = y and therefore 

l m= . Then: 
*( ) | 0y yl l- =  

Assuming that our eigenvector are non-trivial, 

| 0y y ¹ , and so 

*l l=  

The eigenvalues are real. Now, if z y¹ : 

( ) | 0z yl m- =  

And now assuming that the eigenvalues are distinct, 

we have 

| 0z y =  

The eigenvectors are orthogonal. 

 

Transforming into Sturm-Liouville Form 
 Consider a general linear second order ODE: 

( ) ( ) ( ) 0y g x y h x y x ylr¢¢ ¢+ + + =  
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 We can then define the integrating factor 

( )( ) exp dp x g x= ò  

So that 

o p pg¢ =  

o p is always positive 

 Multiplying the ODE through by p: 
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 This is in Sturm-Liouville form. 

 Care must be taken to ensure that the constraints on 

p, q and r  are satisfied (eg: positive, finite, etc…) 

 

Completeness of Eigenfunctions 
 The space of eigenfunctions is complete – the 

eigenfunctions form a basis for the vector space of 

functions satisfying the boundary conditions. 

 Therefore, any function f(x) on the said interval that 

satisfies the boundary conditions (and even if it 

doesn’t!) can be expressed as 
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 Take the inner product with the eigenfunction ym 
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 Assume that the yn are unit normalised – we then 

have: 

0

*

0

*

0

( ) | ( )

( ) ( ) ( )d ( )

( ) ( ) ( ) ( )d

n n
n

b

n n
a

n

b

n n
a

n

f x y f y x

y f w y x

f w y y x

x x x x

x x x x

¥

=
¥

=
¥

=

=

=

=

å

åò

åò

 

Which gives the completeness relation: 
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Inhomogeneous Problems – Green’s 

Functions 
 Consider the inhomogeneous problem 

y f=  

 This time, though, divide   by r , so that 

n n ny yl=  

(ie: hide the weight function in  ) 

 Consider the eigenfunction expansions of y and f: 
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 Substituting into the ODE yields: 
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 Taking the inner product of both sides: 
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 Therefore, the solution is given by: 
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 Assuming that the eigenfunctions are unit normalised: 
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Where 
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 As expected 
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(Using the completeness relation). 

 Problems obviously arise if 0kl = . Consider two 

cases: 

o If | 0ky f ¹ , there is no solution. This could, 

physically, correspond to resonance of the mode 

yk when the forcing function f is applied. 

o If | 0ky f = , then the equation marked (*) 

above is not inconsistent, and there are 

solutions (though not unique ones) of the form 
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Legendre Polynomials 
 Legendre’s Equation is 

2(1 ) 2 ( 1) 0x y xy y¢¢ ¢- - + + =   

Which, in Sturm-Liouville form is 

2(1 ) ( 1) 0x y y¢é ù¢- + + =ë û    

 We restrict –1 < x < 1, to keep p = 1 – x2 positive. 

At the end-points, p = 0, so the only boundary 

condition we need is analyticity at the endpoints. 

 The solutions, Pn, are chosen such that 

(1) 1nP =  

Which means that 
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 The Legendre Polynomials can be generated by noting 

that Pn is an nth-order polynomial, that it must be 

orthogonal to all previous polynomials and that Pn(1) 

= 1. 

 


