Poisson's Equation

Physical Origins

- Poisson's Equation is

$$
\nabla^{2} \Phi=\sigma(\boldsymbol{x})
$$

Sometimes, $\sigma(\boldsymbol{x})=0$, in which case we have Laplace's

Equation.

- Diffusion
o Consider some quantity Φ which diffuses (eg: heat, concentration of a dilute chemical, etc...)
o There is a corresponding flux, \mathbf{F} - the amount crossing unit area per unit time. Experimentally, this is given by

$$
\boldsymbol{F}=-k \nabla \Phi
$$

Notes:

- Note the minus sign - the flux is directed towards the area of lower concentration.
- k is called the diffusivity in the case of a chemical, and the coefficient of heat conductivity in the case of temperature.
o We then note that if V is a volume bounded by a surface S, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\iiint_{V} \Phi \mathrm{~d} V\right]=-\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S=\iint_{S} k \nabla \Phi \cdot \boldsymbol{n} \mathrm{~d} S
$$

And so by the Divergence Theorem

$$
\iiint_{V} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} \mathrm{~d} V=\iiint_{V} \nabla \cdot(k \nabla \Phi) \mathrm{d} V
$$

But since this must be true for all volumes:

$$
\frac{\mathrm{d} \Phi}{\mathrm{~d} t}=k \nabla^{2} \Phi+S(\boldsymbol{x})
$$

Where S corresponds to sources or sinks.
o In the case of temperature, things are more complicated, because $-k \nabla^{2} T$ gives the rate of
change of heat, which needs to be related to T using $H=\rho c T$.
o In the steady state, $\mathrm{d} \Phi / \mathrm{d} t=0$, and we therefore recover Laplace's Equation.

- Electrostatics

o One of Maxwell's Equations gives

$$
\nabla^{2} \Phi=-\rho / \varepsilon_{0}
$$

o Another is

$$
\nabla \times \boldsymbol{B}=0
$$

So there exists a magnetostatic potential ψ such that $\boldsymbol{B}=-\mu_{0} \nabla \psi$ and $\nabla^{2} \psi=0$.

- Gravitation

o Consider a mass distribution $\rho(\boldsymbol{x})$ - there is a corresponding gravitational field $\mathbf{F}(\boldsymbol{x})$ that can be expressed in terms of a potential $\Phi(\boldsymbol{x})$.
o If an arbitrary volume \boldsymbol{V} is bounded by a surface S containing a total mass $M_{V}=\iiint_{V} \rho(\boldsymbol{x}) \mathrm{d} V$, the flux of the field through S is $-4 \pi G M_{V}$.
o Therefore

$$
\begin{gathered}
\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S=-4 \pi G M_{V} \\
-\iint_{S} \nabla \Phi \cdot \boldsymbol{n} \mathrm{~d} S=-4 \pi G \iiint_{V} \rho(\boldsymbol{x}) \mathrm{d} V \\
\iiint_{V} \nabla \cdot(\nabla \Phi) \mathrm{d} V=4 \pi G \iiint_{V} \rho(\boldsymbol{x}) \mathrm{d} V \\
\nabla^{2} \Phi=4 \pi G \rho
\end{gathered}
$$

Separation of Variables - Laplace's

Equation

- Plane polar coordinates

o In plane polars, if we know that the solution is axisymmetric (ie: Φ does not depend on ϕ) Laplace's Equation becomes:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

o Consider a solution of the form

$$
\Phi(r, \theta)=R(r) \Theta(\theta)
$$

o This becomes:

$$
\frac{r}{R} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)=-\frac{\Theta^{\prime \prime}}{\Theta}
$$

o Each side must now be equal to a constant...
o Angular part

$$
\begin{array}{cc}
\Theta^{\prime \prime}=-\lambda \Theta & \\
A+B \theta & \lambda=0 \\
A \cos (\theta \sqrt{\lambda})+B \sin (\theta \sqrt{\lambda}) & \lambda \neq 0
\end{array} ~ . \begin{array}{cc}
& =0
\end{array}
$$

To obtain a sensible solution, replacing $\theta \rightarrow \theta+2 \pi$ should make no difference to $\nabla \Phi$. This can only happen if $\Theta^{\prime}(\theta+2 \pi)=\Theta^{\prime}(\theta)$. Therefore

- Either $\lambda=0$
- Or

$$
\left.\begin{array}{l}
\cos 2 \pi \sqrt{\lambda}=1 \\
\sin 2 \pi \sqrt{\lambda}=0
\end{array}\right\} \Rightarrow \sqrt{\lambda}=n \quad \lambda>0
$$

Therefore:

$$
\Theta=\left\{\begin{array}{cl}
A+B \theta & n=0 \\
A \cos (n \theta)+B \sin (n \theta) & n \neq 0
\end{array}\right.
$$

o Radial part

$$
\begin{aligned}
& \frac{r}{R} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)=\lambda=n^{2} \\
& r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0
\end{aligned}
$$

Substitute $r=e^{u}$ to get

$$
R=\left\{\begin{array}{cl}
C+D \ln r & n=0 \\
C r^{n}+D r^{-n} & n \neq 0
\end{array}\right.
$$

o Solution

Therefore, the solution is
$\Phi=R \Theta=\left\{\begin{array}{cc}(C+D \ln r)(A+B \theta) & n=0 \\ \left(C r^{n}+D r^{-n}\right)(A \cos n \theta+B \sin n \theta) & n \neq 0\end{array}\right.$
The combination $\theta \ln r$ doesn't satisfy the periodicity required, so we exclude it.

The general solution, therefore, including a superposition of solutions, is:
$\Phi=A_{0}+B_{0} \theta+C_{0} \ln r+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+C_{n} r^{-n}\right) \cos n \theta+\sum_{n=1}^{\infty}\left(B_{n} r^{n}+D_{n} r^{-n}\right) \sin n \theta$
o Note: we have required $\nabla \Phi$ to be periodic, because it is always a physical quantity. However, sometimes, Φ itself is also a physical quantity, and also needs to be periodic. In such a case, $\boldsymbol{B}_{0}=\mathbf{0}$.

- Spherical polar coordinates

o In plane polars, Laplace's Equation becomes:

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)=0
$$

o Consider a solution of the form

$$
\Phi(r, \theta)=R(r) \Theta(\theta)
$$

o This becomes [note: leave as it is!]

$$
\frac{1}{R}\left(r^{2} R^{\prime}\right)^{\prime}=-\frac{1}{\Theta \sin \theta}\left(\Theta^{\prime} \sin \theta\right)^{\prime}
$$

o Each side must now be equal to a constant...
o Angular part

$$
\left(\Theta^{\prime} \sin \theta\right)^{\prime}=-\lambda \Theta \sin \theta
$$

Let $\zeta=\cos \theta$, and use

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \theta}=\frac{\mathrm{d}}{\mathrm{~d} \zeta} \frac{\mathrm{~d} \zeta}{\mathrm{~d} \theta}=-\sin \theta \frac{\mathrm{d}}{\mathrm{~d} \zeta} \\
\sin \theta=\sqrt{1-\zeta^{2}}
\end{gathered}
$$

The equation becomes

$$
\frac{\mathrm{d}}{\mathrm{~d} \zeta}\left(\left(1-\zeta^{2}\right) \frac{\mathrm{d} \Theta}{\mathrm{~d} \zeta}\right)+\lambda \Theta=0
$$

This is Legendre's Equation. For well behaved solutions at $\zeta= \pm 1$, we need

$$
\lambda=n(n+1) \quad n \geq 0
$$

And the solution becomes:

$$
\Theta=C P_{n}(\zeta)=C P_{n}(\cos \theta)
$$

o Radial part

$$
\begin{gathered}
\left(r^{2} R^{\prime}\right)^{\prime}=\lambda R \\
r^{2} R^{\prime \prime}+2 r R^{\prime}-n(n+1) R=0
\end{gathered}
$$

Using similar methods as above, we get

$$
R=A r^{n}+B r^{-n-1}
$$

o Solution

The general solution is therefore

$$
\Phi(r, \theta)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n-1}\right) P_{n}(\cos \theta)
$$

Uniqueness Theorems

- Consider the following Poisson Equation

$$
\nabla^{2} \Phi=\sigma(x)
$$

We can show that any solution Φ we find to this problem in \boldsymbol{V} subject to either Neumann or Dirichlet boundary conditions on S is unique.

- Let's assume that there are two different solutions, Φ_{1} and Φ_{2}, and let

$$
\begin{gathered}
\Psi=\Phi_{1}-\Phi_{2} \\
\nabla^{2} \Psi=\nabla^{2} \Phi_{1}-\nabla^{2} \Phi_{2}=0
\end{gathered}
$$

And, depending on what conditions we have, either

$$
\begin{gathered}
\Psi_{\text {on } S}=0 \\
\mathrm{~d} \Psi /\left.\mathrm{d} n\right|_{\text {on } S}=0
\end{gathered}
$$

- Now, consider

$$
\begin{gathered}
\nabla \cdot(\Psi \nabla \Psi)=|\nabla \Psi|^{2}+\Psi \nabla^{2} \Psi \\
\iiint_{V}|\nabla \Psi|^{2}+\overbrace{\Psi \nabla^{2} \Psi}^{\substack{=0, \text { because } \\
\nabla^{2} \Psi=0}} \mathrm{~d} V=\overbrace{\iiint_{V} \nabla \cdot(\Psi \nabla \Psi) \mathrm{d} V}^{\text {Use the divergence theorem }}
\end{gathered}
$$

- Finally, since $|\nabla \Psi|^{2}$ can never be negative, we must have $\nabla \Psi=0$. In other words $\Phi_{1}-\Phi_{2}$ is constant in V.

0 If Dirichlet BCs are given, then $\Phi_{1}=\Phi_{2}$ somewhere on S, and therefore $\Phi_{1}=\Phi_{2}$ everywhere on S.
o If Neumann BCs are given, the solutions can differ by a constant.

Minimum \& Maximum Properties of

Laplace's Equation

- Consider Φ that satisfies

$$
\nabla^{2} \Phi=0
$$

in a volume \boldsymbol{V} with a surface \boldsymbol{S}.

- Let \boldsymbol{m} be the minimum value of Φ on \boldsymbol{S}, and let \boldsymbol{M} bet the maximum value.
- Then
o Either $\boldsymbol{m}=\boldsymbol{M}$, and Φ is constant everywhere.
o Or $m<\Phi<M$ in $V-S$
- For a partial proof, imagine a maximum somewhere within V. The point must be stationary, so

$$
\frac{\partial \Phi}{\partial x}=\frac{\partial \Phi}{\partial y}=\frac{\partial \Phi}{\partial z}
$$

However, for it to be a maximum, we need

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}<0 \quad \frac{\partial^{2} \Phi}{\partial y^{2}}<0 \quad \frac{\partial^{2} \Phi}{\partial z^{2}}<0
$$

Which is impossible since $\nabla^{2} \Phi=0$. This is only a partial proof, because it is possible to have a maximum with

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}=0 \quad \frac{\partial^{2} \Phi}{\partial y^{2}}=0 \quad \frac{\partial^{2} \Phi}{\partial z^{2}}=0
$$

