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Poisson’s Equation

Physical Origins
e Poisson’s Equation is
V¢ = o(z)
Sometimes, o(x) =0, in which case we have Laplace’s
Equation.
e Diffusion
0 Consider some quantity ® which diffuses (eg:
heat, concentration of a dilute chemical, etc...)
0 There is a corresponding flux, F — the amount
crossing unit area per unit time.
Experimentally, this is given by
F=—-kVd
Notes:

* Note the minus sign — the flux is
directed towards the area of lower
concentration.

» [ is called the diffusivity in the case of a
chemical, and the coefficient of heat
conductivity in the case of temperature.

0 We then note that if V' is a volume bounded by

a surface S, then

%UfV@dv]z—fﬁpndszﬂskvands

And so by the Divergence Theorem

JIfStav = [ff v-tva)ar

But since this must be true for all volumes:

@ _ 10 + S()
a

Where S corresponds to sources or sinks.

O In the case of temperature, things are more

complicated, because —kV>T gives the rate of
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change of heat, which needs to be related to T
using H = pcT.

0 In the steady state, d®/d¢t=0, and we
therefore recover Laplace’s Equation.

e FElectrostatics
0 One of Maxwell’s Equations gives
Vo =—p/e,
0 Another is

VxB=0
So there exists a magnetostatic potential 1

such that B = —pu, Ve and V> = 0.
e Gravitation
0 Consider a mass distribution p(z) — there is a
corresponding gravitational field F(z) that can
be expressed in terms of a potential ®(x).
0 If an arbitrary volume V is bounded by a
surface S  containing a  total mass

MV:ffJ;p(:z:)dV, the flux of the field

through Sis —47GM,, .
0 Therefore
ffSF-ndS = —47GM,

—[[ ve-nds = —axG [[[ p(z)av
[[[ v veyav =anc [[[ p)av

V’® = 47Gp
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Separation of Variables — Laplace’s

Equation

e Plane polar coordinates
0 In plane polars, if we know that the solution is
axisymmetric (ie: ® does not depend on ¢)

Laplace’s Equation becomes:
10[,00) 100 _,
ror\ Or) 1’00

0 Consider a solution of the form

O(r,0) = R(r)©(0)

0 This becomes:
Li[rﬁJ __9
Rdr( dr O
0 Each side must now be equal to a constant...
O Angular part
0" =-)0
A+ BY A=0
G{Acos@ﬁ)—l—Bsin(Q\/X) A=0
To obtain a sensible solution, replacing
0 — 0+ 27 should make no difference to
Vo. This can only happen if
O'(6 +27) = ©/() . Therefore
= Fither A=10

= Or
cos2mJ\ =1
sin27r\/X0]:>\/X” A0
Therefore:
A+ Bo n=>0
B |A cos(nb) + Bsin (nh) n =0

0 Radial part
Li[rﬂ
Rdr\ dr
rR"+rR' —n*R =0

]:)\:n2
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Substitute r = e" to get
C+Dlnr n=>0
~ o + Dr™" n =0

O Solution
Therefore, the solution is
(C+ Dlnr)(A+ Bb) n=0
® = RO = _ .
(Cr" + Dr™")(Acosnf + Bsinnf) n=0
The combination #lnr doesn’t satisfy the

periodicity required, so we exclude it.

The general solution, therefore, including a

superposition of solutions, is:

®=A+B0+Cylnr+ Z(Anr" +C,r")cosnb + Z(Bnr" + D, r")sinnf

n=1 n=1

0 Note: we have required V& to be periodic,
because it is always a physical quantity.
However, sometimes, ® itself is also a physical
quantity, and also needs to be periodic. In such

a case, B, = 0.

e Spherical polar coordinates
O In plane polars, Laplace’s Equation becomes:
%i[ 28_(1)] . 1 Q[Singa_q)] —0
r=odr\ Or) r°sinf 00 00
0 Consider a solution of the form
O(r,0) = R(r)©(0)

0 This becomes [note: leave as it is!]

l(ﬁ R’)/ = 1

R ©sin 6
0 Each side must now be equal to a constant...

(@’ sin (9)/

O Angular part
(0/sin6) = —\Osind

Let ¢ = cosf, and use
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d dd¢

46 dcde ¢
sinf = J1— ¢
The equation becomes

d[ de

—|1-¢)—|+X0=0

¢ ¢

This is Legendre’s Equation. For well

behaved solutions at ( = +1, we need

A=n(n+1) n>0
And the solution becomes:

© = CP,(¢) = CF,(cos0)
0 Radial part
(PR = AR

rR" +2rR' —n(n + 1R =0

Using similar methods as above, we get

R=Ar"+Br"!
0 Solution

The general solution is therefore

00

O(r,0) = Z(Anr" + B,r " ")P, (cosb)

n=0

Uniqueness Theorems

e Consider the following Poisson Equation
V?® = o(z)
We can show that any solution ® we find to this
problem in V subject to either Neumann or Dirichlet
boundary conditions on S is unique.
e Let’s assume that there are two different solutions, @,
and ®,, and let
V=0 -9,
VU = V@, — V0, =0
And, depending on what conditions we have, either
v =0
dv/dn| =0
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e Now, consider
V- (IVY) = VI + TV*T

=0, because
V2 V= Use the div ergence theorem

[[f 1w + 7% av =[] v-ava av
fffVW‘I’l dV:fL\pv\y.ndS

One of those two must be 0
(dependlng on N. or D. BCs)

[ff Iver av = f \If—dS
[ff 1vuf av =0

. . 2 .
e Finally, since |VU|" can never be negative, we must

have V¥ = 0. In other words ®, —®, is constant in
V.

o If Dirichlet BCs are given, then & =&,
somewhere on S, and therefore &, =,
everywhere on S.

0 If Neumann BCs are given, the solutions can

differ by a constant.

Minimum & Maximum Properties of

Laplace’s Equation
e Consider ¢ that satisfies
Vo =0
in a volume V with a surface S.
e Let m be the minimum value of ® on S, and let M
bet the maximum value.
e Then
o Fither m = M, and & is constant
everywhere.
O Or m<®<M inV-S5
e For a partial proof, imagine a maximum somewhere

within V. The point must be stationary, so

Maths Revision Notes © Daniel Guetta, 2008



Page 7 of 7

o _ow_ o
Jor Oy 0z
However, for it to be a maximum, we need
2 2 2
®
0 q; <0 0 (I; <0 0 - <0
Ox oy 0z

Which is impossible since V’® = 0. This is only a
partial proof, because it is possible to have a
maximum with
0*® _ 0 0°® 0*®
oz’ oy’ 02
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