Ordinary Differential Equations

Introduction

• The general linear first-order ODE

$$y'(x) + p(x)y(x) = f(x)$$

can be solved using an integrating factor $g = e^{\int p \, dx}$, to obtain the general solution:

$$y = \frac{1}{g} \int gf \,\mathrm{d}x$$

• A general linear second order ODE takes the form

$$a(x)y'' + b(x)y' + c(x)y = f(x)$$

• We look at how to solve general homogenous equations of this form, with f(x) = 0. Inhomogeneous forms can be solved using Green's Functions.

The Wronskian

• If we divide through by the coefficient of y'', we get the equation in standard form

$$y'' + p(x)y' + q(x)y = 0$$

• If we suppose that y_1 and y_2 are solutions, then they are linearly independent if

$$Ay_1(x) + By_2(x) = 0 \Leftrightarrow A = B = 0$$

• If they are linearly independent, then the **general solution** of the ODE is

$$y(x) = Ay_1(x) + By_2(x)$$

• The Wronskian W of two solutions y_1 and y_2 of a second-order equation is

$$W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

Maths Revision Notes

• Now, let's imagine that $Ay_1(x) + By_2(x) = 0$. Differentiating $Ay'_1(x) + By'_2(x) = 0$. Therefore, in matrix form, the condition for linear independence is

$$\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

As such, if the solutions are **linearly dependent**, and the above is true even though A and B aren't 0, then we must have

$$W = 0$$

- Therefore, the solutions y_1 and y_2 are only linearly independent if $W[y_1, y_2] \neq 0$.
- To calculate W, consider

$$\begin{split} W' &= y_1 y_2'' + y_1' y_2' - y_2 y_1'' - y_2' y_1' \\ &= y_1 y_2'' - y_2 y_1'' \\ &\stackrel{\text{Using the}}{\cong} \\ &\stackrel{\text{Gifferential eq}}{\cong} y_1 \left(-p y_2' - q y_2 \right) - y_2 \left(-p y_1' - q y_1 \right) \\ &= -p \, W \end{split}$$

So solve the first-order ODE

$$W = e^{-\int p \, \mathrm{d}x}$$

Notes:

- \circ The indefinite integral involves an arbitrary addition constant, so W involves an arbitrary multiplicative constant.
- If p is **integrable** and $W \neq 0$ for **one value** of x, then $W \neq 0$ for **all** values of x. So linear independence only needs be checked for one value.

Finding a Second Solution

• Suppose that one solution y_i is known, we can find a second solution y_2 using the original definition of W

$$y_{1}y_{2}' - y_{2}y_{1}' = W$$

$$\frac{y_{2}'}{y_{1}} - \frac{y_{2}y_{1}'}{y_{1}^{2}} = \frac{W}{y_{1}^{2}}$$

$$\frac{d}{dx} \left(\frac{y_{2}}{y_{1}}\right) = \frac{W}{y_{1}^{2}}$$

$$y_{2} = y_{1} \int \frac{W}{y_{1}^{2}} dx$$

Notes:

- o The indefinite integral involves an arbitrary additive constant, because any amount of y_1 can be added to y_2 .
- This expression provides the **general** solution of the ODE.

Series Solutions – Introduction

• If we consider a homogeneous linear second-order ODE in standard form

y'' + p(x)y' + q(x)y = 0

A point $x = x_0$ is an **ordinary point** of the ODE if

p(x) and q(x) are both **analytic** at $x = x_0$

Otherwise, it is a singular point.

- A singular point at x = x₀ is regular if
 (x x₀)p(x) and (x x₀)²q(x) both analytic at x = x₀
- To find the behaviour as $x \to \infty$, simply replace x by 1/x, and find the behaviour as $x \to 0$.

Series Solutions about an ordinary point

• If $x = x_0$ is an ordinary point, the ODE has two independent solutions that are also analytic of the form

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

To find the coefficients, a_n , we simply need to:

- Substitute this series into the differential equation.
- Re-label constants (and therefore change the limits of the series) so that only terms in x^n remain.
- Equate coefficients of x^n to obtain a recurrence relation for a_n .
- Notes
 - An even solution is obtained by choosing $a_0 = 1$ and $a_1 = 0$, and vice-versa for an odd solution. These are clearly linearly independent.
 - The radius of convergence of these solutions are the distance to the singular points of the function.

Series Solutions about a regular singular point

• If $x = x_0$ is a regular singular point, Fuch's Theorem guarantees that there is at least one solution of the form

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+\sigma} \qquad a_0 \neq 0$$

This **Frobenius Series** is a Taylor series (and therefore analytic) if and only if σ is a non-negative integer. The condition is required to define σ uniquely.

- To solve a differential equation at a regular singular point, simply assume a solution of this from and substitute into the differential equation. After relabelling indices, compare the coefficients of $x^{n+\sigma}$ (possibly obtaining different equations for different values of n).
 - One of the equations the provides the **indicial** equation (given that $a_0 \neq 0$), which can be used to find σ .
 - Another equation can be used to find a_1 .
 - A last one can be used to find a recurrence relation.
- Another way, in general, of finding the indicial equation (especially if the singularity is not at z = 0) is to write the differential equation as

$$y'' + \frac{s(z)}{(z - z_0)}y' + \frac{t(z)}{(z - z_0)^2}y = 0y$$

and then to feed the Frobenius Series into the equation. We can then divide by $z^{\sigma-2}$ and let $z = z_0$ to obtain the indicial equation.

• In many cases, two solutions will be obtained, because of two roots of σ . However, in some cases, the recurrence relations will fail, or there'll only be one root of σ . In general

- If the roots of the indicial equation are equal, there's only one solution of the form above.
- If they differ by an integer, the recurrence relation will usually fail for the smaller value of $\operatorname{Re}(\sigma)$. [This is to do with the fact that since the difference is an integer, y_1/y_2 is constant and therefore the two solutions are linearly dependent].
- o Otherwise, there are two solutions of this form.
- If the roots are equal or differ by an integer, the second solution is of the form

$$y = \sum_{n=0}^{\infty} b_n (x - x_0)^{n + \sigma_2} + c y_1 \ln(x - x_0)$$

The coefficients can be determined by substituting into the other ODE and comparing coefficients of $(x - x_0)^n$ and $(x - x_0)^n \ln(x - x_0)$. In exceptional cases, c may vanish.

- Alternatively, y_2 can be found using the Wronskian method.
- Again, the radius of convergence of the series is the distance from the point of expansion to the nearest singular point.