
  Page 1 of 20 

Maths Revision Notes © Daniel Guetta, 2007 

Matrices & Linear 

Algebra 
Vector Spaces 

 Scalars are the elements of a number field (for 

example, R and C), which 

o Is a set of elements on which the operations of 

addition and multiplication are defined, and 

satisfy the usual laws of arithmetic 

(commutative, associative and distributive). 

o Is closed under addition and multiplication 

o Includes identity elements for addition and 

multiplication (0 and 1). 

o Includes inverses (negatives and reciprocals) for 

addition and multiplication, except 0. 

 Vectors are elements of a linear vector space defined 

over a number field F. A vector space V 

o Is a set of elements on which the operations of 

vector addition and scalar multiplication are 

defined and satisfy certain axioms. 

o Is closed under these operations. 

o Includes an identity element (0) for vector 

addition. 

 If the number field F over which the linear vector 

space is defined is real, then the vector space is real. 

 Notes: 

o Vector multiplication is not, in general, defined 

for a vector space. 

o The basic example of a vector space is a list of 

n scalars, Rn. Vector addition and scalar 

multiplication are defined component-wise. 
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o R2 is not exactly the same as C, because C has 

a rule for multiplication. 

o Similarly, R3 is not quite the same as physical 

space, because physical space has a rule 

(Pythagoras’) for the distance between two 

points. 

 

The Inner Product 
 The inner product is used to give a meaning to 

lengths and angles in a vector space. 

 It is a scalar function, ,x y  of two vectors x and y. 

 An inner product must 

o Be linear in the second argument 

, ,

, , ,

a a=

+ = +

x y x y

x y z x y x z
 

o Have Hermitian symmetry 
*, ,=y x x y  

o Be positive definite 

, 0³x x  

with equality if and only if x = 0. 

Notes: 

o The inner product has an existence without 

reference to any basis. 

o The hermitian symmetry is required so that 

,x x  is real. It is not required in a real vector 

space. 

o It follows from the above that the inner 

product is antilinear in the first argument: 
*, ,

, , ,

a a=

+ = +

x y x y

x y z x z y z
 

o In Cn, the standard (Euclidean) inner product, 

the “dot product”, is: 
*, i ix y=x y  
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The complex conjugation is needed to maintain 

Hermitian symmetry, and to ensure that the 

product is linear in the second argument. 

 The Cauchy-Schwarz Inequality states that 
2

, , ,£x y x x y y  

Or, equivalently: 

, £x y x y  

With equality if and only if a=x y . 
 

To prove, assume that , ¹x y 0  (in which case the 

inequality is trivial). We first say: 

( )

* *

** *

22 2

| | |

| | | |

| | | |

2Re |

a a a a a

a a aa

a a aa

a a

- - = - - -

= - - +

= - - +

= + -

x y x y x y x x y y

x x y x x y y y

x x x y x y y y

x y x y

Now, this quantity must be positive, because of the 

positive definite property of the inner product. If we 

choose the phase of a  (which is arbitrary) such that 

a |x y  is real and non-negative, so that 

|a a| =x y x y , we then have that: 

( )

22 2

2

2 | 0

2 2 | 0

a a

a a a

+ - ³

- + - ³

x y x y

x y x y x y
 

And now, if we choose /a = x y , we get: 

|³x y x y  

As required. 

 We can use the Cauchy-Schwarz inequality to prove 

the triangle inequality ( + £ +x y x y ), by writing 
2+x y  in terms of the inner product, expanding, 

using the inequality, and factorising. 

 The Cauchy-Schwarz Inequality allows us to define, in 

real vector space, the angle q  between two vectors, 

though 

, cosq=x y x y  
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[This is possible because, by the Cauchy Schwartz, 
, 1£x y

x y . If , 0=x y , in any vector space, x and y 

are said to be orthogonal. 

 A knowledge of the inner product of the basis vectors 

is sufficient to determine the inner product of any two 

vectors x and y. Let: 

| ijG=i je e  

Then 
*, ij i jG x y=x y  

Where the Gij are the metric coefficients of the basis. 

The Hermetian Symmetry of the inner product implies 

that 
*

ij jiG G=  

The matrix G is hermitian. 

 For an orthonormal basis, in which | ijd=i je e , we 

have that 
*| i ix y=x y  

 

Bases 
 Let { }1 2, , , mS = e e e  be a subset of the vectors in V. 

 A linear combination of S is any vector of the form 

1 1 2 2 m mx x x+ + +e e e , where the x are scalars. 

 The span of S is the set of all vectors that are linear 

combinations of S. If the span of S is the entire vector 

space V, then S is said to span V. 

 The vectors of S are said to be linearly independent if 

1 1 2 2 1 2, , , 0m m mx x x x x x+ + + =  =e e e 0   

If, on the other hand, such an equation holds for non-

trivial values of the coefficients, one of the vectors is 

redundant, and can be written as a linear combination 

of the other vectors. 

 If an additional vector is added to a spanning set, it 

remains a spanning set. If a vector is removed from a 
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linearly independent set, it remains a linearly 

independent set. 

 A basis for a vector space V is the subset of vectors S 

that spans V and is also linearly independent. The 

properties of basis sets are: 

o All bases of V have the same number of 

elements, n, which is called the dimension of V. 

o Any n linearly independent vectors in V form a 

basis of V. 

o Any vector VÎx  can be written [prove by 

considering { }V È x  as a linearly dependent set] 

in a unique way [prove by contradiction] as a 

linear combination of the vectors in a basis. 

The relevant scalars are called the components 

of x with respect to that particular basis. 

 The same vector (a geometrical identity) has different 

components with respect to different bases. To see 

how we can change from one to the other, consider 

two bases of V – { }iS = e  and { }iS ¢ ¢= e . 

o Because both are bases, the elements of one 

basis can be written in terms of the other: 

j i ijR¢=e e  

Where Rij is the transformation matrix between 

the two bases 

o Now, consider a vector VÎx . The 

representation of the vector in each basis is: 

j j i ix x¢ ¢= =x e e  

However, using our result from above, we can 

write this as: 

i i j j i ij jx x R x¢ ¢ ¢= = =x e e e  

o From this, we can deduce the transformation 

law for vector components: 

i ij jx R x¢ =  
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Note that: 

 The law is the “reverse” of that for 

basis vector transformation. This is 

to ensure that, overall, the vector x 

stays unchanged by transformation. 

 The first suffix of R corresponds to 

the same basis in both relations. 

 We defined Rij, above, by 

j i ijR¢=e e  

The condition of the basis {ej} to be orthonormal is 

( )

†

†

* †

i j ij

k ki l lj ij

ki lj k l ij

R R

R R

d

d

d

=

¢ ¢ =

¢ ¢ =

e e

e e

e e

 

If the second basis is also orthonormal, this becomes: 
*

†

ki kj ijR R d=

=R R I
 

In other words, transformations between orthonormal 

bases is described by unitary matrices. In real vector 

space, an orthogonal matrix does this – in R2 and R3, 

this corresponds to a rotation and/or reflection. 

 Given any m vectors m1u u  that span an n-

dimensional vector space (m > n), it is possible to 

construct an orthogonal basis 1 ne e  using the Gram-

Schmidt procedure: 

1

1

r
r

s
s s

-

=

=

⋅
= -

⋅å

1 1

s
r r

s

e u

e u
e u e

e e

 

What we are effectively doing is taking each vector u 

and “removing” any “bits” of vectors we’ve already 

added to the basis from it, to leave us with a final 

vector that is orthogonal to all others already added… 

We can prove, by induction, that this works: 
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Inductive step  

Assume that vectors 1 te e  have already been added 

to the orthogonal basis (such that 0 i j⋅ = " ¹i je e ), 

and now consider the vector et+1 that we’re about to 

add: 
1

1
1

1

r
t

t s
s s

-
+

+ +
=

⋅
= -

⋅å s
t 1

s

e u
e u e

e e
 

And now, consider dotting it with ev (v < t), any of 

the vectors already in the basis: 

[ ]

[ ]

1
1

1
1 =0 if 

1
1

1 1

0

r
t

t s
s s v s

v t
t s s

s

t v t

-
+

+ +
= ¹

+
+

+ +

⋅
⋅ = ⋅ - ⋅

⋅
⋅

= ⋅ - ⋅
⋅

= ⋅ - ⋅

=

å s
t 1 v v v

s

v
s

v

e u
e e u e e e

e e

e u
u e e e

e e
u e e u



 

So the new vector is indeed orthogonal to all the 

vectors already in the set. 

"Starting off" step  

Consider 1 2⋅e e : 

[ ]

[ ]

1 2

0

æ ö⋅ ÷ç ÷⋅ = ⋅ -ç ÷ç ÷ç ⋅è ø
⋅

= ⋅ - ⋅
⋅
⋅

= ⋅ - ⋅
⋅

=

1 2
1 2 1

1 1

1 2
1 2 1 1

1 1

1 2
1 2 1 1

1 1

e u
e e u u e

e e
u u

u u u e
e e
u u

u u e e
e e

 

So the first two vectors are, indeed, orthogonal. 

 

Matrices 
 ARRAY VIEWPOINT 

o Matrices can be regarded, simply, as an array 

of numbers, Rij. 

o The rule for multiplying a matrix by a vector is 

then 

( ) ij ji
=Ax A x  
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o The rules for matrix addition and 

multiplication are 

( ) ij ijij
+ = +A B A B  

( ) ik kjij
=AB A B  

 LINEAR OPERATOR VIEWPOINT 

o A linear operator A acts on a vector space V to 

produce other elements of V. 

o The property of linearity means that: 

( ) ( )

( ) ( ) ( )

a a=

+ = +

L x L x

A x y A x A y
 

o A linear operator can exist without reference to 

any basis. It can be thought of as a linear 

transformation or mapping of the space V. 

[Some linear operators can even transform 

between different bases]. 

o The components of A with respect to a basis 

{ }ie  is defined by the action of A on the basis 

vectors: 

j ij iA=Ae e  

The components form a square matrix. [In 

other words, the jth column of A  contains the 

compoenents of the result of A acting on ej]. 

o We now know enough to determine the action 

of A only any x: 

( )j j j j j ij i ij j ix x x A A x= = = =Ax A e Ae e e  

So: 

( ) ij ji
A x=Ax  

This corresponds to the rule for multiplying a 

matrix by a vector. 

o Furthermore, the sum of two linear operators is 

defined by 

( )( ) ij ij jA B x+ = + = +iA B x Ax Bx e  

o And the product of two linear operators is 

defined by 
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( ) ( ) ( ) ( )ij j k kj j i ik kj jB x B x A B x= = = =iAB x A Bx A e Ae e  

o Both these operations satisfy the rules of 

matrix addition and multiplication and action 

on a vector. As such, a linear operator can be 

represented as a matrix. 

 BACK TO CHANGE OF BASIS 

o Above, we wrote one set of basis vectors in 

terms of the other: 

j i ijR¢=e e  

But we could also have written 

j i ijS¢ =e e  

Substituting one into the other, we have 

j k ki ij

j k ki ij

S R

R S

=

¢ ¢=

e e

e e
 

But this can only be true if 

ki ij ki ij kjS R R S d= =  

Which implies that 

1

1RS SR

R S-

= =

 =
 

o We noted, above, that the transformation laws 

for vector components could be written 

i ij jx R x¢ =  

We can write this in matrix form, as 

x Rx¢ =  

With the inverse relation 

1x R x-¢ =  

 LINEAR OPERATORS – CHANGE OF BASIS 

o To find how the components of a linear 

operator A transform under a change of basis, 

we note that we require 

i ij j i ij jA x A x¢ ¢ ¢= =Ax e e  

Using j ij iR ¢=e e , we have that: 
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( )1

k ki ij j k kj j

ki ij j kj j

R A x A x

R A x A x

RAx A x

RA R x A x-

¢ ¢ ¢ ¢=

¢ ¢=

¢ ¢=

¢ ¢ ¢=

e e

 

Which means that 

1A RAR-¢ =  

 MATRIX MULTIPLICATION 

o Matrix multiplication does not commute. But it 

does distribute, so, with a bit of care, normal 

rules of algebra can be applied. For example: 

( )( )

( ) ( )

( )( )

- +

= + - +

= + - -

= -

= + -

2

2

1 W 1 W

11 W W 1 W

1 1W W1 W

1 W

1 W 1 W

 

 

Hermitian Conjugate 
 We define the Hermitian conjugate of a matrix as 

follows: 

( )

† *

† *

( )T

jiij

A A

A A

=

=
 

 Importantly: 
† † †( )AB B A=  

(Note the reversal of the order). 

 We can also write the inner product as: 
†, x Gy=x y  

Where G is the matrix of metric coefficients. This 

preserve the hermitian symmetry of the inner product 

as long as the matrix is hermitian – †G G= . 

 The adjoint of a linear operator A with respect to a 

given inner product is a linear operator †A  satisfying 
† | |=A x y x Ay  
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With the standard inner product, we find that the 

matrix defining †A  is, indeed, the hermitian conjugate 

of A. 

 

Special Matrices 
 SYMMETRY 

o A symmetric matrix is equal to its transpose 

T=A A  
o An hermitian matrix is equal to its hermitian 

conjugate. 

†=A A  
o An antisymmetric (or skew-symmetric) matrix 

satisfies 

T = -A A  
o An anti-hermitian (or skew-hermitian) matrix 

satisfies 

† = -A A  
 ORTHOGONALITY 

o An orthogonal matrix is one whose transpose is 

equal to its inverse 

1T -=A A  
o A unitary matrix is one whose hermitian 

conjugate is equal to its inverse 

† 1-=A A  
We note that if U is a unitary matrix, then 

† =A A 1 . This implies that the columns of A 

are orthonormal vectors. 

 A normal matrix is one that commutes with its 

Hermitian conjugate: 

† †=AA A A  
It is easy to verify that hermitian, anti-hermitian and 

unitary matrices are all normal. 

 RELATIONSHIPS 



  Page 12 of 20 

Maths Revision Notes © Daniel Guetta, 2007 

o If A is Hermitian, then Ai is anti-hermitian, 

and vice-versa. 

o If A is Hermitian, then 

0

( )
exp( )

!

n

n

i
i

n

¥

=

= å A
A  

Is unitary. 

o [This can be remembered by bearing in mind 

that if z is a real number, iz is imaginary, and 

if z is a real number, then eiz has unit modulus 

(see below when talking about eigenvalues of 

normal matrices)] 

 To prove that a matrix is a certain type of special 

matrix, find an expression for the determining 

property. For example, to prove it’s unitary, find 
†UU . 

 

Eigenvalues and Eigenvectors 
 An eigenvector of a linear operator A is a non-zero 

vector x satisfying 

( )

l

l

=

- =

Ax x

A 1 x 0
 

For some scalar l , called the eigenvalue. 

 The equation (in its second form) effectively says that 

a linear combination of the columns of the matrix 

( )l-A I  is equal to 0. This is equivalent to the 

statement 

det( ) 0l- =A I  

Which is called the characteristic equation of the 

matrix. 

 There are two possibilities in terms of roots: 

o If there are n distinct solutions to the 

characteristic equation, then there are n 

linearly independent eigenvectors. We prove 

this as follows. Assume that 
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aa a =å e 0  

We can multiply both sides by whatever we 

want, so: 

1

2 1 2 2 3 1 3 3 1

( )

( ) ( ) ( )n n n

a

a a a

a al

l l l l l l

- =

= - + - + + - =

åA I e 0

y e e e 0

We can do the same again with y: 

2

3 1 3 2 3 3 1 2

( )

( )( ) ( )( )n n n na a

l

l l l l l l l l

- =

- - + + - - =

A I y 0

e e 0
We can then repeat this until we obtain: 

1 2 2 1( )( ) ( )( )n n n n n n n nal l l l l l l l- -- - - - =e 0  

Now, if all the l  are distinct, the expression 

enclosed by a brace is non-zero. Therefore, an 

must be 0. Removing the last vector and 

repeatedly applying this method shows us that 

all the an must be 0. Therefore, 

aa a =å e 0  

is only true if all the aa  are 0. Therefore, the 

vectors are linearly independent. 

o If the roots are not all distinct, then the 

repeated values are said to be degenerate. If a 

value l  occurs m times, there may be any 

number between 1 and m of linearly 

independent eigenvectors. Any linear 

combination of these is also an eigenvector. 

A defective matrix is one who vector space is not 

spanned by its eigenvectors. Such a matrix cannot be 

diagonalised by a change of basis. 

 It can be shown that a normal matrix is never 

defective. In fact, an orthonormal basis can always be 

constructed from the eigenvectors of a matrix, if and 

only if the matrix is normal. 

 Some interesting properties can be derived regarding 

the properties of the eigenvectors and eigenvalues of 

normal matrices: 
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o The eigenvectors corresponding to distinct 

eigenvalues are orthogonal. 

o The eigenvalues are 

 Real for hermitian matrices. 

 Imaginary for anti-Hermitian matrices. 

 Of unit modulus for unitary matrices. 

A good way to remember these properties is to 

consider that a 1 1´  matrix is just a number l , 

and to be Hermitian, imaginary or unitary, it 

must satisfy 

*l l=   *l l=-  * 1l l-=  

Which are precisely the conditions for l  being 

real, imaginary or of unit modulus. 

The method to prove these results is, in general, as 

follows: 

o Choose two arbitrary eigenvectors and write 

the eigenvector equations: 

l=Ax x   m=Ay y  

o Take one of these equations, and find the 

hermitian conjugate. 

o Then 

 For a hermitian matrix, construct two 

expressions for †y Ax . 

 For a unitary matrix, multiply both 

sides by the other eigenvector equation 

that hadn’t be used. 

o Re-arrange in the form something = 0. 

o Assume that x = y, and using the fact that 

, ¹x y 0 , deduce something about the 

eigenvalues. 

o Now, assume that ¹x y  and deduce that 
† 0=y x  as long as l m¹ , proving that the 

vectors are orthogonal. 

 Matrices are given particular names: 
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o If all eigenvalues are < 0 (> 0), the matrix is 

negative (positive) definite. 

o If all eigenvalues are < 0 (> 0), the matrix is 

negative (positive) semi-definite. 

o A matrix is definite if it is either positive 

definite or negative definite. 

 

Diagonalization 
 Two square matrices A and B are said to be similar if 

they are related by 

1-=B S AS  
In other words, if they are representations of the same 

linear transformation in different bases. S is called the 

similarity matrix. 

 A matrix is said to be diagonalisable if it is similar to 

a diagonal matrix – in other words, if 

1- = LS AS  
Where L  is a diagonal matrix. 

 Consider a matrix S whose columns are the 

eigenvectors of the matrix A: 

1 2

1 1 2 2 3

1

2

1 2

0

0

n

n

n

n

l l l

l

l

l

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

é ù
é ù ê ú
ê ú ê ú
ê ú ê ú

= ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ê úë û

= L

AS A e e e

e e e

e e e

S








 

We can therefore say that 

1- = LS AS  
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Provided that S is invertible – ie:, provided that the 

columns of S are linearly independent – ie: provided 

that the eigenvectors of A are linearly independent. 

 Notes: 

o We notice that S is the transformation matrix 

to the eigenvector basis. Therefore, 

diagonalisation is the process of expressing a 

matrix in its simplest form by transforming to 

its eigenvector basis. 

o An n n´  matrix is diagonalisable if and only if 

it has n linearly independent eigenvectors. That 

is to say, only if it is normal. Furthermore, if 

the eigenvectors are chosen to be orthonormal, 

then the columns of S are orthonormal and S is 

therefore unitary (= a matrix whose columns 

are orthonormal vectors). 

 Diagonalisation is rather useful in carrying out certain 

operations on matrices: 
1

1

( )( ) ( )

det( ) det( ) det( )det( )det( ) det( )

tr( ) tr( ) tr( ) tr( )

tr( ) tr( )

m

m m

- - - -

- -

- -

= L L L = L

= L = L = L

= L = L = L

= L

1 1 m 1

1

1 1

A S S S S S S S S

A S S S S

A S S SS

A



Where we have used the following properties of 

determinants and traces: 

det( ) det( )det( )

det( )det( ) 1

tr( ) ( ) ( ) tr( )ii ij ji ji ij jjA B B A

-

=

=

= = = = =

1

AB A B

S S

AB AB BA BA

 

 Note that in general, for any matrix A 

1

1

det( )

tr( )

n

i
i
n

i
i

l

l

=

=

=

=



å

A

A
 

 

Quadratic & Hermitian Forms 
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 The quadratic form associated with a real symmetric 

matrix A is 

( ) T
ij i jQ A x x= =x x Ax  

Q is a homogeneous quadratic function – ie: 
2( ) ( )Q Qa a=x x . 

 In fact, any homogenous quadratic equation is the 

quadratic form of a symmetric matrix: 

2 22 T
a b x

Q ax bxy cy x y yb c

é ù é ùé ù ê ú ê ú= + + = =ê ú ê ú ê úë û ë ûê úë û
x Ax  

 In fact, A can be diagonalised by a real orthogonal 

transformation: 

= LTS AS   ( )-=T 1S S  

And the vector x transforms according to ¢=x Sx , so 

( )( )( )T TQ ¢ ¢ ¢ ¢= = L = LT T Tx Ax x S S S Sx x x  

The quadric form can therefore be reduced to: 

1

n

i i
i

Q xl
=

¢= å  

Where the ix ¢  are given by: 

1 T-¢ = =x S x S x  
We have effectively rotated the coordinates to reduce 

the quadric form to its simplest form. 

 The quadric surfaces (or quadrics) are the family of 

surfaces 

( ) constantQ k= =x  

In the eigenvector basis, this simplifies to 
2 2 2

1 1 2 2 3 3x x x kl l l¢ ¢ ¢+ + =  

 The conic and quadric surfaces that can result are 

depicted on the next page. The relevant semi-axes are 

given by 1/ l . If 0l  , the shape “comes apart”. 

 A few special cases: 

o If 1 2 3l l l= = , we have a sphere. 

o If (for example), 1 2l l= , we have a surface of 

revolution about the third axis, whatever it 

might be. 
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o If (for example), 3 0l = , we have the 

translation of a conic section along the relevant 

axis (an elliptic or hyperbolic cylinder). 
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 In a complex vector space, the Hermitian form 

associated with an Hermitian matrix A is: 
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† *( ) i ij jH x A x= =x x Ax  

H is a real scalar, because 

( )** * * * *( ) ( )i ij j j ij i j ji iH x A x x A x x A x H= = = =x x  

We also know that A can be diagonalised by a unitary 

transformation 

† = LU AU   † 1-=U U  
And therefore: 

( ) ( ) ( )†† † † † † 2

1

( )
n

n i
i

H xl
=

¢ ¢ ¢= L = L = L =åx x U U x U x U x x x

Therefore, a hermitian form can be reduced to a real 

quadratic form by transforming to the eigenvector 

basis. 

 


