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Matrices & Linear 

Algebra 
Vector Spaces 

 Scalars are the elements of a number field (for 

example, R and C), which 

o Is a set of elements on which the operations of 

addition and multiplication are defined, and 

satisfy the usual laws of arithmetic 

(commutative, associative and distributive). 

o Is closed under addition and multiplication 

o Includes identity elements for addition and 

multiplication (0 and 1). 

o Includes inverses (negatives and reciprocals) for 

addition and multiplication, except 0. 

 Vectors are elements of a linear vector space defined 

over a number field F. A vector space V 

o Is a set of elements on which the operations of 

vector addition and scalar multiplication are 

defined and satisfy certain axioms. 

o Is closed under these operations. 

o Includes an identity element (0) for vector 

addition. 

 If the number field F over which the linear vector 

space is defined is real, then the vector space is real. 

 Notes: 

o Vector multiplication is not, in general, defined 

for a vector space. 

o The basic example of a vector space is a list of 

n scalars, Rn. Vector addition and scalar 

multiplication are defined component-wise. 
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o R2 is not exactly the same as C, because C has 

a rule for multiplication. 

o Similarly, R3 is not quite the same as physical 

space, because physical space has a rule 

(Pythagoras’) for the distance between two 

points. 

 

The Inner Product 
 The inner product is used to give a meaning to 

lengths and angles in a vector space. 

 It is a scalar function, ,x y  of two vectors x and y. 

 An inner product must 

o Be linear in the second argument 

, ,

, , ,

a a=

+ = +

x y x y

x y z x y x z
 

o Have Hermitian symmetry 
*, ,=y x x y  

o Be positive definite 

, 0³x x  

with equality if and only if x = 0. 

Notes: 

o The inner product has an existence without 

reference to any basis. 

o The hermitian symmetry is required so that 

,x x  is real. It is not required in a real vector 

space. 

o It follows from the above that the inner 

product is antilinear in the first argument: 
*, ,

, , ,

a a=

+ = +

x y x y

x y z x z y z
 

o In Cn, the standard (Euclidean) inner product, 

the “dot product”, is: 
*, i ix y=x y  
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The complex conjugation is needed to maintain 

Hermitian symmetry, and to ensure that the 

product is linear in the second argument. 

 The Cauchy-Schwarz Inequality states that 
2

, , ,£x y x x y y  

Or, equivalently: 

, £x y x y  

With equality if and only if a=x y . 
 

To prove, assume that , ¹x y 0  (in which case the 

inequality is trivial). We first say: 

( )

* *

** *

22 2

| | |

| | | |

| | | |

2Re |

a a a a a

a a aa

a a aa

a a

- - = - - -

= - - +

= - - +

= + -

x y x y x y x x y y

x x y x x y y y

x x x y x y y y

x y x y

Now, this quantity must be positive, because of the 

positive definite property of the inner product. If we 

choose the phase of a  (which is arbitrary) such that 

a |x y  is real and non-negative, so that 

|a a| =x y x y , we then have that: 

( )

22 2

2

2 | 0

2 2 | 0

a a

a a a

+ - ³

- + - ³

x y x y

x y x y x y
 

And now, if we choose /a = x y , we get: 

|³x y x y  

As required. 

 We can use the Cauchy-Schwarz inequality to prove 

the triangle inequality ( + £ +x y x y ), by writing 
2+x y  in terms of the inner product, expanding, 

using the inequality, and factorising. 

 The Cauchy-Schwarz Inequality allows us to define, in 

real vector space, the angle q  between two vectors, 

though 

, cosq=x y x y  
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[This is possible because, by the Cauchy Schwartz, 
, 1£x y

x y . If , 0=x y , in any vector space, x and y 

are said to be orthogonal. 

 A knowledge of the inner product of the basis vectors 

is sufficient to determine the inner product of any two 

vectors x and y. Let: 

| ijG=i je e  

Then 
*, ij i jG x y=x y  

Where the Gij are the metric coefficients of the basis. 

The Hermetian Symmetry of the inner product implies 

that 
*

ij jiG G=  

The matrix G is hermitian. 

 For an orthonormal basis, in which | ijd=i je e , we 

have that 
*| i ix y=x y  

 

Bases 
 Let { }1 2, , , mS = e e e  be a subset of the vectors in V. 

 A linear combination of S is any vector of the form 

1 1 2 2 m mx x x+ + +e e e , where the x are scalars. 

 The span of S is the set of all vectors that are linear 

combinations of S. If the span of S is the entire vector 

space V, then S is said to span V. 

 The vectors of S are said to be linearly independent if 

1 1 2 2 1 2, , , 0m m mx x x x x x+ + + =  =e e e 0   

If, on the other hand, such an equation holds for non-

trivial values of the coefficients, one of the vectors is 

redundant, and can be written as a linear combination 

of the other vectors. 

 If an additional vector is added to a spanning set, it 

remains a spanning set. If a vector is removed from a 



  Page 5 of 20 

Maths Revision Notes © Daniel Guetta, 2007 

linearly independent set, it remains a linearly 

independent set. 

 A basis for a vector space V is the subset of vectors S 

that spans V and is also linearly independent. The 

properties of basis sets are: 

o All bases of V have the same number of 

elements, n, which is called the dimension of V. 

o Any n linearly independent vectors in V form a 

basis of V. 

o Any vector VÎx  can be written [prove by 

considering { }V È x  as a linearly dependent set] 

in a unique way [prove by contradiction] as a 

linear combination of the vectors in a basis. 

The relevant scalars are called the components 

of x with respect to that particular basis. 

 The same vector (a geometrical identity) has different 

components with respect to different bases. To see 

how we can change from one to the other, consider 

two bases of V – { }iS = e  and { }iS ¢ ¢= e . 

o Because both are bases, the elements of one 

basis can be written in terms of the other: 

j i ijR¢=e e  

Where Rij is the transformation matrix between 

the two bases 

o Now, consider a vector VÎx . The 

representation of the vector in each basis is: 

j j i ix x¢ ¢= =x e e  

However, using our result from above, we can 

write this as: 

i i j j i ij jx x R x¢ ¢ ¢= = =x e e e  

o From this, we can deduce the transformation 

law for vector components: 

i ij jx R x¢ =  



  Page 6 of 20 

Maths Revision Notes © Daniel Guetta, 2007 

Note that: 

 The law is the “reverse” of that for 

basis vector transformation. This is 

to ensure that, overall, the vector x 

stays unchanged by transformation. 

 The first suffix of R corresponds to 

the same basis in both relations. 

 We defined Rij, above, by 

j i ijR¢=e e  

The condition of the basis {ej} to be orthonormal is 

( )

†

†

* †

i j ij

k ki l lj ij

ki lj k l ij

R R

R R

d

d

d

=

¢ ¢ =

¢ ¢ =

e e

e e

e e

 

If the second basis is also orthonormal, this becomes: 
*

†

ki kj ijR R d=

=R R I
 

In other words, transformations between orthonormal 

bases is described by unitary matrices. In real vector 

space, an orthogonal matrix does this – in R2 and R3, 

this corresponds to a rotation and/or reflection. 

 Given any m vectors m1u u  that span an n-

dimensional vector space (m > n), it is possible to 

construct an orthogonal basis 1 ne e  using the Gram-

Schmidt procedure: 

1

1

r
r

s
s s

-

=

=

⋅
= -

⋅å

1 1

s
r r

s

e u

e u
e u e

e e

 

What we are effectively doing is taking each vector u 

and “removing” any “bits” of vectors we’ve already 

added to the basis from it, to leave us with a final 

vector that is orthogonal to all others already added… 

We can prove, by induction, that this works: 
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Inductive step  

Assume that vectors 1 te e  have already been added 

to the orthogonal basis (such that 0 i j⋅ = " ¹i je e ), 

and now consider the vector et+1 that we’re about to 

add: 
1

1
1

1

r
t

t s
s s

-
+

+ +
=

⋅
= -

⋅å s
t 1

s

e u
e u e

e e
 

And now, consider dotting it with ev (v < t), any of 

the vectors already in the basis: 

[ ]

[ ]

1
1

1
1 =0 if 

1
1

1 1

0

r
t

t s
s s v s

v t
t s s

s

t v t

-
+

+ +
= ¹

+
+

+ +

⋅
⋅ = ⋅ - ⋅

⋅
⋅

= ⋅ - ⋅
⋅

= ⋅ - ⋅

=

å s
t 1 v v v

s

v
s

v

e u
e e u e e e

e e

e u
u e e e

e e
u e e u



 

So the new vector is indeed orthogonal to all the 

vectors already in the set. 

"Starting off" step  

Consider 1 2⋅e e : 

[ ]

[ ]

1 2

0

æ ö⋅ ÷ç ÷⋅ = ⋅ -ç ÷ç ÷ç ⋅è ø
⋅

= ⋅ - ⋅
⋅
⋅

= ⋅ - ⋅
⋅

=

1 2
1 2 1

1 1

1 2
1 2 1 1

1 1

1 2
1 2 1 1

1 1

e u
e e u u e

e e
u u

u u u e
e e
u u

u u e e
e e

 

So the first two vectors are, indeed, orthogonal. 

 

Matrices 
 ARRAY VIEWPOINT 

o Matrices can be regarded, simply, as an array 

of numbers, Rij. 

o The rule for multiplying a matrix by a vector is 

then 

( ) ij ji
=Ax A x  
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o The rules for matrix addition and 

multiplication are 

( ) ij ijij
+ = +A B A B  

( ) ik kjij
=AB A B  

 LINEAR OPERATOR VIEWPOINT 

o A linear operator A acts on a vector space V to 

produce other elements of V. 

o The property of linearity means that: 

( ) ( )

( ) ( ) ( )

a a=

+ = +

L x L x

A x y A x A y
 

o A linear operator can exist without reference to 

any basis. It can be thought of as a linear 

transformation or mapping of the space V. 

[Some linear operators can even transform 

between different bases]. 

o The components of A with respect to a basis 

{ }ie  is defined by the action of A on the basis 

vectors: 

j ij iA=Ae e  

The components form a square matrix. [In 

other words, the jth column of A  contains the 

compoenents of the result of A acting on ej]. 

o We now know enough to determine the action 

of A only any x: 

( )j j j j j ij i ij j ix x x A A x= = = =Ax A e Ae e e  

So: 

( ) ij ji
A x=Ax  

This corresponds to the rule for multiplying a 

matrix by a vector. 

o Furthermore, the sum of two linear operators is 

defined by 

( )( ) ij ij jA B x+ = + = +iA B x Ax Bx e  

o And the product of two linear operators is 

defined by 
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( ) ( ) ( ) ( )ij j k kj j i ik kj jB x B x A B x= = = =iAB x A Bx A e Ae e  

o Both these operations satisfy the rules of 

matrix addition and multiplication and action 

on a vector. As such, a linear operator can be 

represented as a matrix. 

 BACK TO CHANGE OF BASIS 

o Above, we wrote one set of basis vectors in 

terms of the other: 

j i ijR¢=e e  

But we could also have written 

j i ijS¢ =e e  

Substituting one into the other, we have 

j k ki ij

j k ki ij

S R

R S

=

¢ ¢=

e e

e e
 

But this can only be true if 

ki ij ki ij kjS R R S d= =  

Which implies that 

1

1RS SR

R S-

= =

 =
 

o We noted, above, that the transformation laws 

for vector components could be written 

i ij jx R x¢ =  

We can write this in matrix form, as 

x Rx¢ =  

With the inverse relation 

1x R x-¢ =  

 LINEAR OPERATORS – CHANGE OF BASIS 

o To find how the components of a linear 

operator A transform under a change of basis, 

we note that we require 

i ij j i ij jA x A x¢ ¢ ¢= =Ax e e  

Using j ij iR ¢=e e , we have that: 
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( )1

k ki ij j k kj j

ki ij j kj j

R A x A x

R A x A x

RAx A x

RA R x A x-

¢ ¢ ¢ ¢=

¢ ¢=

¢ ¢=

¢ ¢ ¢=

e e

 

Which means that 

1A RAR-¢ =  

 MATRIX MULTIPLICATION 

o Matrix multiplication does not commute. But it 

does distribute, so, with a bit of care, normal 

rules of algebra can be applied. For example: 

( )( )

( ) ( )

( )( )

- +

= + - +

= + - -

= -

= + -

2

2

1 W 1 W

11 W W 1 W

1 1W W1 W

1 W

1 W 1 W

 

 

Hermitian Conjugate 
 We define the Hermitian conjugate of a matrix as 

follows: 

( )

† *

† *

( )T

jiij

A A

A A

=

=
 

 Importantly: 
† † †( )AB B A=  

(Note the reversal of the order). 

 We can also write the inner product as: 
†, x Gy=x y  

Where G is the matrix of metric coefficients. This 

preserve the hermitian symmetry of the inner product 

as long as the matrix is hermitian – †G G= . 

 The adjoint of a linear operator A with respect to a 

given inner product is a linear operator †A  satisfying 
† | |=A x y x Ay  
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With the standard inner product, we find that the 

matrix defining †A  is, indeed, the hermitian conjugate 

of A. 

 

Special Matrices 
 SYMMETRY 

o A symmetric matrix is equal to its transpose 

T=A A  
o An hermitian matrix is equal to its hermitian 

conjugate. 

†=A A  
o An antisymmetric (or skew-symmetric) matrix 

satisfies 

T = -A A  
o An anti-hermitian (or skew-hermitian) matrix 

satisfies 

† = -A A  
 ORTHOGONALITY 

o An orthogonal matrix is one whose transpose is 

equal to its inverse 

1T -=A A  
o A unitary matrix is one whose hermitian 

conjugate is equal to its inverse 

† 1-=A A  
We note that if U is a unitary matrix, then 

† =A A 1 . This implies that the columns of A 

are orthonormal vectors. 

 A normal matrix is one that commutes with its 

Hermitian conjugate: 

† †=AA A A  
It is easy to verify that hermitian, anti-hermitian and 

unitary matrices are all normal. 

 RELATIONSHIPS 
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o If A is Hermitian, then Ai is anti-hermitian, 

and vice-versa. 

o If A is Hermitian, then 

0

( )
exp( )

!

n

n

i
i

n

¥

=

= å A
A  

Is unitary. 

o [This can be remembered by bearing in mind 

that if z is a real number, iz is imaginary, and 

if z is a real number, then eiz has unit modulus 

(see below when talking about eigenvalues of 

normal matrices)] 

 To prove that a matrix is a certain type of special 

matrix, find an expression for the determining 

property. For example, to prove it’s unitary, find 
†UU . 

 

Eigenvalues and Eigenvectors 
 An eigenvector of a linear operator A is a non-zero 

vector x satisfying 

( )

l

l

=

- =

Ax x

A 1 x 0
 

For some scalar l , called the eigenvalue. 

 The equation (in its second form) effectively says that 

a linear combination of the columns of the matrix 

( )l-A I  is equal to 0. This is equivalent to the 

statement 

det( ) 0l- =A I  

Which is called the characteristic equation of the 

matrix. 

 There are two possibilities in terms of roots: 

o If there are n distinct solutions to the 

characteristic equation, then there are n 

linearly independent eigenvectors. We prove 

this as follows. Assume that 
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aa a =å e 0  

We can multiply both sides by whatever we 

want, so: 

1

2 1 2 2 3 1 3 3 1

( )

( ) ( ) ( )n n n

a

a a a

a al

l l l l l l

- =

= - + - + + - =

åA I e 0

y e e e 0

We can do the same again with y: 

2

3 1 3 2 3 3 1 2

( )

( )( ) ( )( )n n n na a

l

l l l l l l l l

- =

- - + + - - =

A I y 0

e e 0
We can then repeat this until we obtain: 

1 2 2 1( )( ) ( )( )n n n n n n n nal l l l l l l l- -- - - - =e 0  

Now, if all the l  are distinct, the expression 

enclosed by a brace is non-zero. Therefore, an 

must be 0. Removing the last vector and 

repeatedly applying this method shows us that 

all the an must be 0. Therefore, 

aa a =å e 0  

is only true if all the aa  are 0. Therefore, the 

vectors are linearly independent. 

o If the roots are not all distinct, then the 

repeated values are said to be degenerate. If a 

value l  occurs m times, there may be any 

number between 1 and m of linearly 

independent eigenvectors. Any linear 

combination of these is also an eigenvector. 

A defective matrix is one who vector space is not 

spanned by its eigenvectors. Such a matrix cannot be 

diagonalised by a change of basis. 

 It can be shown that a normal matrix is never 

defective. In fact, an orthonormal basis can always be 

constructed from the eigenvectors of a matrix, if and 

only if the matrix is normal. 

 Some interesting properties can be derived regarding 

the properties of the eigenvectors and eigenvalues of 

normal matrices: 
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o The eigenvectors corresponding to distinct 

eigenvalues are orthogonal. 

o The eigenvalues are 

 Real for hermitian matrices. 

 Imaginary for anti-Hermitian matrices. 

 Of unit modulus for unitary matrices. 

A good way to remember these properties is to 

consider that a 1 1´  matrix is just a number l , 

and to be Hermitian, imaginary or unitary, it 

must satisfy 

*l l=   *l l=-  * 1l l-=  

Which are precisely the conditions for l  being 

real, imaginary or of unit modulus. 

The method to prove these results is, in general, as 

follows: 

o Choose two arbitrary eigenvectors and write 

the eigenvector equations: 

l=Ax x   m=Ay y  

o Take one of these equations, and find the 

hermitian conjugate. 

o Then 

 For a hermitian matrix, construct two 

expressions for †y Ax . 

 For a unitary matrix, multiply both 

sides by the other eigenvector equation 

that hadn’t be used. 

o Re-arrange in the form something = 0. 

o Assume that x = y, and using the fact that 

, ¹x y 0 , deduce something about the 

eigenvalues. 

o Now, assume that ¹x y  and deduce that 
† 0=y x  as long as l m¹ , proving that the 

vectors are orthogonal. 

 Matrices are given particular names: 
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o If all eigenvalues are < 0 (> 0), the matrix is 

negative (positive) definite. 

o If all eigenvalues are < 0 (> 0), the matrix is 

negative (positive) semi-definite. 

o A matrix is definite if it is either positive 

definite or negative definite. 

 

Diagonalization 
 Two square matrices A and B are said to be similar if 

they are related by 

1-=B S AS  
In other words, if they are representations of the same 

linear transformation in different bases. S is called the 

similarity matrix. 

 A matrix is said to be diagonalisable if it is similar to 

a diagonal matrix – in other words, if 

1- = LS AS  
Where L  is a diagonal matrix. 

 Consider a matrix S whose columns are the 

eigenvectors of the matrix A: 

1 2

1 1 2 2 3

1

2

1 2

0

0

n

n

n

n

l l l

l

l

l

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

é ù
é ù ê ú
ê ú ê ú
ê ú ê ú

= ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ê úë û

= L

AS A e e e

e e e

e e e

S








 

We can therefore say that 

1- = LS AS  
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Provided that S is invertible – ie:, provided that the 

columns of S are linearly independent – ie: provided 

that the eigenvectors of A are linearly independent. 

 Notes: 

o We notice that S is the transformation matrix 

to the eigenvector basis. Therefore, 

diagonalisation is the process of expressing a 

matrix in its simplest form by transforming to 

its eigenvector basis. 

o An n n´  matrix is diagonalisable if and only if 

it has n linearly independent eigenvectors. That 

is to say, only if it is normal. Furthermore, if 

the eigenvectors are chosen to be orthonormal, 

then the columns of S are orthonormal and S is 

therefore unitary (= a matrix whose columns 

are orthonormal vectors). 

 Diagonalisation is rather useful in carrying out certain 

operations on matrices: 
1

1

( )( ) ( )

det( ) det( ) det( )det( )det( ) det( )

tr( ) tr( ) tr( ) tr( )

tr( ) tr( )

m

m m

- - - -

- -

- -

= L L L = L

= L = L = L

= L = L = L

= L

1 1 m 1

1

1 1

A S S S S S S S S

A S S S S

A S S SS

A



Where we have used the following properties of 

determinants and traces: 

det( ) det( )det( )

det( )det( ) 1

tr( ) ( ) ( ) tr( )ii ij ji ji ij jjA B B A

-

=

=

= = = = =

1

AB A B

S S

AB AB BA BA

 

 Note that in general, for any matrix A 

1

1

det( )

tr( )

n

i
i
n

i
i

l

l

=

=

=

=



å

A

A
 

 

Quadratic & Hermitian Forms 
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 The quadratic form associated with a real symmetric 

matrix A is 

( ) T
ij i jQ A x x= =x x Ax  

Q is a homogeneous quadratic function – ie: 
2( ) ( )Q Qa a=x x . 

 In fact, any homogenous quadratic equation is the 

quadratic form of a symmetric matrix: 

2 22 T
a b x

Q ax bxy cy x y yb c

é ù é ùé ù ê ú ê ú= + + = =ê ú ê ú ê úë û ë ûê úë û
x Ax  

 In fact, A can be diagonalised by a real orthogonal 

transformation: 

= LTS AS   ( )-=T 1S S  

And the vector x transforms according to ¢=x Sx , so 

( )( )( )T TQ ¢ ¢ ¢ ¢= = L = LT T Tx Ax x S S S Sx x x  

The quadric form can therefore be reduced to: 

1

n

i i
i

Q xl
=

¢= å  

Where the ix ¢  are given by: 

1 T-¢ = =x S x S x  
We have effectively rotated the coordinates to reduce 

the quadric form to its simplest form. 

 The quadric surfaces (or quadrics) are the family of 

surfaces 

( ) constantQ k= =x  

In the eigenvector basis, this simplifies to 
2 2 2

1 1 2 2 3 3x x x kl l l¢ ¢ ¢+ + =  

 The conic and quadric surfaces that can result are 

depicted on the next page. The relevant semi-axes are 

given by 1/ l . If 0l  , the shape “comes apart”. 

 A few special cases: 

o If 1 2 3l l l= = , we have a sphere. 

o If (for example), 1 2l l= , we have a surface of 

revolution about the third axis, whatever it 

might be. 
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o If (for example), 3 0l = , we have the 

translation of a conic section along the relevant 

axis (an elliptic or hyperbolic cylinder). 
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 In a complex vector space, the Hermitian form 

associated with an Hermitian matrix A is: 
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† *( ) i ij jH x A x= =x x Ax  

H is a real scalar, because 

( )** * * * *( ) ( )i ij j j ij i j ji iH x A x x A x x A x H= = = =x x  

We also know that A can be diagonalised by a unitary 

transformation 

† = LU AU   † 1-=U U  
And therefore: 

( ) ( ) ( )†† † † † † 2

1

( )
n

n i
i

H xl
=

¢ ¢ ¢= L = L = L =åx x U U x U x U x x x

Therefore, a hermitian form can be reduced to a real 

quadratic form by transforming to the eigenvector 

basis. 

 


