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Matrices & Linear

Algebra

Vector Spaces

e Scalars are the elements of a number field (for
example, R and C), which
0 Is a set of elements on which the operations of
addition and multiplication are defined, and
satisfy the usual laws of arithmetic
(commutative, associative and distributive).
0 Is closed under addition and multiplication
0 Includes identity elements for addition and
multiplication (0 and 1).
0 Includes inverses (negatives and reciprocals) for
addition and multiplication, except 0.
e Vectors are elements of a linear vector space defined
over a number field F. A vector space V
0 Is a set of elements on which the operations of
vector addition and scalar multiplication are
defined and satisfy certain axioms.
0 Is closed under these operations.
0 Includes an identity element (0) for vector
addition.
e If the number field F' over which the linear vector
space is defined is real, then the vector space is real.
e Notes:
0 Vector multiplication is not, in general, defined
for a vector space.
0 The basic example of a vector space is a list of
n scalars, R" Vector addition and scalar

multiplication are defined component-wise.
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R? is not exactly the same as C, because C has
a rule for multiplication.

Similarly, R?® is not quite the same as physical
space, because physical space has a rule
(Pythagoras’) for the distance between two

points.

The Inner Product

e The inner product is used to give a meaning to

lengths and angles in a vector space.

o Itisa

scalar function, (z,y) of two vectors z and y.

e An inner product must

0]

Notes:

Be linear in the second argument
(z,ay) = a(z,y)
(z,y + 2) = (z,y) + (z, 2)
Have Hermitian symmetry
<y7m> = <m7 y>*
Be positive definite
(z,z) >0

with equality if and only if x = 0.

The inner product has an existence without
reference to any basis.
The hermitian symmetry is required so that
(z,z) is real. It is not required in a real vector
space.
It follows from the above that the inner
product is antilinear in the first argument:
<O‘$7 y> =a (m,y)

(x+y,2) =(z,2) + (y,2)

In C", the standard (Euclidean) inner product,

the “dot product”, is:
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The complex conjugation is needed to maintain
Hermitian symmetry, and to ensure that the
product is linear in the second argument.
e The Cauchy-Schwarz Inequality states that
(z.y) < (z.2)(y.9)
Or, equivalently:
(2.y)| <12yl
With equality if and only if £ = ay .
To prove, assume that @,y = 0 (in which case the
inequality is trivial). We first say:
<:1:—ay ] m—ay> :<az—ay ] w)—a(w—ay[y)
:<m|m>—a*<y |z)—a(z| y>+aa*<y|y>
:<m|m>—a*<m|y>* — oz | y>+ozoz*<y|y>
= lzl* + 1o [y — 2Re(a(z | y))
Now, this quantity must be positive, because of the
positive definite property of the inner product. If we
choose the phase of « (which is arbitrary) such that
a(m | y> is real and non-negative, so that
a<a: | y> = IaIKm | y>‘ , we then have that:
2l +lad? |y — 2lad|(z | y)| > 0

(I — lod|y])” + 2ladizi|y| — 2laif(z | y)| > 0
And now, if we choose |al = |zl /|y|, we get:
@ily] > [(z | )
As required.

e We can use the Cauchy-Schwarz inequality to prove
the triangle inequality (|z + y| <|zl+|y|), by writing
|z +y[° in terms of the inner product, expanding,
using the inequality, and factorising.

e The Cauchy-Schwarz Inequality allows us to define, in
real vector space, the angle 6 between two vectors,
though

(z,y) = |zl|y| cos b
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[This is possible because, by the Cauchy Schwartz,

(z.y)
Iz y|

<1.If (x,y) =0, in any vector space, ¢ and y

are said to be orthogonal.

e A knowledge of the inner product of the basis vectors
is sufficient to determine the inner product of any two
vectors « and y. Let:

<ez‘ | ej> =G,
Then
(z,y) = Gijx:yj
Where the G, are the metric coefficients of the basis.
The Hermetian Symmetry of the inner product implies
that
G, = G;

The matrix G is hermitian.

e For an orthonormal basis, in which <ei |ej> =0,, we
have that
<m ’ y> = x:yi
Bases

e Let S={e,e,-e,} beasubset of the vectors in V.

e A linear combination of S is any vector of the form
re + 1,6, + -+, e, , where the x are scalars.

e The span of § is the set of all vectors that are linear
combinations of S. If the span of S is the entire vector
space V, then S is said to span V.

e The vectors of S are said to be linearly independent if

re +z.e +---+zxe =0 & x,%,,z, =0
If, on the other hand, such an equation holds for non-
trivial values of the coefficients, one of the vectors is
redundant, and can be written as a linear combination
of the other vectors.

e If an additional vector is added to a spanning set, it

remains a spanning set. If a vector is removed from a
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linearly independent set, it remains a linearly
independent set.

e A basis for a vector space V is the subset of vectors S
that spans V and is also linearly independent. The
properties of basis sets are:

O All bases of V have the same number of
elements, n, which is called the dimension of V.

O Any n linearly independent vectors in V form a
basis of V.

O Any vector £ €V can be written [prove by
considering V U{x} as a linearly dependent set]
in a unique way [prove by contradiction| as a
linear combination of the vectors in a basis.
The relevant scalars are called the components
of x with respect to that particular basis.

e The same vector (a geometrical identity) has different
components with respect to different bases. To see
how we can change from one to the other, consider
two bases of V- S ={e} and 5’ ={e/}.

0 Because both are bases, the elements of one

basis can be written in terms of the other:

. /
e, = eZ.RZ.j

Where R, is the transformation matrix between
the two bases
0 Now, consider a vector xe€V. The
representation of the vector in each basis is:
T =er = elz!
However, using our result from above, we can
write this as:
Tr = e;xi' =ezr; = ei'Rl.jx].
0 From this, we can deduce the transformation

law for vector components:

I
T, = Rz.ja:j
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Note that:
» The law is the “reverse” of that for
basis vector transformation. This is
to ensure that, overall, the vector x
stays unchanged by transformation.
»  The first suffix of R corresponds to

the same basis in both relations.

e We defined R, above, by
e, = ez.'RZ.j

The condition of the basis {e;} to be orthonormal is
T

i

(e]iR,ﬂ.)T eZ'le = 6.j

eje; zéij

[

R, R.e/'e/ = ¢,

ij
If the second basis is also orthonormal, this becomes:
R;:‘,Rk:j =0,
RR=1
In other words, transformations between orthonormal
bases is described by unitary matrices. In real vector
space, an orthogonal matrix does this — in R” and R?,
this corresponds to a rotation and/or reflection.
e Given any m vectors wu,---u, that span an n-
dimensional vector space (m > m), it is possible to
construct an orthogonal basis e,---e, using the Gram-

Schmidt procedure:

€, = U
r—1 es . 'U,T
e =u, — E €,
s=1 € es

What we are effectively doing is taking each vector u
and “removing” any “bits” of vectors we've already
added to the basis from it, to leave us with a final
vector that is orthogonal to all others already added...

We can prove, by induction, that this works:
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|Inductive step|

Assume that vectors e, ---e, have already been added

to the orthogonal basis (such that e;-e; =0 Vi= j),

and now consider the vector e, , that we're about to

add:

r—1

(S
= — E :S—Hl
€1 = Uy €,
s=1 es ' es

And now, consider dotting it with e, (v < t), any of

the vectors already in the basis:
r—1

e.'u
£ t+1
€176 =U_ € — E : [es : ev]
—

s=1 es ' es =0 if v=s
e U
o v t+1
=u, €, _—[es ) es]
€ €,
- u’t+1 ' ev - ev ' ut+1
=0

So the new vector is indeed orthogonal to all the

vectors already in the set.

|"Starting off" Step|

Consider e, -e,:

_ €, Uy
€ € =U; " |Uy, — €,

81'81
u, - u

_ 1 %2

=U; U, — [u1'e1]
61'61
u, - u

_ 1" Y2

=U; U, — [61'81]
61'61

=0

So the first two vectors are, indeed, orthogonal.

Matrices

e ARRAY VIEWPOINT
0 Matrices can be regarded, simply, as an array
of numbers, R,
0 The rule for multiplying a matrix by a vector is

then
(Aw)i =Azx.

[/
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0 The rules for matrix addition and
multiplication are

(A+B), =A, +B,

ij
(AB)@' = Aichkj
e LINEAR OPERATOR VIEWPOINT

O A linear operator A acts on a vector space V to
produce other elements of V.

0 The property of linearity means that:

L(az) = aL(x)
Az +y) = Alz) + A(y)

O A linear operator can exist without reference to
any basis. It can be thought of as a linear
transformation or mapping of the space V.
[Some linear operators can even transform
between different bases].

O The components of A with respect to a basis
{e,} is defined by the action of A on the basis
vectors:

Ae, = Ase,
The components form a square matrix. [In
other words, the " column of A contains the
compoenents of the result of A acting on e].

0 We now know enough to determine the action

of A only any
Az = A(ze,) =1Ae, = x,Ae, = Aze,
So:
(Az), = Az,
This corresponds to the rule for multiplying a
matrix by a vector.

0 Furthermore, the sum of two linear operators is

defined by
(A+ B)x = Az + Bz = ¢, (Ai], + Blj)xj
O And the product of two linear operators is

defined by
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(AB)x = A(Bx) = A(eiBijxj) = (Aek)Bk].xj =e A, B,
0 Both these operations satisfy the rules of
matrix addition and multiplication and action
on a vector. As such, a linear operator can be
represented as a matrix.
e BACK TO CHANGE OF BASIS
0 Above, we wrote one set of basis vectors in
terms of the other:
e, = ei’Ri].
But we could also have written
e; = eiSij
Substituting one into the other, we have

e, = e S, R

ki Vg
e]/' = eliRkiSz’j
But this can only be true if
SkiRij = Rkisij = 61«;’
Which implies that
RS =5SR=1
= R=5"
0 We noted, above, that the transformation laws
for vector components could be written
r_
T; = Rijxj
We can write this in matrix form, as
v’ = Rz
With the inverse relation
' =Rz
e LINEAR OPERATORS — CHANGE OF BASIS
0 To find how the components of a linear

operator A transform under a change of basis,

we note that we require

Ax=eAzx =e'A

(/] it

Using e, = R e, , we have that:

(/A
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/ N YIN
e’ Az, = e AT
TN
R Ax, = Az,
! !
RAx = Az

RA(R*:I:’) = Ay
Which means that
A= RAR™
e MATRIX MULTIPLICATION
0 Matrix multiplication does not commute. But it
does distribute, so, with a bit of care, normal
rules of algebra can be applied. For example:
(1-W)1+W)
=11+W)-W({I+W)
=1+1W -W1-W*
=1-w*
=1+W)1-W)

Hermitian Conjugate

e We define the Hermitian conjugate of a matrix as

follows:
Al =(ATY
(AT )ij - A;
e Importantly:
(AB)' = B'A

(Note the reversal of the order).
e We can also write the inner product as:
(z,y) = 2'Gy
Where G is the matrix of metric coefficients. This
preserve the hermitian symmetry of the inner product
as long as the matrix is hermitian - G = G'.
e The adjoint of a linear operator A with respect to a

given inner product is a linear operator A' satisfying

<AT:13 | y> = (x| Ay)
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With the standard inner product, we find that the
matrix defining A' is, indeed, the hermitian conjugate

of A.

Special Matrices

e SYMMETRY
0 A symmetric matrix is equal to its transpose
A=A"
O An hermitian matrix is equal to its hermitian
conjugate.
A=A
0 An antisymmetric (or skew-symmetric) matrix
satisfies
A" =-A
0 An anti-hermitian (or skew-hermitian) matrix
satisfies
A =—-A
e ORTHOGONALITY
O An orthogonal matrix is one whose transpose is
equal to its inverse
AT — A—l
O A unitary matrix is one whose hermitian
conjugate is equal to its inverse
Al=4"
We note that if U is a unitary matrix, then
A'A = 1. This implies that the columns of A
are orthonormal vectors.
e A normal matrix is one that commutes with its
Hermitian conjugate:
AAT=A'A
It is easy to verify that hermitian, anti-hermitian and
unitary matrices are all normal.

¢ RELATIONSHIPS
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o If A is Hermitian, then A7 is anti-hermitian,
and vice-versa.

0 If A is Hermitian, then

. =\ (Aq)"
exp(Ai) = ;( n!)
Is unitary.

0 [This can be remembered by bearing in mind
that if z is a real number, iz is imaginary, and
if z is a real number, then € has unit modulus
(see below when talking about eigenvalues of
normal matrices)]

To prove that a matrix is a certain type of special
matrix, find an expression for the determining

property. For example, to prove it’s unitary, find
UuuU'.

Eigenvalues and Eigenvectors

An eigenvector of a linear operator A is a non-zero
vector x satisfying
Ax = \x
(A—-A)xz =0
For some scalar A, called the eigenvalue.
The equation (in its second form) effectively says that
a linear combination of the columns of the matrix
(A—MI) is equal to 0. This is equivalent to the
statement
det(A—AI)=0
Which is called the characteristic equation of the
matrix.
There are two possibilities in terms of roots:
0 If there are m distinct solutions to the
characteristic equation, then there are n
linearly independent eigenvectors. We prove

this as follows. Assume that
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Zaae& =0
We can multiply both sides by whatever we

want, so:

(A=A\I)> ae, =0
Y= ()‘z - Al)azez + ()‘3 - )‘1)‘1363 +oee ()\n - )‘l)a’ e, =0

We can do the same again with y:
(A-ATy =0
()\3 - )\1)()\3 - )\2)0’363 + e + ()\n, - )\1)()\n - )\Z)a’nen = 0

We can then repeat this until we obtain:
()\n - )\1)(>\n - )\2) T (>\n - >\n72)()\n - >\n71) a’nen = 0

Now, if all the A are distinct, the expression
enclosed by a brace is non-zero. Therefore, a,
must be 0. Removing the last vector and
repeatedly applying this method shows us that
all the a, must be 0. Therefore,

Zaa,ea =0
is only true if all the a, are 0. Therefore, the
vectors are linearly independent.

0 If the roots are not all distinct, then the
repeated values are said to be degenerate. If a
value A occurs m times, there may be any
number between 1 and m of linearly
independent eigenvectors. Any linear
combination of these is also an eigenvector.

A defective matrix is one who vector space is not
spanned by its eigenvectors. Such a matrix cannot be
diagonalised by a change of basis.

e It can be shown that a normal matrix is never
defective. In fact, an orthonormal basis can always be
constructed from the eigenvectors of a matrix, if and
only if the matrix is normal.

e Some interesting properties can be derived regarding
the properties of the eigenvectors and eigenvalues of

normal matrices:
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0 The eigenvectors corresponding to distinct
eigenvalues are orthogonal.
0 The eigenvalues are
» Real for hermitian matrices.
* Imaginary for anti-Hermitian matrices.
*  Of unit modulus for unitary matrices.
A good way to remember these properties is to
consider that a 1x1 matrix is just a number A,
and to be Hermitian, imaginary or unitary, it
must satisfy

A=\ A=-=) AN ="
Which are precisely the conditions for A being

*

real, imaginary or of unit modulus.
The method to prove these results is, in general, as
follows:

0 Choose two arbitrary eigenvectors and write
the eigenvector equations:

Ax = \z Ay =y

0 Take one of these equations, and find the
hermitian conjugate.

0 Then

» For a hermitian matrix, construct two
expressions for y'Az.

» For a wunitary matrix, multiply both
sides by the other eigenvector equation
that hadn’t be used.

0 Re-arrange in the form something = 0.

O Assume that * = gy, and using the fact that
xz,y =0, deduce something about the
eigenvalues.

0 Now, assume that x =y and deduce that
y'z =0 as long as \= u, proving that the
vectors are orthogonal.

e Matrices are given particular names:
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o If all eigenvalues are < 0 (> 0), the matrix is
negative (positive) definite.

o If all eigenvalues are < 0 (> 0), the matrix is
negative (positive) semi-definite.

0 A matrix is definite if it is either positive

definite or negative definite.

Diagonalization

e Two square matrices A and B are said to be similar if
they are related by
B=S'AS
In other words, if they are representations of the same
linear transformation in different bases. S is called the
similarity matrix.
e A matrix is said to be diagonalisable if it is similar to
a diagonal matrix — in other words, if
ST'AS = A
Where A is a diagonal matrix.
e (Consider a matrix S whose columns are the

eigenvectors of the matrix A:

ASAH H : H

= A& |[Ae| o [\e,
A
A O
=\le,| |e| - e, 0
An
= SA

We can therefore say that
ST'AS =A
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Provided that S is invertible — ie:, provided that the
columns of S are linearly independent — ie: provided
that the eigenvectors of A are linearly independent.

e Notes:

0 We notice that S is the transformation matrix
to the eigenvector basis. Therefore,
diagonalisation is the process of expressing a
matrix in its simplest form by transforming to
its eigenvector basis.

0 An nxn matrix is diagonalisable if and only if
it has n linearly independent eigenvectors. That
is to say, only if it is normal. Furthermore, if
the eigenvectors are chosen to be orthonormal,
then the columns of S are orthonormal and S is
therefore unitary (= a matrix whose columns
are orthonormal vectors).

e Diagonalisation is rather useful in carrying out certain
operations on matrices:

A" = (SAS ) (SAS T)---(SAS') = SA™S !
det(A) = det(SAS ™) = det(S)det(A)det(S™") = det(A)
tr(A) = tr(SAS™) = tr(ASS ™) = tr(A)
tr(A™) = tr(A™)

Where we have used the following properties of

determinants and traces:
det(AB) = det(A)det(B)
det(S)det(S ') =1
tr(AB) = (AB), = A,B, = B,A, = (BA),, = tr(BA)

e Note that in general, for any matrix A

det(4) = [ [\
i=1

tr(4) = SO
Quadratic & Hermitian Forms
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e The quadratic form associated with a real symmetric
matrix A is
Qx)=xz"Az = T
() is a homogeneous quadratic function - ie:
Qlaz) = a*Q(=).
e In fact, any homogenous quadratic equation is the

quadratic form of a symmetric matrix:

a b
b ¢

X

Y

Q = ax’ +2bzy +cy’ = [a: y} —x'Ax

e In fact, A can be diagonalised by a real orthogonal
transformation:
STAS = A (8" =81
And the vector x transforms according to & = Sz’ so
Q=x"Az = (¢"S")(SAS")(Sz') = =" Az’

The quadric form can therefore be reduced to:
Q= Z)‘ﬁ%/
i=1

Where the z! are given by:
' =8"'e=8"x
We have effectively rotated the coordinates to reduce
the quadric form to its simplest form.
e The quadric surfaces (or quadrics) are the family of
surfaces
Q(x) = k = constant
In the eigenvector basis, this simplifies to
ANz + AT+ Ny =k
e The conic and quadric surfaces that can result are
depicted on the next page. The relevant semi-axes are
given by 1/+/X. If A — 0, the shape “comes apart”.
o A few special cases:
o If \, =\ =), we have a sphere.
o If (for example), A\ =\, we have a surface of
revolution about the third axis, whatever it

might be.
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o If (for example), A\ =0, we have the
translation of a conic section along the relevant

axis (an elliptic or hyperbolic cylinder).
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Conic sections and quadric surfaces

ellipse f; + %; =1 hyperbola % — %; =1

ellipsoid hvperboloid of one sheet
. 2
2% BT B+f-8-1
hyvperboloid of two sheets %; + = — %; =—1

e In a complex vector space, the Hermitian form

associated with an Hermitian matrix A is:
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Hz)=z'Az =2 Az,

2 1)

H is a real scalar, because

We also know that A can be diagonalised by a unitary
transformation

UAU = A U =U"
And therefore:

n-l

H(z) =z (UAUT):I: = <UT$>TA(UT$> =a2'Az’ = i/\ z?
=1

Therefore, a hermitian form can be reduced to a real
quadratic form by transforming to the eigenvector

basis.
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