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Green’s Functions 
Generalised Functions 

 The Heaviside Step Function is defined as 
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(We can arbitrarily define the value of H(0) to be ½). 

 Consider the following “top-hat” function 
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This can be written as 
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 The total area under the top hat curve is always equal 

to 1, and we have that: 
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 As 0e  , the function becomes an infinite spike at 

the origin, but still with area 1 underneath it, and its 

integral becomes 
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In other words 

( ) ( )x H xd ¢=  

 This is very useful when physically representing 

something that is localised at a point and whose 

“overall sum under the curve” is known – impulse, for 

example. 

 Another way to define the delta function is as one 

that satisfies the following property 
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(Where the integral can be taken over any interval 

that includes x x= ). 
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 We can use this generalised expression to prove the 

fact that ( ) ( )x H xd ¢= , by simply integrating ( ) ( )f t H t¢  

between ¥ . 

 The Dirac delta function can also be viewed as the 

limit of localised functions other than the top-hat used 

above. In such cases, the function might not “look” 

like a spike, but it will nevertheless behave like the 

Dirac delta. For example, 
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But the central peak still stays broad. This can be 

understood in terms of the fact that off the origin, the 

“wiggles” cancel each other out to 0, and only at the 

peak do we keep anything when “picking out a value”. 

[See also notes in the Fourier Transform section]. 

 The derivative of the Delta function has both positive 

and negative “spikes” at x = 0. The defining property 

of ( )xd¢  can be taken to be 

( ) ( )d ( ) ( )d ( )f x x x f x x x fd x d x x
¥ ¥
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(This can easily be proven using integration by parts). 

What the two spikes are effectively doing is picking 

the “difference” between the function at two very close 

points… 

 In general, integrating the d  function or one of its 

integrals makes it smoother. Differentiating it 

increases the discontinuities. For example – dò  is 

discontinuous itself. dò ò  is continuous but with a 

discontinuous first derivative. dò ò ò  is continouous, 

but with a discontinuous second derivative, etc… 

 Two generalised functions of the same variable cannot 

be multiplied together. 

 When proving results about generalised functions, the 

following tips help: 
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o The key is to find an integral based on the 

generalised definition of the function that 

evaluates to something we want for any 

function f. 

o It is important to remember that the variable 

of integration must be the argument of the 

generalised function – otherwise, it doesn’t 

work. 

 

Differential Equations Containing d 
 If a differential equation involves a step or delta 

function, this implies a lack of smoothness in the 

solution. 

 The equation must be solved on either side of the 

discontinuity (ie: producing four arbitrary constants) 

and the two parts connected with appropriate 

matching conditions (ie: getting rid of two of these 

constants). 

 Note: if boundary or initial conditions are given, the 

process can be simplified by writing down solutions on 

either side of the discontinuity that satisfy their 

respective boundary condition. 

 To find these “matching conditions”, we note that the 

highest order derivative on the LHS must be of the 

same “order of discontinuity” as the RHS. This is 

because differentiating a discontinuous function makes 

the discontinuity more severe – therefore: 

o If the highest order derivative on the LHS is 

more continuous than the RHS, then so will all 

the lower-order derivatives, and the equality 

won’t be satisfied. 

o If the highest order derivative on the LHS less 

continuous than the RHS, then the equality 

definitely won’t be satisfied, because none of 
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the lower terms will “fix” that high degree of 

discontinuity. 

 We can therefore determine the class of function the 

solution falls into. 

 We can then determine jump conditions by integrating 

both sides of the differential equation from e  before 

the discontinuity to e  after, and letting 0e  . By 

definition, only the second highest derivative in the 

integral will contribute to the jump. We denote: 
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[f(x)] is, effectively, the “jump” in the function at 

x x= . 

 

Definition of Green’s Function 
 Consider the equation 
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And define the linear operator Ã  such that we can 

write this as 

( ) ( )y f x a x bÃ = £ £  

 Now, let there be a function G (the Green’s Function) 

such that the general solution of this equation is 

 ( ) ( , ) ( ) d
b

a
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If we apply the differential operator to both sides, we 

end up with: 
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This, however, is precisely the property of the Dirac 

delta function. As such, we require that 

[ ]( , ) ( )G x xx d xÃ = -  

G is, effectively, the response of the system to a unit 

impulse at x x=  (since when the linear operator is 

applied, it gives a peak at that point). The solution 
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then consists of these responses weighed by the actual 

impulse at each point (given by f(x) at that point). 

 G must satisfy two other conditions: 

o It must be defined such that the solution y 

produced by (*) satisfies the boundary 

conditions. If these conditions are homogenous, 

inspection of (*) shows that we simply need to 

make G also satisfy these boundary conditions. 

o The second condition involves the 

discontinuities of the function at x x= . Using 

the argument developed above, the function 

must be continuous but have a discontinuity in 

its first derivative. This means that at x x=  
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 We then simply find G by solving the differential 

equation on both sides of the discontinuity and 

applying the right matching conditions (using matrices 

is often helpful). 

 A matrix-approach to finding Green’s Function leads 

to the following results: 

o For a boundary-value problem 
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Where: 

 a and b are the positions of the 

boundaries. 

 ya and yb are complementary functions of 

L satisfying the boundaries at a and b 

respectively. 

 W is the Wronskian, given by 
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o For an initial-value problem 
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Where: 

 a and b are, again, the boundaries of the 

problem. 

 y1 and y2 are two linearly independent 

complimentary functions of the equation. 

 W is as above. 

 

Miscellaneous 
 Green’s Function can also be used to find the general 

solution of a differential equation as follows: 

o First, find a solution to the associated 

complementary equation, which will include 

two constants. 

o Then, find a particular integral by taking 

arbitrary homogenous boundary conditions (eg: 

(0) (0) 0y y ¢= = ). 

 


