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Green’s Functions

Generalised Functions

e The Heaviside Step Function is defined as

0 z <0
H(z) = 1 x>0

(We can arbitrarily define the value of H(0) to be ).

Consider the following “top-hat” function

1/e O<z<e
6.(z) = :
0 otherwise
This can be written as
6.(2) = H(z)— H(z—¢)
€

The total area under the top hat curve is always equal

to 1, and we have that:

0 z <0
f_ s(0)dé=1z/e 0<z<e
1 T>¢€

As ¢ — 0, the function becomes an infinite spike at
the origin, but still with area 1 underneath it, and its

integral becomes

[ 6.(9dg = H()

—00

In other words

8(z) = H'(z)
This is very useful when physically representing
something that is localised at a point and whose
“overall sum under the curve” is known — impulse, for
example.
Another way to define the delta function is as one

that satisfies the following property
[ f@)ste - &) da = £(8)
(Where the integral can be taken over any interval

that includes = = §).
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e We can use this generalised expression to prove the
fact that §(z) = H'(z), by simply integrating f(t)H'(t)
between +o0o.

e The Dirac delta function can also be viewed as the
limit of localised functions other than the top-hat used
above. In such cases, the function might not “look”
like a spike, but it will nevertheless behave like the

Dirac delta. For example,

1 . [x]
—sin|—=
T €

But the central peak still stays broad. This can be

lim

e—0

= 6(x)

understood in terms of the fact that off the origin, the
“wiggles” cancel each other out to 0, and only at the
peak do we keep anything when “picking out a value”.
[See also notes in the Fourier Transform section].

e The derivative of the Delta function has both positive
and negative “spikes” at x = (. The defining property
of §'(z) can be taken to be

[ @@ -9de=—[" @5 —)de =—f/(g)
(This can easily be proven using integration by parts).
What the two spikes are effectively doing is picking
the “difference” between the function at two very close
points...

e In general, integrating the 6 function or one of its
integrals makes it smoother. Differentiating it
increases the discontinuities. For example — 6§ is
discontinuous itself. f f 6 1is continuous but with a
discontinuous first derivative. f f f 6 1is continouous,
but with a discontinuous second derivative, etc...

e Two generalised functions of the same variable cannot
be multiplied together.

e When proving results about generalised functions, the

following tips help:
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0 The key is to find an integral based on the
generalised definition of the function that
evaluates to something we want for any
function f.

0 It is important to remember that the variable
of integration must be the argument of the
generalised function — otherwise, it doesn’t

work.

Differential Equations Containing §

e If a differential equation involves a step or delta
function, this implies a lack of smoothness in the
solution.

e The equation must be solved on either side of the
discontinuity (ie: producing four arbitrary constants)
and the two parts connected with appropriate
matching conditions (ie: getting rid of two of these
constants).

e Note: if boundary or initial conditions are given, the
process can be simplified by writing down solutions on
either side of the discontinuity that satisfy their
respective boundary condition.

e To find these “matching conditions”, we note that the
highest order derivative on the LHS must be of the
same “order of discontinuity” as the RHS. This is
because differentiating a discontinuous function makes
the discontinuity more severe — therefore:

0 If the highest order derivative on the LHS is
more continuous than the RHS, then so will all
the lower-order derivatives, and the equality
won’t be satisfied.

0 If the highest order derivative on the LHS less
continuous than the RHS, then the equality

definitely won’t be satisfied, because none of
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the lower terms will “fix” that high degree of
discontinuity.

e We can therefore determine the class of function the
solution falls into.

e We can then determine jump conditions by integrating
both sides of the differential equation from & before
the discontinuity to ¢ after, and letting ¢ — 0. By
definition, only the second highest derivative in the
integral will contribute to the jump. We denote:

()] = lim[f(2)] "
[f(x)] is, effectively, the “jump” in the function at
r=E£.

Definition of Green’s Function

e Consider the equation

%y . Oy
ax2+p%+qy=f(x) a<x<b

And define the linear operator ¢ such that we can

write this as
ply) = f(z) a<z<b
e Now, let there be a function G (the Green’s Function)

such that the general solution of this equation is

y(w) = [ Gl 0)f(€) de *)

If we apply the differential operator to both sides, we
end up with:

olu(@) = [ (olC@&)f(¢) d¢

(@) = [ (ol6( ) £6) dé
This, however, is precisely the property of the Dirac
delta function. As such, we require that
p[G(2,8)] = b6(z — &)
G is, effectively, the response of the system to a unit
impulse at z = ¢ (since when the linear operator is

applied, it gives a peak at that point). The solution
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then consists of these responses weighed by the actual
impulse at each point (given by f(x) at that point).
e (G must satisfy two other conditions:

0 It must be defined such that the solution y
produced by (*) satisfies the boundary
conditions. If these conditions are homogenous,
inspection of (*) shows that we simply need to
make G also satisfy these boundary conditions.

0 The second condition involves the
discontinuities of the function at z = ¢. Using
the argument developed above, the function
must be continuous but have a discontinuity in

its first derivative. This means that at x = ¢
0G
En
e We then simply find G by solving the differential

(G] =0 ~1

equation on both sides of the discontinuity and
applying the right matching conditions (using matrices
is often helpful).

e A matrix-approach to finding Green’s Function leads
to the following results:

0 For a boundary-value problem

Y, (7)Y, (£)
Cg=] Mo 1ETEE
PSS @y () £<z<b
W(€) =% =

Where:
e o and b are the positions of the
boundaries.
e y, and y, are complementary functions of
L satisfying the boundaries at a and b
respectively.

e Wis the Wronskian, given by

Yo Yy
W[ymyb](x> =

/

vy,

0 For an initial-value problem
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0 a<z<¢

G(2,8) =1, (o) (m©
G

Where:
e ¢ and b are, again, the boundaries of the
problem.
e y, and y, are two linearly independent
complimentary functions of the equation.

e W is as above.

Miscellaneous

e Green’s Function can also be used to find the general
solution of a differential equation as follows:

o First, find a solution to the associated
complementary equation, which will include
two constants.

O Then, find a particular integral by taking

arbitrary homogenous boundary conditions (eg:
y(0)=4'(0)=0).
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