Complex Analysis

Functions of Continuous Variables

- The function $f(z)$ tends to the limit L as $z \rightarrow z_{0}$ if, for any positive number ε, there exists a positive number δ (depending on ε), such that $|f(z)-L|<\varepsilon$ for all z such that $\left|z-z_{0}\right|<\delta$.
- The function $f(z)$ is continuous at the point $z=z_{0}$ if $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.
- The function $f(z)$ is bounded as $z \rightarrow z_{0}$ if there exists positive numbers K and δ such that $|f(z)|<K$ for all z with $\left|z-z_{0}\right|<\delta$.
- To find the definitions when $z_{0}=\infty$, we simply replace the $\left|z-z_{0}\right|<\delta$ statement in each of those by $|z|>R$.
- O notation:
o $f(z)=O(g(z))$ as $z \rightarrow z_{0}$ means that $f(z) / g(z)$ is bounded as $z \rightarrow z_{0}$.
o $f(z)=o(g(z))$ as $z \rightarrow z_{0} \quad$ means that $f(z) / g(z) \rightarrow 0$ as $z \rightarrow z_{0}$.
o $f(z) \sim g(z)$ as $z \rightarrow z_{0}$ means that $f(z) / g(z) \rightarrow 1$ as $z \rightarrow z_{0}$. [This means that f is asymptotically equal to g - but this shouldn't be written $f(z) \rightarrow g(z)!]$
o Notes:
- These also apply when $z_{0}=\infty$.
- $f(z)=O(1)$ means that $f(z)$ is bounded.
- Both the latter of these relations imply the former.
- $\quad f(z) \sim g(z)$ is a symmetric relation.
- Taylor's Theorem for functions of a real variable states that:

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots+\frac{h^{n-1}}{(n-1)!} f^{(n-1)}\left(x_{0}\right)+R_{n}
$$

Where

$$
R_{n}=\int_{x_{0}}^{x_{0}+h} \frac{\left(x_{0}+h-x\right)^{n-1}}{(n-1)!} f^{(n)}(x) \mathrm{d} x
$$

Is the remainder after n terms of the Taylor series. (Which can apparently be proved by multiplying R_{n} by parts, n times). Lagrange's expression for the remainder is:

$$
R_{n}=\frac{h^{n}}{n!} f^{(n)}(\xi)
$$

Where ξ is unknown, in the interval $x_{0}<\xi<x_{0}+h$.
Therefore:

$$
R_{n}=O\left(h^{n}\right)
$$

If $f(x)$ is infinitely differentiable in the interval, then it is a smooth function, and we can write an infinite Taylor Series:

$$
f\left(x_{0}+h\right)=\sum_{n=0}^{\infty} \frac{h^{n}}{n!} f^{(n)}\left(x_{0}\right)
$$

Functions of Complex Variables

- The derivative of a function $f(z)$ at the point $z=z_{0}$ is

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
f^{\prime}(z)=\lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}
\end{gathered}
$$

Requiring a function of a complex variable to be differentiable is a surprisingly strong constraint, because it requires the limit to be the same when $\delta z \rightarrow 0$ in any direction in the complex plane.

- Consider a function $f(x+\mathrm{i} y)=u+\mathrm{i} v$. If it is to be differentiable at $f(z)$, then we know that:
o It must certainly be differentiable as we approach $f(z)$ along the real axis:

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\delta x \rightarrow 0} \frac{f(z+\delta x)-f(z)}{\delta x} \\
& =\lim _{\delta x \rightarrow 0} \frac{u(x+\delta x, y)+\mathrm{i} v(x+\delta x, y)-u(x, y)-\mathrm{i} v(x, y)}{\delta x} \\
& =\lim _{\delta x \rightarrow 0} \frac{u(x+\delta x, y)-u(x, y)}{\delta x}+\lim _{\delta x \rightarrow 0} \frac{\mathrm{i} v(x+\delta x, y)-\mathrm{i} v(x, y)}{\delta x} \\
& =\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x}
\end{aligned}
$$

o But also as we approach z along the imaginary axis:

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\delta y \rightarrow 0} \frac{f(z+\mathrm{i} \delta y)-f(z)}{\mathrm{i} \delta y} \\
& =\lim _{\delta y \rightarrow 0} \frac{u(x, y+\delta y)+\mathrm{i} v(x, y+\delta y)-u(x, y)-\mathrm{i} v(x, y)}{\mathrm{i} \delta y} \\
& =-\mathrm{i} \lim _{\delta y \rightarrow 0} \frac{u(x, y+\delta y)-u(x, y)}{\delta y}+\lim _{\delta x \rightarrow 0} \frac{v(x, y+\delta y)-v(x, y)}{\delta y} \\
& =-\mathrm{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
\end{aligned}
$$

o And these must be equal. Therefore, a required condition for the function to be differentiable at z is

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

o It turns out that these are also sufficient conditions, provided that the partial derivatives are continuous.

- A function that has a complex derivative at every point z in a region \boldsymbol{R} of the complex plane is said to be analytic in \boldsymbol{R}. To be analytic at z_{0} a function must be differentiable throughout some neighbourhood $\left|z-z_{0}\right|<\varepsilon$ of that point.
o Note that this definition implies that even though the CR equations hold at $x=y=0$ for
$f(z)=|z|^{2}$, the function is not analytic even there, because there is no neighbourhood of 0 $|z|<0$ in which the CR equations hold.
- Examples of functions analytic in the whole complex plane (entire functions) are:
o $f(z)=c$
o $f(z)=z^{n} \quad$ ($n 0$ or $+v e$ integer)
o $f(z)=$ a general polynomial function with complex coefficients.
o $f(z)=e^{z}$
- Sums, products and compositions of analytic functions are also analytic, and the usual product, quotient and chain rules apply.
- Many functions are analytic everywhere except at isolated points, called singular points or singularities. For example:
o $\quad f(z)=P(z) / Q(z) \quad$ where $\quad P \quad$ and $\quad Q$ are polynomials. This is called a rational function and is analytic except at points where $Q(z)=0$.
o $f(z)=z^{c}$ where c is a complex constant, is analytic except at $z=0$ (unless c is a nonnegative integer).
o $f(z)=\log z$ is also analytic except at $z=0$
- Consequences of the CR equations:
o If we know the complex/real part, we can find the other part up to an additive constant.
o The real and imaginary parts of an analytic function satisfy Laplace's Equation (they are harmonic functions):

$$
\nabla^{2} u=\nabla^{2} v=0
$$

o Furthermore

$$
\nabla u \cdot \nabla v=0
$$

So u and v are said to be conjugate harmonic

functions.

o If we consider f as a function of z and z^{*} as opposed to x and y [where $x=\frac{1}{2}\left(z+z^{*}\right)$ and $\left.y=\frac{1}{2 i}\left(z-z^{*}\right)\right]$ we can write:

$$
\begin{aligned}
\frac{\partial f}{\partial z^{*}} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial z^{*}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z^{*}} \\
& =\left(\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x}\right)\left(\frac{1}{2}\right)+\left(\frac{\partial u}{\partial y}+\mathrm{i} \frac{\partial v}{\partial y}\right)\left(-\frac{1}{2 i}\right) \\
& =\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+\frac{\mathrm{i}}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)
\end{aligned}
$$

Now, if the function is analytic and the CR are true, then we must have that

$$
\frac{\partial f}{\partial z^{*}} \equiv 0
$$

Which shows us that analytic functions cannot be a function of z^{*}. They can include x and y only in the combination $x+\mathrm{i} y$, but not $x-\mathrm{i} y$.

- If a function of a complex variable is analytic in a region R of the complex plane, not only is it differentiable everywhere in R, it is also differentiable any number of times. If $f(z)$ is analytic at $z=z_{0}$, it has an infinite Taylor Series:

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

which converges within some neighbourhood of z_{0}. In fact, this can be taken as a definition of analyticity.

Zeros, Poles and Essential Singularities

- The zeros of $f(z)$ are the points $z=z_{0}$ in the complex plane where $f\left(z_{0}\right)=0$. A zero is of order \boldsymbol{N} if

$$
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(N-1)}\left(z_{0}\right)=0 \quad \text { but } \quad f^{(N)}\left(z_{0}\right) \neq 0
$$

Indeed, if a function f has an $N^{\text {th }}$ order 0 , then

$$
f(z) \sim a_{N}\left(z-z_{0}\right)^{N} \quad z \rightarrow z_{0}
$$

A zero of order 0 is a simple zero, one of order 2 is a double zero, etc...

If we look at a surface plot, then the higher order the zero, the more complex/angular the geometry is about the zero.
\ll incomplete \gg

