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Dynamics – Rigid Body Dynamics 
 

Introduction 

 A rigid body is a many-particle system in which the distance between 

particles is fixed. The location of all particles is described by 6 

coordinates – 3 spatial and 3 angular. 

 The velocity is determined by v, the velocity of the CoM and w , the 

angular velocity. 

 The basic two equations of angular motion are 

0M =R F  

The centre of mass moves as if it were a single particle under the 

action of a force F0. 

0=J G  

The rate of change of angular momentum is equal to the total applied 

couple. 

 Other basic equations: 

o The velocity v of a particle at a distance r from an axis around 

which a rotation at speed w  is happening is 

= ´v rw  

o For similar reasons: 

d

dt
= ´

J
Jw  

o Angular speeds are additive. To if frame 1 is rotating with 

1 wrt 2w  with respect to frame 2, which is rotating with 2 wrt 3w  

with respect o frame 3, then 

1 wrt 3 1 wrt 2 2 wrt 3= +w w w  

 

Relating J  and w  

 If the body is rotating at w , the total angular momentum is given by 
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[The non-diagonal elements are fairly easy to derive. The diagonal ones 

should actually have x2 + y2 + z2, because one of the terms is always 

knocked out by the second term in the sum].  In other words, J is 

proportional to w , but not necessarily parallel to it. 

 The off-axes elements are rather hard to understand – they correspond 

to the fact that looking at a particle at a given instant, it’s impossible 

to tell exactly around which axis it’s moving. 

 Also, we can find the kinetic energy 
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1
2T = ⋅Jw  

 The couple is then given by 

= = ´G J Jw  

 Note that I must be specified with its origin and with its set of axes. 

 

Properties of I 

 I is a symmetric tensor. It therefore has three real eigenvalues and 

three perpendicular eigenvectors. 

 With respect to the eigenvector basis: 
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 The eigenvector axes are called the principal axes, and the Is are called 

the principal moments of inertia. 

 An alternative way to think of this is that the principal axes are ones 

around which objects are “happy” to rotate without any torque being 

applied. 

 In w -space, surfaces of constant T form an ellipsoid, with axes of 

length 1/2Ia
-µ . Also, in w -space: 

gradT Ia aw= = J  

So J is perpendicular to surfaces of constant T at w . 

 We can classify the principal axes as follows: 

o Spherical tops – all the I are equal, and I=J w , with I scalar. 

The body is isotropic with the same I about any axis (eg: sphere, 

cube). 

o Symmetrical tops – 1 2 3I I I= ¹ . e3 axis is unique, but e1 and e2 

are any two mutually perpendicular vectors perpendicular to e3 

(eg: lens, cigar). 

o Asymmetrical tops – all Is different, and axes are unique. 

 Consider any two Is: 
2 2 2 2 2

1 2 3 3( ) 2I I m y z x z I mz I+ = + + + = + ³å å  

So no I can be larger than the sum of the other two. Furthermore, if  

z = 0 for every particle (ie: if we have a lamina), then 

3 1 2I I I= +  

 Consider an axis at a distance a away from a principal axis and parallel 

to it, and let r be the distance of each particle from the principal axis. 

Then: 

( )2 2
0 0

0 when  measured
relative to C of M

( ) ( ) 2I m I Ma m I Ma
=

= + ⋅ + = + + ⋅ = +å å
r

r a r a r a
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This is the Parallel Axis Theorem, where each vector is considered to 

be a projection in a plane perpendicular to the axes. 

 

Two Basic Problems 

 You whack it – what happens? Steps for solution: 

o Define principal axes with a sensible origin. 

o Calculate an expression for J in terms of the impulse: 

d d dB B Bt t t= = ´ = ´ = ´ò ò òJ r F r F r Pt  

Where B is the point at which the whack occurred, and rB can 

be taken out of the integral because the whack is assumed to be 

instantaneous. 

o Work out an expression for J in terms of w , using the moments 

of inertia. 

o Equate the two expressions for J. 

o Work out the motion of the CM using standard linear mechanics. 

o NOTE: The obvious origin to use is the CM, but other origins 

can be used subject to the provisos above for using = Jt  . So a 

pivot, for example, is fine to use. 

 You apply a torque – what’s the frequency of rotation? 

o Define principal axes with a sensible origin (eg: the CM – see 

above). 

o Find an expression for w  in these axes (with unknown 

magnitude), and find a corresponding expression for J, using the 

principal moments of inertia. 

o Find d /dt = ´L Lw . 

o Calculate the torque (= ´r F ) and equate it with d /dtL . 

 

Free Motion – Euler’s Equation 

 Free precession is a situation in which F = 0 and G = 0. In such a 

case, J is constant. w  is constant if J is along one of the principal axes, 

but otherwise, it will change direction, and perhaps even magnitude. 

 We use the Euler Equations to analyse this problem. 
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 The rate of change of angular momentum vector in the principal-axes 

frame (which is rotating around with the body) and the lab frame are 

related by 

lab PA

d d

d dt t

é ù é ù
= + ´ê ú ê ú

ê ú ê úë û ë û

J J
Jw  

 Now, let’s assume that a couple G is being applied in the lab frame. 

We know that 

lab

d

dt

é ù
= ê ú

ê úë û

J
G  

Therefore, using the equations above: 

PA

d

dt

é ù
= + ´ê ú

ê úë û

J
G Jw  

 Finally, we note that in the principal axes frame, 1 1 2 2 3 3( , , )I I Iw w w=J . 

Therefore, casting both sides of this equation into the principal axes 

frame only 

1 1 1 3 2 3 2( )I I It w w w= + -  

And similarly with any cyclic permutation of indices. 

 A few notes: 

o All the quantities in this equation are measured with respect to 

the body frame (which is moving). This is the advantage of 

these equations – all we have to consider is the forces that the 

body “feels”. 

o The two terms of the RHS refer to two types of ways J can 

change – because it can change in the body frame and also 

because the body frame is itself rotating. 

 

Free Motion – Examples 

 FREE SYMMETRIC TOP 

o For a symmetrical top (I1 = I2 = I) which is free in space (ie: no 

torque) the Euler Equations become 

1 3 3 2

2 3 1 3

3 3

( ) 0

( ) 0

0

I I I

I I I

I

w w w

w w w

w

+ - =

+ - =

=







 

o The last equation implies 3w  is constant. Let’s define 
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Then the general solution of the first two equations becomes: 
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o Interpretation from the body frame 

 In the body frame, 1w  and 2w  seem to form a circle in 

the x–y plane, with frequency W . How high that circle is 

depends on 3w . 

 L could be above w  (if I3 > I – an oblate top) or below 

w  (if I3 < I – a prolate top). 

o Interpretation from the fixed lab frame 

 In that case, the Euler Equations are useless, because 

they deal with the body frame, so we express things from 

scratch, but in terms of the body frames: 

( )

( )
1 2 3

1 2 3 3

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

I I

I

w w w

w w w

= + +

= + +

ß

= -W

1 2 3

1 2 3

3

x x x

L x x x

L
x

w

w

 

With W  defined as above. 

 This linear relationship between w , L and 3x̂  implies 

that they are in the same plane. 

 Furthermore, the rate of change of 3x̂  is 3ˆ´xw , because 

it only changes as a result of the rotation. So 

3
3 3 3

ˆd
ˆ ˆ ˆ

dt I I

æ ö æ ö÷ ÷ç ç= -W ´ = ´÷ ÷ç ç÷ ÷ç çè ø è ø
x L L

x x x  

This is equivalent to 3x̂  rotating at a frequency /L I . 

 It turns out that we can interpret w  as follows 


Motion of body aboutMotion of body around 

its own axis

ˆ

L

I
= - W 3

L
xw


 

 HEAVY SYMMETRIC TOP 

o Here, we must define the Euler angles as follows 
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o The total angular velocity is then given by 

Rotation of top Motion of top itself

3 1ˆ ˆy q f= + +x x zw


    

Which can be expressed in terms of the body-frames only: 

( )

( ) ( )
3 1 3 2

3 2 1

ˆ ˆ ˆ ˆcos sin

ˆ ˆ ˆcos sin

y q f q q

y f q f q q

= + + +

= + + +

x x x x

x x x

w

w

  

   
 

o  

 

 

θ

y

f

z

3x̂2x̂



Physics Revision Notes – Thermodynamics Page 8 of 20 

  © Daniel Guetta, 2008 

Dynamics – Normal Modes 
 

Introduction 

 A normal mode of a system is an oscillation that has a single frequency. 

 All the more general oscillations of the system can be expressed as 

superpositions of these normal modes. 

 

General approach 

 Consider a system defined by generalised coordinates qi and acted on 

by forces Fi,  moving in a potential well U(x), and moving elastically.  

 The kinetic energy, T, is then given by 
2

1
2 ( )i j iT m q= åå x  

Where ( )j i
i

qåx  is the Cartesian coordinate of the jth part of the 

system, taken about an equilibrium, where all the jx  are 0. Expanding 

about that equilibrium: 
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And so: 
1 1
2 2

T
ij i jT M q q= =åå q Mq    

Where 

eq eq
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i j
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q q
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 Consider the potential energy, about a point of equilibrium (ie: a 

minimum in U) at which all the qi are chosen to be 0. 

0
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0

0

1 d
( )

2 d d

1
( )

2
1

( )
2

i i j

i j i x

ij i j

U U
U x U q q q

q x x

U x U K q q

U x U

¶
= + + +

¶

= + +

= +

å åå

åå
Tq Kq




  



Physics Revision Notes – Thermodynamics Page 9 of 20 

  © Daniel Guetta, 2008 

 The total energy is then 
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 [Non rigorous argument] – the equations of motion are then: 

0

0

ij j ij jM q K q+ =

+ =

åå åå
Mq Kq




 

 If we seek normal modes of the form ( ) i tt e w=q Q , we get: 

( )2 0w- =K M Q  

Non-trivial solutions only exist if 

( )2det 0w- =K M  

This defines the 2w  normal mode frequencies. 

 In practice, the steps are: 

o Find the K and M matrices by writing them out in terms of the 

variables of the system, and comparing with 

1
2

TT = q Mq    0

1

2
U U= + Tq Kq  

Both matrices must be symmetric. 

o Use the determinant method above. 
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Dynamics – Elasticity 
 

Introduction 

 Hooke’s Law states that 

 StrainStress

F l
E

A l

D
=  

Where 

o F is the force applied to a block of material over an area A. 

o lD  is the extension of the block in the direction of F. 

o l is the original, relaxed length of the block in that direction. 

o E is the Young’s Modulus of the material. 

 Furthermore, it states that 

w l

w l
s

D D
=-  

Where wD  is the length of the block in any direction perpendicular to 

that of l. 

 For an isotropic material, E and s  are all we need to define the elastic 

properties of the material. 

 Since these equations are all linear, the principle of superposition 

applies. If we have several forces, the displacements will be the sum of 

the displacements with the forces acting individually. 

 

Uniform Strain – the Bulk Modulus 

 Consider a rectangular block in a pressure tank, say, with identical 

stress p on every face. 

 Consider one direction – the change in length lD  in that direction is 

given by 


Due to pressure Due to pressure in
in that direction other directions

1 2

l p p p

l E E E
l

p
l E

s s

s

D
= - + +

D -
= -



 

The problem is symmetrical, so the value will be the same for all 

directions. 
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 Now, consider the change in volume 

V x y z

V x y z

D D D D
= + +  

We therefore have 

1 2
3

V
p

V E

sD -
= -  

 We can then define the bulk modulus 

3(1 2 )

E
K

s
=

-
 

Such that the change of volume as a result of the stress p is 

V
p K

V

D
= -  

 

Shear Strain – the Shear Modulus 

 Consider a cube with face area A and with shear forces acting on it 

 
If cut the cube along the diagonals A and B, we find that 

o There is a stretch normal to A, of magnitude F 2 . 

o There is a compression normal to B, of magnitude F 2 . 

And each of these diagonal faces has area 2A . 

 The lengthening of the diagonal d will therefore be equal to the 

lengthening of d in the following case: 

 

A 

B 

F 

F 

F 

F 
d 
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From above, this is given by: 

1 2 1 2

2 2
1

d F F

d E A E A
d F

d E A

s

s

D
= +

D +
=

 

By symmetry, the other diagonal is shortened by the same amount. 

 It is often useful to have this as a function of the twist angle: 

 
From this diagram, it is (reasonably) clear that 

2dd = D   2d =   

Therefore 

2 2(1 )
2

d d F

l l d E A

d s
q

D D +
» = = =  

 We therefore define the shear modulus as 

2(1 )

E
m

s
=

+
 

Such that 

g mq=  

Where g is the shear stress = F/A. 

F 

q

d

dD



d

2F

2F
2F

2F

d 
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Formal Definitions 

 Stress 

o Defined in terms of force/unit area transmitted across planes 

in the medium. 

o Requires a tensor. We define 

 
o We can then show that the force on any arbitrary area element 

is 

d=F St  

o The tensor must be symmetric – consider a small cube side dx. 

Because the cube must be in equilibrium, the forces on it are as 

follows: 

 
The net couple on the cube is 

( )dxy yxS S x-  

But there must be no torque on the cube, or it’d spin! So 

xy yxS S=  

o The stress tensor is diagonal for suitable choices of axes. 

o The stress in a solid material is therefore described by a tensor 

field. 

 Strain 

o When a material is put under strain, a point ( , , )x y z  in it is 

moved to a point ( , , )x X y Y z Z+ + + . 

o The derivatives of these X, Y and Z contain information about 

the strain. 

o As we saw before, it’s worth considering two kinds of strain 

 For the normal strains, we define: 

ijt
Force in the i 

direction 

On a plane perpendicular 

to the j axis 

yxSyxS

xyS

xyS
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For example, if we consider stress perpendicular to the x 

direction in a cube initially of side xD , it’ll increase by 

xxe xD : 

 
 Now, for the shear stresses, consider 

 
[The expression for the angles are tricky to see – but 

consider that X is the change in x…] We then simply 

define 

1
2xy yx

Y X
e e

x y

æ ö¶ ¶ ÷ç= = + ÷ç ÷ç ÷¶ ¶è ø
 

This ensures that if the block simply rotates (ie: 

/ /Y y X x¶ ¶ = ¶ ¶ ), these strains are 0. 

o So in general, we define 

 
So, for example 

xx xy xzX e x e y e z= + +  

o The tensor is also symmetric, due to the xy yxe e=  condition. 

o If the strains are non-homogenous, we sit down and cry. 

 The relation between them 

…will have changed by eijD, assuming that 

the jth coordinate of that point from the 

origin is D. 

( )1
2 / /ij j i i je X x X x= ¶ ¶ +¶ ¶

The ith coordinate of a 

point in the material… 

X

y

¶
¶

Y

x

¶
¶

yD

X

Y

xD

xD

xxe xD



Physics Revision Notes – Thermodynamics Page 15 of 20 

  © Daniel Guetta, 2008 

o Each component of e is related to each component of t  – this 

gives, overall, a fourth-rank tensor of elasticity relating the two: 

ij ijkl klC et =  

(Using the summation convention). 

o It looks like there are 92 = 81 coefficients in C, and that 81 

numbers are therefore required to define the elastic properties of 

a material! However, we note that since S and e are symmetry, 

we must be able to swap ij and kl in C without changing a thing, 

so there can be at most 36 different coefficients. 

o If the material is isotropic, though, C must be completely frame-

independent. As such, we must be able to express it in terms of 

the tensor ijd . There are only two ways of doing this that are 

also invariant under i j«  and l k« , and so 

( ) ( )ijkl ij kl ik jl il jkC l d d m d d d d= + +  

So an isotropic material only requires two constants (E and s , 

for example). And we have 

2ij kk ij ijS e el d m= +  

 

Examples – Statics 

 Thin tube in torsion 

o Consider a thin tube being twisted an angle f  

 
o We first note that 

r

l

f
q =  

o Next, consider a small square (dotted above) and its deformation 

as a result of the twist: 

f
q

r

L

rD
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From the previous result: 

F

r
r

F r
L

mq

f
m

=
D

= D




 

o This force contributes a torque Dt  to the rod 
2r

rF r
L

f
t mD = = D  

o Considering these bits around the whole rod, so that 2 rp , 

we get 
3r r

L
t pm f

D
= 2  

 Wire in torsion 

For a wire, we simply integrate the above from r = 0 to the total 

radius, giving 
4

2

r

L

p
t m f=  

 Can under pressure 

o Consider a can of thickness t with closed ends with an internal 

pressure p. 

o Let the tangential stress in the walls be qt , and consider half 

the can 

 
The forces (= stress × area) must balance, so 

2 2t p r

pr

t

q

q

t

t

´ = ´

=
 

o Let the axial stress in the walls be zs , and consider one of the 

ends. By the same logic as above 

F
F

q


r

t

qt qtp
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22
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rt p r

pr

t

t p p
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=
 

 Bent beam 

o Consider a beam of length L, held in a bent position. 

o We only consider longitudinal strains (valid for small deflections 

and thin beams). 

o Clearly, the bits at the top of the beam will be stretched, while 

those at the bottom will be compressed. Somewhere in between, 

there’ll be a neutral surface – neither stretched nor compressed. 

o Consider a small segment length   of the bent beam: 

 
o The amount of stretching and compression at any point is 

proportional to the distance from the neutral surface, y. The 

constant of proportionality is /R . As such 

Strain
y

R

D
= =




 

o Clearly, there’ll be forces to the left above the neutral surface, 

and vice versa. We therefore have 

F
E

A
E

F y A
R

D D
=

D

D = D


  

o The total torque produced about the neutral line is given by 

Cross
section

2
Cross
section

d

d

y F

E
y A

R

=

=

ò

ò

t

 

EI
B

R
=  



q

Neutral surface 

R

+D 
y



Physics Revision Notes – Thermodynamics Page 18 of 20 

  © Daniel Guetta, 2008 

o Now, consider a beam loaded with weights given by W(x), 

where W is the force per unit length. Consider the statics of a 

small segment of the beam: 

 
Notes: 

 Due to the bending moment, some vertical forces are 

produced. Ignoring products of infinitesimal quantities, 

we can write, at that point 

d d

d

S x B

EI
B S x

R

=

= = ò
 

[Effectively, we’re saying that due to the dS needed to 

balance dF, the bending moment must change] 

 The downwards loading force needs to be balanced by a 

difference in the upwards stress 

d d dS F W x

S W

= =

¢ =
 

o Now, for small deflections 

1/y R¢¢ =  

o As such, we can conclude 

( )EIy W x¢¢¢¢ =  

o Boundary conditions for various cases are as follows 

 At a free end, S and B are clearly 0, and so 0y y¢¢ ¢¢¢= = . 

 At a cantilevered end, y  and y ¢  are given (usually 0). 

o Finding y is then simply a question of solving that differential 

equation. However, there are a few tricky points 

 All forces must be considered when writing down W(x), 

including reactions at contacts. Most often, W will be a 

series of d -functions. 

 Sign conventions: 

S

dS S+

dx

dF
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 Downwards W  positive. 

 The resulting y obtained is downwards  positive, 

because the way the radius of curvature is specified. 

 However, be very careful – sometimes, the 

convention appears to be reversed because the bar 

curves downwards, and so 1/R y ¢¢- = . 

 Don’t worry too much about boundary conditions for y ¢¢¢  

– just integrate d -functions from 0 to L (for a free end, 

this is fully justified). Remember that there’ll often be a 

d -functions at the very end of the range, which might 

help satisfy the boundary conditions. 

 From then on, boundaries are just provided. Just also 

remember to make the y ¢¢ , y ¢  and y continuous. 

 The couple provided by a cantilever can simply be 

worked out by evaluating ¢¢=B EIy  at that point. 

 It is sometimes easier to simply write down y ¢¢ , the 

bending moment from physical considerations. 

o The Euler Strut is a beam buckled between two walls: 

 
If we take y upwards, then the bending moment on any point is 

sin

B Fy

F
y y

EI

F
y A x

EI

= -

¢¢ = -

é ù
ê ú= ê úë û

 

Applying the boundary condition that y = 0 at x = L: 
2

2

EI
F

L

p
=  

This is independent of displacement (but only while 1/y R¢¢ =  

holds). 

o The Reciprocity Theorem states that 

“The deflection at Q due to a load at P is the 

same as the deflection at P due to the same 

load at Q” 

F F



Physics Revision Notes – Thermodynamics Page 20 of 20 

  © Daniel Guetta, 2008 

To prove, say PPQ means “the deflection at P due to the load at 

Q”. Consider loading first P and then Q. The energy stored is 

2 2
QQPP

PQ

PP
E F P

é ù
ê ú= + +
ê úë û

 

The same result must be applied the other way round, so 

PQ QPP P=  

 

Dynamics of Rigid Bodies 

 Consider a small volume V of the material. It will have both external 

forces acting on it (eg: gravity) and internal forces (eg: elastic stresses). 

ext int dVr+ = òF F r  

 Every small particle in the volume experiences the external force, 

though, so Fext is given by a volume integral. 
Define this = 

int ext

int

( )d

d
V

V

V

r= - +

=

ò
ò

f

F f r

F f




 

On the other hand, only the particles at the edge of the volume 

experience the elastic force from surrounding media, and so Fint is given 

by an area integral 

int
A

d d
V

A V=ò òf f  

 We have, however, defined that the force in the x-direction, say, is 

( )d dx xx xy xzF S S S= + + ⋅i j k A  

And so, taking only the x component of the integral above 

( )
A

d dxx xy xz x
V

S S S f V+ + ⋅ =ò òi j k A  

 Using the Divergence Theorem on the LHS 

d dxyxx xz
x

V V

SS S
V f V

x y z

æ ö¶¶ ¶ ÷ç + + =÷ç ÷ç ÷¶ ¶ ¶è øò ò  

Removing the volume integrals (because this is true for any volume): 

/i ij jS x= ¶ ¶f  

(Using the summation convention). 

 Now, using 2ij kk ij ije et l d m= +  (isotropic material), we obtain 

2( ) ( )l m m= +  ⋅ + f u u  

Where u is the internal displacement in the solid. 


