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Thermodynamics 

 

Statistical Thermodynamics 

 The idea of particles constantly undergoing elastic collisions leads to the 

idea of a static distribution of speeds. 

 The probability that a state of energy Ei is occupied in thermal 

equilibrium is 
/( ) ( ) iE kT

i ip E g E e-=  

Where T is the absolutely temperature and g(Ei) is the degeneracy of 

energy Ei (the number of state of energy Ei which are accessible to the 

particle). In the continuous case: 

/( ) d ( ) dE kTp E E Ag E e E-=  

There are two important components here – the Boltzmann factor and the 

degeneracy of each state. 

 When seeking the distribution of energies, g(E) is proportional to E. 

When seeking the distribution of velocities in three dimensions, g(v) is 

proportional to v2 – the surface area of the sphere of radius v in velocity 

space [ie: the volume of the small shell enclosing velocities v to v + dv is 

4pv2 dv]. 

 The isothermal atmosphere is an atmosphere 

o In a gravitational field, which we assume is constant. 

o In which the temperature is the same everywhere. 

In our derivation of pressure and density distributions, we consider a 

cylindrical element in the atmosphere and note that: 

o The pressure on the cylinder is isotropic at each point (the same 

in all directions), so we can write the pressure at the top surface 

as p and that at the bottom surface as p + dp. 

o The weight of the element of atmosphere is balanced by the 

pressure difference. 

o The weight of the element is ( ) dh gA hr . 

o We can use the equation of state of the perfect gas in the form  

pV = nkT and realise that if m is the average mass of a particle 
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in the gas, this becomes mp kTr=  [this is where the constant 

pressure approximation comes into play]. 

 When working out how small particles of a solid sediment in a fluid, we 

use the following: 

o Archimedes’ principle – the upthrust is equal to the weight of 

displaced fluid. 

o We use this to deduce the net force acting downwards in the 

tube (say f), and deduce the potential as 
0

( ) d
h

h f hf = ò  [this 

takes h = 0 as the datum]. 

o Then, use the Boltzmann distribution, given that the degeneracy 

of each energy is 1. 

o This was verified experimentally by J. Perrin in 1908, and this 

can be used to determine Boltzmann’s constant. 

o This can be used to separate out large molecules – by subjecting 

the particles to accelerations of 106g, the largest sediment out. 

 Phase equilibria 

o The structure of solids and liquids is as follows: 

 There are some intermolecular forces which result in a 

potential with a minimum – this is the equilibrium 

separation distance. 

 If the particles are spheres, the closest way of packing 

them together is as a close-packed array: 

 The spheres are stacked as close to each other as 

they can be in a plane and their centres form 

equilateral triangles 

 In a plane, any atom is surrounded by its six 

nearest neighbours. The interatomic forces keep 

them all the same distance apart. 

 Planes are them stacked such that the centres of 

any three adjacent atoms form tetrahedra. Each 

atom is then surrounded by 12 neighbours – we 

say that the coordination number N = 12. 



Thermodynamics  Page 3 of 10 

  © Daniel Guetta, 2007 

 As the temperature increases above T = 0, the particles 

start gaining kinetic energy and “jiggle” around in their 

“cage”. If this gets too high, the lattice expands and 

occasional re-arrangements occur. If this happens enough 

time, the long-range crystalline order is lost and it 

becomes a liquid – the structure of the “cage” has 

changed. 

 There is still short-range order, and the coordination 

number N = 10 (for random close-packing). So we 

expect liquids to be ~20% less dense than solids. 

o Binding energies 

 If the depth of the potential well is 0F , we note that this 

is the amount of energy needed to split up any two atoms. 

 In close-packed solids, where each atom is surrounded by 

its 12 closest neighbours [and we assume other binding 

forces are negligible], the binding energy per mole is 

06 AN F  

(Where we’ve used 6 instead of 12 because forces come in 

pairs). 

 Similarly, the binding energy of a liquid per mole is 

05 AN F  

 The binding energy of a gas is effectively 0, because there 

are no forces acting between particles. 

o Latent heats 

 Phase changes involve absorption or release of heat. 

 Ignoring the energies of materials associated with thermal 

motions, we can obtain the following expressions by 

conversation of energy: 

sublimation 0

boiling 0

evaporation 0

6 A

A

A

L N

L N

L N

= F

= F

= F

 

 These are simple estimates, but work well if not pushed 

too far. 
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Macroscopic Thermodynamics 

 Gas laws 

o Boyle’s Law states that, experimentally [for gases of low density 

at high temperatures], 

constantpV =  

o Charles’ or Gay-Lussac’s law states that, at constant pressure 

( )0 1V V ta= +  

Where t is measured in degrees Celsius. This can be used to 

define the perfect gas temperature scale, in which the 0 is taken 

at the point where the gas has 0 volume. In Kelvins, where the 

zero is 0 K, we can write 

0 0

V T

V T
=  

Further analysis reveals that this is identical to the 

thermodynamic temperature scale. 

o It is also found that at a constant volume, the pressure increases 

linearly with eh temperature, which the same constant of 

proportionality as in Charles’ law. Together, these give 

pV nRT=  

This is an equation of state [the relation which determines the 

pressure as a function of volume and temperature] of the perfect 

gas. Boltzmann’s constant is the gas constant per molecule, so 

A

R
k

N
=  and pV nkT=  

o Dalton’s Law of Partial Pressures states that at a fixed 

temperature, the pressure of a mixture of gases is equal to the 

sum of the pressures which each gas would exert separately if 

the others were not there. 

 First law 

o The first law is that “energy is conserved when heat is taken 

into account”. 

o A system can acquire energy in two ways – as heat and as work. 

We write 

d d dU Q W= +  
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Where these are all quantities done ONTO the system. [Heat is 

defined using this relation]. 

o We define the heat capacities at constant volume and pressure 

as 

V
V

Q
C

T

æ ö¶ ÷ç= ÷ç ÷çè ø¶
      and p

p

Q
C

T

æ ö¶ ÷ç= ÷ç ÷çè ø¶
 

The latter is always larger because extra work is done in making 

the gas expand. 

o We can easily deduce that dU = CV dT by noting that at 

constant volume, dU = dQ. 

o By using the relation dU = dQ + dW at constant pressure, and 

noting that dQ = CV dT, and expressing the p dV term using 

the ideal gas laws, one finds that 

p VC C R- =  

 A reversible process is one in which we pass from one state to another 

while passing through a continuous set of equilibrium states. There can be 

no unbalanced forces at any point in time, and so the process must 

happen very slowly, such that, if it were reversed, it would leave the 

universe exactly as it was before. This “gentleness” ensures that there is 

no loss of energy. 

 Isothermal expansions 

o These occur at constant temperature. 

o In such a case, U stays constant. Therefore, 

d dQ p V=  

 and Adiabatic expansions 

o No heat is transferred from our gas. Therefore, dQ is 0 and 

d dU p V= -  

o Now, we note two things: 

 dU = CV dT 

 d d dpV nRT V p p V nR T=  + =  

 We can therefore eliminate temperature, and get 

( )

d d d

d d d

V

V

nR
V p p V U

C

C
U V p p V

nR

+ =

= +
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o Substituting back into the above: 

( )d d dVC
V p p V p V

nR
+ = -  

And collecting terms in p dV on one side 

( )
this is just 

d 1 d

d d

d d

d d

p

V V

V V

C

V V

V p

C C
V p p V

nR nR

C C nR
V p p V

nR nR

C V p p C nR V

C V p pC V

æ ö÷ç= - + ÷ç ÷çè ø
æ ö+ ÷ç= - ÷ç ÷çè ø

= - +

= -


 

o If we then write the ratio of the heat capacities as g  and 

integrate, we end up with 

constantpV g =  

o Using pV = nRT, we can express this in terms of any two of p, 

V and T. 

 We define temperature as the quantity that determines the direction of 

heat flow when two objects come into contact. The second law of 

thermodynamics states that no process exist whose sole effect is to 

transfer heat from a colder to a hotter body. 

 

Kinetic Theory of Gases 

 We would like to explain the macroscopic properties of gases in terms of 

molecule motions. 

 The definition of a perfect gas is one that 

o Has the equation of state pV = nkT 

o Does not absorb or release any heat during a Joule expansion 

(expanding the volume of a gas). This implies that there are no 

intermolecular forces in the gas, or else we would have had to 

do work against these forces when expanding the gas. 

 The assumptions underlying the kinetic theory of gases are as follows: 

o Gases consist of particles in motion. Each has kinetic energy 

½mv2 and the velocities are in random directions. 

o The particles are modelled as spheres, which very small but 

finite diameters a. 
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o The long-range forces between atoms are weak (cf: Joule 

expansions), and any collisions are elastic. 

o The origin of pressure on the walls is the force per unit area due 

to elastic collisions of a huge number of gas particles on the wall. 

o The temperature is related to average kinetic energy of the 

molecules in the gas. 

 The distribution of velocities follows the Boltzmann Distribution,  

o The one-dimensional velocity distribution is 

2 /2
1( )

2
xmv kT

x

m
f v e

kTp
-=  

And the mean kinetic energy of such a component is 
21 1

2 2xmv kT= . This is a crucial result! 

o The three-dimensional velocity distribution can be obtained by 

multiplying all the 1D ones together to get the probability of 

finding a particular vx, vy and vz, and then expressing it in terms 

of v, taking degeneracy into account. 

o We then find, by integrating, that 
2 2 2 2 3

2x y zv v v v kT+ + = =  

 Dalton’s Law of Partial Pressures 

o If we have two different monoatomic gases of mass-per-particle 

m1 and m2 in a container, there will be collisions. 

o In the ZMF, it’s clear that, during each collision, no direction 

will be preferred. Call this velocity w. 

o The directions for w are all equally likely relative to the motion 

of the CM, vCM [this is harder to prove!] 

o Therefore: 

( )

( ) ( )( )

CM

1 1 2 2
1 2

1 2

2 2
1 1 2 2 2 1 1 2

1 2

0

0

0

m m

m m

m v m v m m

m m

⋅ =

+
⋅ - =

+

- + - ⋅
=

+

w v

v v
v v

v v

 

o We can also reason that over the entire gas, there is as much 

chance of seeing a molecule move in one way than another. So: 
2 2

1 1 2 2m v m v=  
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In other words, the kinetic energy of both these gases is equal. 

This result can also be obtained using statistical methods. 

o Since pressure is proportional to kinetic energy both in the 

individual gases and in the mix, this implies that the pressure of 

the mixture is equal to the sum of the pressure of the parts. 

 Temperature 

o The temperature of a gas was “defined” above by the relation 
21 3

2 2mv kT= . 

o This, result can also be obtained by using the second-law 

definition – that temperature is the quantity that is equal in two 

bodies at equilibrium. 

o If consider two gases in a box separated by a piston, it stands to 

reason that the energy imparted to the piston by each of the 

gases is proportional to the kinetic energy of each of the gases. 

So, at equilibrium, both these kinetic energies must be the same. 

o This is the property which is equal in two gases at equilibrium, 

and so this is temperature! We just add a constant of 

proportionality of 3
2 k  to make our lives easier… 

 Pressure 

o The pressure is the force per unit area which arises from the rate 

of change of momentum of particles striking the walls elastically. 

The pressure is isotropic. 

o We do this in two steps – first we calculate the change in 

momentum from the collision of one particle, and we then 

multiply by all the particles. 

o For a particle hitting a wall, we need one component of the 

particle’s momentum multiplied by 2 (one there and one back) – 

in other words 

2x xp mvD =  

o Now, the number of particles: 

 In a time tD , all particles which are moving towards the 

wall and for which distance from wallxv tD >  will collide 

with the wall. 

 The fraction of particles with a given speed vx is f1(vx) dvx. 
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 For a particle moving at vx, we’re interested in anything 

within xv tD  of the wall. If we assume the number of 

particles per unit volume is n, then the number of 

particles per unit area satisfying this condition is xnv tD . 

 So, the total number of particles with velocity vx hitting 

per unit area is 1( )dx xnv t f x vD . 

o The change of momentum per unit area due to the collisions of 

particles moving with speed vx is therefore 12 ( )dx x xmv nv t f x v´ D . 

The rate of change of momentum is therefore 12 ( )dx x xmv nv f x v´ . 

o Averaging over all speeds to find the total force per unit area 

[but only taking positive speeds, of course!] 
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0
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ò
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This is just a fancy way of saying that only ½ the molecules will 

be moving towards the wall. 

o Since 2 2 2 2
x y zv v v v+ + = , we can re-write this as 

1
23p nmv=  

 Internal energy 

o The internal energy of our ideal gas is the kinetic energy of its 

individual particles – ½mv2 [since they have no structure]. 

o Therefore, the average kinetic energy of the gas is 

21
2u nmv=  

o From the distribution function for speeds in a gas, however, we 

know that 
3
2u nkT=  

o Combining these two results and the pressure, we recover the 

ideal gas law 

p nkT=  
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 Collisions 

o The number of particles with velocity vx that will hit unit area 

of a wall in a time tD  is 

1( )dx x xv t n f v vD ´ ´  

o So the rate of collisions on a given unit area of wall is 

1
0

1
4

( )d

2

x x xJ n v f v v

kT
n

m
nv

p

¥
=

=

=

ò

 

 

 


