Vectors

- Vectors are quantities that have both magnitude and direction.
- Vector addition is commutative and associative.
- Multiplication by a scalar is commutative, associative and distributive over addition.
- In general, a basis set must:
- Contain as many basis vectors as there are dimensions (it must span the space).
- Be such that no basis vector may be described as the sum of others (ie: the basis vectors must be linearly independent).

Any vector may then be expressed as a weighed sum of these basis vectors - the weights are called the components of the vector. Most often, we use basis vectors that are mutually perpendicular.

- The scalar product of two vectors \mathbf{a} and \mathbf{b} is:

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta \\
\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}+c_{1} \mathbf{k}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}+c_{2} \mathbf{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
\end{gathered}
$$

Where θ is the angle between the two vectors.

- Since $\cos (2 \pi-\theta)=\cos \theta$, it matters not whether the inner or outer angler is chosen. Thus, both vectors can either be point towards each other or away from each other. However, they cannot be pointing opposite directions - if this does happen, the answer comes out negative (because $\cos (\pi-\theta)=-\cos \theta$).
- The scalar product is commutative and distributive over addition. This implies that $(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{c}+\mathbf{d})$ can be multiplied out normally, since we can just view $\mathbf{a}+\mathbf{b}$ as a single vector. Similarly, $(\lambda \mathbf{a}) \cdot \mathbf{b}=\lambda(\mathbf{a} \cdot \mathbf{b})$.
- $(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b}+2 \mathbf{a} \cdot \mathbf{b}$ is simply the cosine rule.
- The scalar product returns a scalar. It therefore makes no sense to write things like $\mathbf{a} \cdot(\mathbf{b} \cdot \mathbf{c})$.
- Some useful results:
- $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
- If $\mathbf{a} \cdot \mathbf{b}=0$ and neither \mathbf{a} nor \mathbf{b} are $\mathbf{0}$, then they are perpendicular.
- $\mathbf{a} \cdot \hat{\mathbf{n}}$ ($\hat{\mathbf{n}}$ is a unit vector), is the projection of \mathbf{a} in the $\hat{\mathbf{n}}$ direction.
- The vector product of two vectors \mathbf{a} and \mathbf{b} is:

$$
\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{n}}
$$

$$
\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}+c_{1} \mathbf{k}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}+c_{2} \mathbf{k}\right)=\left\lvert\,\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right)\right.
$$

Where θ is the angle between the two vectors, and $\hat{\mathbf{n}}$ is a unit vector in the direction which a right handed screw would move if turned from \mathbf{a} to \mathbf{b}.

- The vector product is anticommutative - that is, $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$.
- The vector product is distributive over addition - this is, $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$. This, again, implies that $(\mathbf{a}+\mathbf{b}) \times(\mathbf{c}+\mathbf{d})$ can be multiplied out normally (we just consider $\mathbf{a}+\mathbf{b}$ as a single vector).
- The vector product of \mathbf{a} and \mathbf{b} is perpendicular to both \mathbf{a} and \mathbf{b} - in other words, $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0$.
- The vector product does not generalise to n dimensions, because the fact that we can find a unique vector perpendicular to a plane is a special property of 3D space.
- Some useful results:
- If $\mathbf{a} \times \mathbf{b}=0$ and neither \mathbf{a} nor \mathbf{b} are $\mathbf{0}$, then they are parallel.
- $|\mathbf{a} \times \mathbf{b}|$ is the area of the parallelogram with sides \mathbf{a} and \mathbf{b}.
- $\frac{1}{2}|\mathbf{a} \times \mathbf{b}|$ is the area of the triangle with sides \mathbf{a} and \mathbf{b}.
- The scalar triple product of three vectors \mathbf{a}, \mathbf{b} and \mathbf{c} is given by

$$
[\mathbf{a}, \mathbf{b}, \mathbf{c}]=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

- Cyclic permutations of the three vectors do not change the product. Anticyclic permutations negate it.
- One way to think of the scalar triple product is as the determinant of a matrix whose rows are the three vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.
- The scalar triple product is a scalar, and it is simply the volume of a parallelepiped with edges \mathbf{a}, \mathbf{b} and \mathbf{c}.
- Two useful results, which are a consequence of the fact that this is the area of a parallelepiped:
- If any of the two vectors are equal, then the scalar triple product evaluates to 0 .
- The scalar triple product is a good test for coplanarity - \mathbf{a}, \mathbf{b} and \mathbf{c} are coplanar if and only if $[\mathbf{a}, \mathbf{b}, \mathbf{c}]=0$.
- The vector triple product (Arghh!!! : $)$) of three vectors \mathbf{a}, \mathbf{b} and \mathbf{c} is given by

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

- The following can be used to remember this result:
- $\mathbf{b} \times \mathbf{c}$ is perpendicular to both \mathbf{b} and \mathbf{c}, and since $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ is perpendicular to that, it must be in the plane of \mathbf{b} and \mathbf{c}.
- The bit in the middle (b) gets the PLUS sign.
- The vector triple product isn't associative -ie: $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$.
- It can be shown that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=\mathbf{0}$.
- The position vector of any point on a line going through point with position vector a and parallel to a vector \mathbf{b} is given by

Taking components, we find that this can also be expressed as

$$
\frac{x-x_{1}}{\Delta x}=\frac{y-y_{1}}{\Delta y}=\frac{z-z_{1}}{\Delta z}=\text { constant }
$$

Where $\left(x_{1}, y_{1}, z_{1}\right)$ is any point on the line, and $(\Delta x, \Delta y, \Delta z)$ is the difference between any two points on the line.

Taking cross-products on both sides, we get an alternative equation:

$$
\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b} \text { or }(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}
$$

(Which should be obvious from the fact that $\mathbf{r}-\mathbf{a}$ must lie on the line and therefore be parallel to \mathbf{b}).

- The minimum distance of a point \mathbf{p} from a line is calculated by finding the projection of $\mathbf{p}-\mathbf{a}$ in the direction perpendicular to the line - this gives the shortest distance as $|(\mathbf{p}-\mathbf{a}) \times \hat{\mathbf{b}}|$.

- The minimum distance between two lines $\mathbf{r}_{1}=\mathbf{a}_{1}+\lambda_{1} \mathbf{b}_{1}$ and $\mathbf{r}_{2}=\mathbf{a}_{2}+\lambda_{2} \mathbf{b}_{2}$ is found by projecting any line joining both the lines (for
example, $\mathbf{a}_{1}-\mathbf{a}_{\mathbf{2}}$) onto the unit common normal of the two lines ($\mathbf{b}_{1} \times \mathbf{b}_{2}$) - this gives the shortest distance as $\left|\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) \times \overline{\left(\mathbf{b}_{1} \times \mathbf{b}_{2}\right)}\right|$.
- The position vector of any point on a plane containing the points \mathbf{a}, \mathbf{b} and \mathbf{c} is

$$
\mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})+\mu(\mathbf{c}-\mathbf{a})
$$

Which can also be written in the form $\mathbf{r}=\alpha \mathbf{a}+\beta \mathbf{p}+\gamma \mathbf{q}$, where $\alpha+\beta+\gamma=1$.
Taking a dot product with the vector normal to the plane, \mathbf{n}, we get:

$$
\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n} \text { or }(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}
$$

The latter form should be obvious, since $\mathbf{r}-\mathbf{a}$ is an arbitrary line in the plane, which is perpendicular to \mathbf{n}.

Now, if $\hat{\mathbf{n}}$ is a unit vector in the \mathbf{n} direction, then $d=\mathbf{a} \cdot \hat{\mathbf{n}}$ is simply the shortest distance of the plane from the origin, and we can re-write the equation of the plane as

$$
\mathbf{r} \cdot \hat{\mathbf{n}}=d
$$

This form is extremely useful in mapping a Cartesian equation of a plane $\alpha x+\beta y+\gamma z=\lambda$ to a vector equation, because the Cartesian equation is basically just

$$
\begin{gathered}
\left(\begin{array}{lll}
x & y & z
\end{array}\right) \cdot\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right)=\lambda \\
\mathbf{r} \cdot\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right)=\lambda
\end{gathered}
$$

and as long as $\left(\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right)$ is nomalised, then λ is the shortest distance from the origin to the plane.

- The distance between an arbitrary point \mathbf{c} and a plane can be worked out by projecting any line between the point and the plane (eg: $\mathbf{a}-\mathbf{c}$) in the direction of the unit perpendicular. This gives a distance of $(\mathbf{a}-\mathbf{c}) \cdot \hat{\mathbf{n}}$.
- If we want the projection of a point on a plane, what we really need is a projection of the point onto a vector perpendicular to $\hat{\mathbf{n}}$. The easiest way to do this is using $|\mathbf{c} \times \hat{\mathbf{n}}|$.
- If we have a line parallel to a plane, and we want to find the distance between the two, we simply need to find any line joining any point on the line to any point on the plane, and resolve in the $\hat{\mathbf{n}}$ direction.
- To find the line of intersection of two planes, simply cross the two normals - the result will necessarily be parallel to the line of intersection. Furthermore, the point $\mathbf{r}=\alpha \hat{\mathbf{n}}_{1}+\beta \hat{\mathbf{n}}_{2}$ necessarily lies on both planes use simultaneous equations to find the constants (or, just solve to find a point on both planes).
- A sphere is clearly distinguished by the fact that all points on it are equidistant from a fixed point in space. Thus, the position vector of any point on a sphere centred at a and with radius r is

$$
(\mathbf{r}-\mathbf{a})^{2}=r^{2}
$$

- The two sets of vectors \mathbf{a}, \mathbf{b} and \mathbf{c} and $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ and \mathbf{c}^{\prime} are called reciprocal sets if

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{a}^{\prime}=\mathbf{b} \cdot \mathbf{b}^{\prime}=\mathbf{c} \cdot \mathbf{c}^{\prime}=1 \\
\text { and } \mathbf{a}^{\prime} \cdot \mathbf{b}=\mathbf{a}^{\prime} \cdot \mathbf{c}=\mathbf{b}^{\prime} \cdot \mathbf{a}=\mathbf{b}^{\prime} \cdot \mathbf{c}=\mathbf{c}^{\prime} \cdot \mathbf{a}=\mathbf{c}^{\prime} \cdot \mathbf{b}=0
\end{gathered}
$$

It can be shown that the reciprocal vectors of \mathbf{a}, \mathbf{b} and \mathbf{c} are given by:

$$
\mathbf{a}^{\prime}=\frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}, \mathbf{b}^{\prime}=\frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} \text { and } \mathbf{c}^{\prime}=\frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}
$$

(Note that these only exist if \mathbf{a}, \mathbf{b} and \mathbf{c} are not coplanar - otherwise, we have division by 0). If \mathbf{a}, \mathbf{b} and \mathbf{c} are mutually orthogonal unit vectors, then the two sets of vectors are the same.

We can use this concept to define the components of a vector with respect to basis vectors that are not mutually orthogonal:

$$
\mathbf{a}=\left(\mathbf{a} \cdot \mathbf{e}_{1}^{\prime}\right) \mathbf{e}_{1}+\left(\mathbf{a} \cdot \mathbf{e}_{2}^{\prime}\right) \mathbf{e}_{2}+\left(\mathbf{a} \cdot \mathbf{e}_{3}^{\prime}\right) \mathbf{e}_{3}
$$

- Vector area
- We define the vector area of a given plane surface to have magnitude equal to the area of the surface, and direction normal to the surface. The direction is fixed using extra information, from the right hand screw rule.
- One way of thinking of vector area is in terms of flux. If the surface has vector area a, a flux \mathbf{F} will have a "net flow" of $\mathbf{F} \cdot \mathbf{a}$ through the surface.
- Thus, the vector area depends only on the rim of the surface - not its details. If there is no rim (ie: if we have a closed surface), the vector area is $\mathbf{0}$.
- A component of the area in a given direction is the projection of the area in that direction [again, though, in terms of net flux through the surface].
- Random points:
- If three 3D vectors are linearly dependent, then they must be coplanar.
- Remember when solving equations to find where two lines cross that the parameters aren't necessarily the same at the crossing point!
- To prove that three points are on a line, find a line going from one point to another, and then check the third point does indeed lie on it.
- The easiest way to prove that the diagonals of a parallelogram intersect is to define an arbitrary parallelogram by its two sides (\mathbf{a} and \mathbf{b}) and its diagonal (c), and then express the other diagonal in two different ways.
- When factorising a scalar out of vector equations, it counts twice - thus, $\lambda \mathbf{a} \cdot \lambda \mathbf{b}=\lambda^{2}(\mathbf{a} \cdot \mathbf{b})$.
- To find components of a vector a parallel and perpendicular to a unit vector $\hat{\mathbf{n}}$ we first note that by the definition of the dot product:

$$
\mathbf{r}^{\|}=(\mathbf{a} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
$$

To find the perpendicular component, we look at the following diagram:

It's clear from this that $\mathbf{r}^{\perp}=\mathbf{a}-\mathbf{r}^{\|}$. So:

$$
\mathbf{r}^{\perp}=\mathbf{a}-(\mathbf{a} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
$$

- For a vector a, we have that

$$
\mathbf{a}=(\mathbf{a} \cdot \mathbf{i}) \mathbf{i}+(\mathbf{a} \cdot \mathbf{j}) \mathbf{j}+(\mathbf{a} \cdot \mathbf{k}) \mathbf{k}=|\mathbf{a}| \cos \theta_{x} \mathbf{i}+|\mathbf{a}| \cos \theta_{y} \mathbf{j}+|\mathbf{a}| \cos \theta_{z} \mathbf{k}
$$

and

$$
\hat{\mathbf{a}}=\cos \theta_{x} \mathbf{i}+\cos \theta_{y} \mathbf{j}+\cos \theta_{z} \mathbf{k}
$$

This encapsulates all direction information, and these are called direction cosines.

