• Given a sequence of values $\{u_n\}$ (where n = 0, 1, 2, ...), we define $S_N = \sum_{n=0}^N u_n$.

The infinite series
$$S_N = \sum_{n=0}^N u_n$$
 is said to converge to S
If and only if
 $\lim_{N \to \infty} S_N$ exists and is equal to S . A series that does not
converge diverges.

Notes:

- Adding or removing a finite number of terms to the series does not alter its convergence.
- If the series converges, then $\lim_{n\to\infty} u_n = 0$. The converse is not necessarily true ie: this is a necessary but not sufficient condition for convergence.
- $\circ~$ If, however, $\lim_{n\to\infty} u_n\neq 0\,,$ then we can state with certainty that the series diverges.
- The u_n terms may be complex, in which case we require both the complex and imaginary parts to converge for convergence.
- It makes no sense to do arithmetic with <u>divergent</u> series. With <u>convergent</u> <u>series</u>, however, we can say that:

• If
$$\sum_{n=0}^{\infty} a_n = A$$
 and $\sum_{n=0}^{\infty} b_n = B$, then $\sum_{n=0}^{\infty} a_n + b_n = A + B$.
• If $\sum_{n=0}^{\infty} a_n = A$, then $\sum_{n=0}^{\infty} \lambda a_n = \lambda A$, for $\lambda \in \mathbb{R}$.

- Term-by-term differentiation or integration will not necessarily lead to a new series with the same convergence properties.
- In arithmetic series, the <u>difference</u> between successive terms is constant:

n=0

n=0

The general term of an <u>arithmetic</u> series is given by $u_n = a + (n-1)d$ (n = 1, 2, ...), where a is the <u>first</u> <u>term</u> and d is the <u>common difference</u>. The sum of the

series to N terms is

$$S_N = \sum_{n=0}^{N-1} a + nd = \frac{1}{2}N[2a + (n-1)d] = \frac{1}{2}N[u_1 + u_N]$$
The series clearly diverges.

Maths Revision Notes

In geometric series, the ratio of successive terms is constant:

The general term of a <u>geometric</u> series is given by $u_n = ar^{n-1}$ (n = 1, 2, ...), where a is the <u>first term</u> and d is the <u>common ratio</u>. The sum of the series to Nterms is $S_{N} = \sum_{n=1}^{N} ar^{n} = \frac{a(1-r^{N})}{1-r}$ The series <u>converges</u> for |r| < 1 and <u>diverges</u> otherwise.

In arithmetico-geometric series, we have a combination of both: •

> The general term of an <u>arithmetico-geometric</u> series is given by $u_n = [a + (n-1)d]r^{n-1}$ (n = 1, 2, ...). Its sum can be found in a similar way to that of a pure geometric series.

Some series can be summed using the **difference method**; attempt to write out • the general term u_n in terms of a function f(n) and f(n-m) for various values of m, and write out the sum – most terms cancel out. This allows us to obtain the following useful sums:

o
$$\sum_{n=1}^{N} n^2 = \frac{1}{6} N (N+1) (2N+1)$$
 (using $f(n) = n (n+1) (2n+1)$)
o $\sum_{n=1}^{N} n^3 = \left(\sum_{n=1}^{N} n\right)^2 = \frac{1}{4} N^2 (N+1)^2$ (using $f(n) = (n (n+1))^2$)

- Tips and tricks for finding sums:
 - It often helps to integrate or differentiate a series. If the series is not Ο already in terms of a variable, then define f(x) such that at some x (usually 1), the value of the function is equal to the sum of the series (see RHB, pp 123).
 - An appropriate substitution can often help for example, using Ο exponentials in a series with terms that contain trigonometric functions.
- Rules for convergence of infinite series with <u>positive terms</u>

 - If $\lim_{n \to \infty} u_n \neq 0$, the series **diverges**.
 - **Comparison test** [useful for series with dominant term n^p , and for series Ο

involving trigonometric terms] – if
$$\sum_{n=0}^{\infty} b_n$$
 converges and $a_n \leq b_n$ for all n larger than a given N (ie: eventually), then $\sum_{n=0}^{\infty} a_n$ converges.

Maths Revision Notes

- Ratio test [useful for series including n! or cⁿ] we consider a series ∑_{n=0}[∞] a_n and find ρ = lim_{n→∞} a_{n+1}/a_n. Now:
 If ρ < 1, then ∑_{n=0}[∞] a_n converges.
 If ρ > 1, then ∑_{n=0}[∞] a_n diverges.
 - If $\rho = 1$, then this test is inconclusive.
- Ratio comparison test if $\sum_{n=0}^{\infty} b_n$ converges, then if $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $\sum_{n=0}^{\infty} a_n$ also converges.
- **Quotient test** [useful in the same situations as the comparison test] let use consider two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, and say that $\rho = \lim_{n \to \infty} \frac{a_n}{b_n}$. Then:
 - If $\rho \neq 0$ and is finite, then both series behave in the same way.

• Integral test (Maclaurin-Cauchy test) – suppose that there exists a function f(x) which monotonically decreases for x greater than some fixed x_0 and for which $f(n) = a_n$ (ie: the value of the function at integer values of x is equal to the corresponding term in the series). Then, if the limit

$$\lim_{N\to\infty}\int^N f(x)\,\,\mathrm{d}x$$

exists, the series $\sum_{n=0}^{\infty} a_n$ is convergent. Otherwise, it is divergent.

- Cauchy's Root Test If we say $\rho = \lim_{n \to \infty} \sqrt[n]{u_n}$, then:
 - If $\rho < 1$, the series converges.
 - If $\rho > 1$, the series diverges.
 - If $\rho = 1$, the test is inconclusive.
- Rules for convergence of infinite series with <u>positive and negative terms</u>

$$\circ$$
 If $\sum_{n=0}^{\infty} |a_n|$ converges, then $\sum_{n=0}^{\infty} a_n$ also converges, and is said to be

<u>absolutely convergent</u>. The terms may be reordered without affecting the convergence of the series.

To test for absolute convergence, simply apply one of the tests above to $\sum_{n=0}^{\infty} |a_n|$, which will now contain positive terms only.

Maths Revision Notes

• If $\sum_{n=0}^{\infty} |a_n|$ does <u>not</u> converge but $\sum_{n=0}^{\infty} a_n$ does, then $\sum_{n=0}^{\infty} a_n$ is said to be <u>conditionally convergent</u>, and the order of the terms can affect the behaviour of the sum.

For example, in an <u>alternating series</u>, the positive and negative signs alternate. The general form of such a series is:

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_n$$

It turns out that alternating series are convergent if and only if a_n is <u>decreasing</u> and <u>tends to 0</u>.

Maths Revision Notes