- The probability of an event A is the expected relative frequency of event \boldsymbol{A} in a large number of trials. The following is true of probabilities:
- $0 \leq P(A) \leq 1$
- $\sum_{\forall \text { events }} P(E)=1$
- $P(A \cup B)=P(A)+P(B)+P(A \cap B)$. In the special case of mutually exclusive events, this becomes $P(A \cup B)=P(A)+P(B)$.
- $P(A \cap B)=P(A) P(B \mid A) \Rightarrow P(B \mid A)=\frac{P(A \cap B)}{P(A)}$. In the special case of independent events, this becomes $P(A \cap B)=P(A) P(B)$. A few notes:
- We can easily expand this to more than two events by noting that $P(A \cap B \cap C)=P(C) P(A \cap B \mid C)$.
- If $A=A_{1}+A_{2}+\cdots+A_{n}$, then $P(A \mid B)=\sum_{i} P\left(A_{i} \mid B\right)$. Also, if the $A_{i} \mathrm{~s}$ exhaust the sample space, $P(B)=\sum_{i} P\left(A_{i}\right) P\left(B \mid A_{i}\right)$.
- Bayes' Theorem states that

$$
P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)}
$$

It is sometimes easier to rewrite $P(B)=P(A) P(B \mid A)+P\left(A^{\prime}\right) P\left(B \mid A^{\prime}\right)$, when $\mathrm{P}(B)$ is not known, in which case it becomes

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P\left(A^{\prime}\right) P\left(B \mid A^{\prime}\right)}
$$

In fact, this is a special case of a more general form; if the sample space is not just divided into A and A^{\prime}, but into any set of mutually exclusive events A_{i} that exhaust the sample space, then

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{\sum_{i} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}
$$

- Combinations and Permutations:

Situation	Number of ways to arrange
A set of n different objects	$n!$
A set of $\underline{\text { any }} k$ objects from a set of n	${ }^{n} P_{k}=\frac{n!}{(n-k)!}$
At set of any k objects from a set of $n \underline{\text { with }}$ $\underline{\text { replacement }}$	n^{k}
A set of n objects, in which n_{i} are identical and of type i	$\frac{n!}{\prod\left(n_{i}!\right)}$

A set of any k object from a set of n, in which order in the resulting arrangements does not matter	${ }^{n} P_{k} / k!=$${ }^{n} C_{k}=\frac{n!}{(n-k)!k!}$ A set of n objects into m piles, each of which contain n_{i} items, and in which order matters not A set of k objects from a set of n objects with replacement and where order matters not ${ }^{n+k-1} C_{k}=\frac{n!}{\prod\left(n_{i}!\right)}$${ }^{n!(n-1)!}$

- Random variables

	Discrete	Continuous
Definition	Probability function $P(X=x)=\left\{\begin{array}{cc} p_{i} & \text { if } x=x_{i} \\ 0 & \text { otherwise } \end{array}\right.$	Probability density function $P(x<X \leq x+\mathrm{d} x)=f(x) \mathrm{d} x$
Total	$\sum_{\forall i} f\left(x_{i}\right)=1$	$\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$
Cumulative Probability function (CPF); $\mathrm{F}(x)$	$P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)$	$P(X \leq x)=\int_{-\infty}^{x} f(x) \mathrm{d} x$
	It is clear, from this, that $f(x)=\frac{\mathrm{d}}{\mathrm{d} x} F(x)$	
$\mathrm{P}(a<X \leq b)$	$\sum_{a<x_{i} \leq b} f\left(x_{i}\right)=F(b)-F(a)$	$\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$
Expected value of $g(X)$, $E[g(X)]$	$\sum_{\forall i} g\left(x_{i}\right) P\left(X=x_{i}\right)$	$\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x$
Mean, μ or $\langle x\rangle$	$E(X)$	
Mode	The value of x at which $f(x)$ is largest. There can be more than one mode, and the mode can be "not defined" [eg: uniform distribution]	
Median	The value of x at which $F(x)=\frac{1}{2}$	
Variance, $V(X)$	$V[X]=E\left[(X-\mu)^{2}\right]=E\left[X^{2}-2 X \mu-\mu^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$	

Useful properties of E and Var:

$$
\begin{array}{ll}
\text { - } & E(a X+b)=a E(X)+b \\
\text { - } & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{array}
$$

- The Binomial Distribution

If we have n trials, probability of success is p and X is the number of times a success is obtained in these n trials, then $X \sim B(n, p)$ and

$$
P(X=x)={ }^{n} C_{x} p^{x}(1-p)^{n-x}=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

and

$$
P(X=x+1)=\frac{p}{1-p}\left(\frac{n-x}{x+1}\right) P(X=x)
$$

Also, $E(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$. [To prove these results, write out the sums and take out the value we know to be $E(X)$ or $\operatorname{Var}(X)$. Then, substitute to make it look like the distribution itself, the sum of which is 1.]

Notes:

- $\sigma \propto \sqrt{n}$. This has relevance to estimation - say we do not know p, but carry out N trials of which M are successful. Our best estimate for p is

$$
p_{\text {est }}=M / N
$$

Now, we know that the error on M is σ. Thus:

$$
\begin{gathered}
N p_{\text {actual }}=M \pm \sqrt{N p(1-p)} \\
p_{\text {actual }}=\frac{M}{N} \pm \sqrt{\frac{p(1-p)}{N}} \\
p_{\text {actual }} \approx p_{\text {est }} \pm \frac{1}{\sqrt{N}} \overbrace{\sqrt{p_{\text {est }}\left(1-p_{\text {est }}\right)}}^{\text {Thes a mall error here }}
\end{gathered}
$$

Therefore, we find that the error on a parameter estimate improves with repeated trials like $1 / \sqrt{N}$. This is pretty much a universal law for all large enough probability distributions ($N \geq \sim 5$). For $N<5$, this usually underestimates the error.

- As $n \rightarrow \infty$ but p stays fixed, the binomial distribution becomes similar to the normal distribution. In other words, if $X \sim B(n, p)$, then, for big enough n (about $N \gtrsim 10$, but sometimes even $N \gtrsim 5$ is OK), X can be estimated by Y, where $Y \sim N(n p, n p[p-1])$. This estimate becomes much worse in the tails of the distribution (ie: more than $\pm 3 \sigma$ from the mean). In any case, a continuity correction must be applied.
- On the other hand, as $n \rightarrow \infty$ but $\underline{n p}$ stays fixed (at, say, $n p=\lambda$), then the binomial distribution becomes similar to the poisson distribution.

The Poisson distribution is a discrete distribution for counting (integer) numbers of discrete events in a period of time, given that the expected number of times the event will happen in that period of time is λ. If $X \sim \operatorname{Po}(\lambda)$, then

$$
P(X=r)=e^{-\lambda} \frac{\lambda^{r}}{r!}
$$

Where there is no upper limit on r. Also, $E(x)=\lambda$, and $\operatorname{Var}(x)=\lambda$.

Note that when λ is large enough ($\lambda \geq 10$ is safer, but $\lambda>5$ is usually OK), this distribution can be estimated by $N\left(\lambda,[\sqrt{\lambda}]^{2}\right)$. A continuity correction must also be applied here.

- The Discrete Uniform Distribution is one in which $f(x)=1$ for $0 \leq x \leq 1$ and 0 elsewhere. In other words, there is an equal change of getting any value between 0 and 1 . The mean of the distribution is $\frac{1}{2}$ and its standard deviation is $\frac{1}{\sqrt{12}}$.
- The normal distribution is defined by two parameters - its mean and its variance. The probability density function for this distribution is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

If X is normally distributed with mean μ and variance σ^{2}, we write $X \sim N\left(\mu, \sigma^{2}\right)$.

If we have a set of independent readings, our best estimates for the mean and variance are:

$$
\mu_{e s t}=\frac{\sum x_{i}}{n} \quad \text { and } \quad \sigma_{e s t}^{2}=\frac{\sum\left(x_{i}-\mu_{e s t}\right)}{n-1}
$$

Important percentage points of the distribution are as follows:

- 68% chance of being 1 standard deviation from the mean.
- 95% chance of being $\mathbf{2}$ standard deviations from the mean.
- 99.7% chance of being $\mathbf{3}$ standard deviations from the mean.

