## Functions of Several Variables

## Introduction

- The differential form of a function is

$$
\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y
$$

- This can be used to work out uncertainties. Say we want the uncertainty in a variable $X$ as a result of uncertainties in variables $Y$ and $Z$ :
- Consider $X$ as a function of $Y$ and $Z$
- Write $X$ in differential form
- Re-arrange to get an expression for $\mathrm{d} X / X$ in terms of $\mathrm{d} Y / Y$ and $\mathrm{d} Z / Z$ these are the percentage errors.
- The chain rule is

$$
\left(\frac{\partial f}{\partial u}\right)_{v}=\left(\frac{\partial f}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{v}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial u}\right)_{v}
$$

It basically applies in a case where $f$ is a function of $x$ and $y$ which are in turn functions of $v$ and $u$. It can be derived by writing $f$ in differential form, and substituting in $x$ and $y$ in differential form.

- If we have something like $z=f(x, y)$ and we want to find, say $(\partial x / \partial y)_{z}$, we simply use the fact that in such a case, $(\partial z / \partial x)_{y}=0$, and then use the chain rule assuming that $x$ is a function of $y$ (and $z$ ) - ie, in the form

$$
\left(\frac{\partial z}{\partial x}\right)_{y}=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial x}\right)_{z}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z}=\left(\frac{\partial z}{\partial x}\right)_{y}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z}
$$

## Exact Differentials

- A general differential can be written in the form

$$
P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y
$$

If there is a function $f$ such that $\mathrm{d} f=P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y$, then

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=P(x, y) \Rightarrow \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial y} P(x, y) \\
\frac{\partial f}{\partial y}=Q(x, y) \Rightarrow \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial x} Q(x, y)
\end{array}\right\} \Rightarrow \frac{\partial}{\partial y} P(x, y)=\frac{\partial}{\partial x} Q(x, y)
$$

If this condition is met, then the differential is exact.

- An integrating factor is a function which the differential form can be multiplied by to make it exact. Assuming that it is a function of $x$ or $y$ only, it satisfies one of the following two differential equations:

$$
\frac{1}{\mu} \frac{\mathrm{~d} \mu}{\mathrm{~d} x}=\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) \frac{1}{Q} \quad \frac{1}{\mu} \frac{\mathrm{~d} \mu}{\mathrm{~d} y}=-\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) \frac{1}{P}
$$

Note, however, that integrating factors are not unique!

## Maxwell's Relations

Home.pwf.cam.ac.uk

