Introduction

- Some important properties of addition and multiplication:

COMMUTATIVE - $a+b=b+a$ and $a b=b a$
ASSOCIATIVE - $\quad a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c$
DISTRIBUTIVE - $\quad a(b+c)=a b+a c$

- $\frac{1}{\sin \theta}$ is never written $\sin ^{-1} \theta$. This notation is reserved for the inverse sine.
- The argument of every function must be dimensionless - one way to argue this is that the function can be expressed as a power series!
- Rules of logarithms:
- $\ln a b=\ln a+\ln b$ (prove by letting $a=e^{\ln a}$ and $b=b^{\ln b}$).
- $\ln a^{n}=n \ln a$ (prove by letting $a^{n}=\left(e^{\ln a}\right)^{n}$).
- $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$ (prove by letting $x=a^{\log _{a} x}=\left(b^{\log _{b} a}\right)^{\log _{a} x}=b^{\left(\log _{a} a\right) \times\left(\log _{a} x\right)}$, and then taking logarithms base b on both sides).
- Things like $\cos \left(\sin ^{-1} x\right)$ can be avoided by using the identity.
- To simplify $\tan ^{-1} x+\tan ^{-1} y$ use the fact that $\tan ^{-1} x+\tan ^{-1} y=\frac{x+y}{1-x y}$ to deduce that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$

