<u>Elementary Analysis – Limits</u>

• The definition of a limit:

We say that $\lim_{x \to x_0} f(x) = \kappa$ (or $f(x) \to \kappa$ as $x \to x_0$) If and only if Given any $\varepsilon > 0$, there exists a δ such that $|f(x) - \kappa| < \varepsilon$ whenever $|x - x_0| < \delta$ and $x \neq x_0$.

Notes:

- In general, δ will depend both on the form of f(x) and on the particular value of ε (in other words, δ might be different for different ε).
- In other words, the definition says that f(x) tends to κ as long as we can get f(x) as close to κ as we want by making x as close to x_0 as we want.
- A limit may exist, not exist or tend to $\pm \infty$.
- o The limit can exist even if f(x) is not defined at $x = x_0$.
- o Limits can also be from above and from below.
- For limits to infinity, the definition becomes:

We say that $\lim_{x\to\infty} f(x) = \kappa$ (or $f(x) \to \kappa$ as $x \to \infty$) If and only if Given any $\varepsilon > 0$, there exists an X such that $|f(x) - \kappa| < \varepsilon$ whenever x > X.

• Tips and tricks for taking limits:

$$\begin{array}{l} \circ \quad \lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \\ \circ \quad \lim_{x \to a} \left(f(x) \times g(x) \right) = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) \\ \circ \quad \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ as long as the denominator is } not \ 0. \end{array}$$

- When finding limits involving exponents of x, taking logarithms of the required limit is often useful.
- In using the above, it should be noted that:

$$\circ \quad \frac{q}{\infty} = 0 \text{ as long as } q \neq \pm \infty.$$

• For other expressions involving ∞ , we can use L'Hopital's rule:

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)} \right)$$

Maths Revision Notes

© Daniel Guetta, 2006

As long as:

- The latter limit exists.
- **EITHER** $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ **OR** $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$.

Other indeterminate forms involving ∞ can be converted to either 0/0 or ∞/∞ using the following table:

	$\lim_{x \to a} f(x)$	$\lim g(x)$	Converting to $0/0$	Converting to
	$x \to a$	$\frac{1}{x \to a} \mathcal{J}(x)$	Converting to 0/0	∞ / ∞
0/0	0	0	N/A	$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{1/g(x)}{1/f(x)} \right)$
∞/∞	∞	∞	$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{1/g(x)}{1/f(x)} \right)$	N/A
$0 \times \infty$	0	∞	$\lim_{x \to a} \left(f(x) \times g(x) \right) = \lim_{x \to a} \left(\frac{f(x)}{1/g(x)} \right)$	$\lim_{x \to a} \left(f(x) \times g(x) \right) = \lim_{x \to a} \left(\frac{g(x)}{1 / f(x)} \right)$
$\infty - \infty$	∞	∞	$\lim_{x \to a} \left(f(x) - g(x) \right)$ $= \lim_{x \to a} \left(\frac{1/g(x) - 1/f(x)}{1/f(x)g(x)} \right)$	$\lim_{x \to a} \left(f(x) - g(x) \right) = \ln \lim_{x \to a} \left(\frac{e^{f(x)}}{e^{g(x)}} \right)$

The rule for the $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ case can easily be proved by expanding the top and bottom of the fraction as a series. The $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ case can be inferred by writing

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{1/g(x)}{1/f(x)} \right)$$

Which is now in the form 0/0. Application of L'Hopital's rule leads to the expected result.

- Strategies for finding limits:
 - Divide by the dominant term. This hopefully gets us terms that tend to 0 at the top.
 - Try and find normally using the rules for limits or l'Hopital's Rule.
 - o If all else fails, use a series expansion.
- Note that factorials (n!) dominate exponentials (aⁿ) which dominate powers (n^b) which dominate logarithms (log n).
- For any limits to 0, give the direction the 0 is approached.

• If
$$f(x) \sim x^n$$
 as $x \to a$, then we say that $f(x)$ is $O(x^n)$ as $x \to a$

We say that
$$f(x)$$
 is $O(x^n)$ as $x \to \infty$
If and only if
There exist X and κ such that $\left|\frac{f(x)}{x^n}\right| < \kappa$ for all
 $x > X$.

Maths Revision Notes

© Daniel Guetta, 2006