Elementary Analysis - Limits

- The definition of a limit:

$$
\text { We say that } \lim _{x \rightarrow x_{0}} f(x)=\kappa \quad\left(\text { or } f(x) \rightarrow \kappa \text { as } x \rightarrow x_{0}\right)
$$

If and only if
Given any $\varepsilon>0$, there exists a δ such that $|f(x)-\kappa|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$ and $x \neq x_{0}$.

Notes:

- In general, δ will depend both on the form of $f(x)$ and on the particular value of ε (in other words, δ might be different for different ε).
- In other words, the definition says that $f(x)$ tends to κ as long as we can get $f(x)$ as close to κ as we want by making x as close to x_{0} as we want.
- A limit may exist, not exist or tend to $\pm \infty$.
- The limit can exist even if $f(x)$ is not defined at $x=x_{0}$.
- Limits can also be from above and from below.
- For limits to infinity, the definition becomes:

We say that $\lim _{x \rightarrow \infty} f(x)=\kappa \quad($ or $f(x) \rightarrow \kappa$ as $x \rightarrow \infty)$
If and only if
Given any $\varepsilon>0$, there exists an X such that $|f(x)-\kappa|<\varepsilon$ whenever $x>X$.

- Tips and tricks for taking limits:
- $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}(f(x) \times g(x))=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ as long as the denominator is not 0 .
- When finding limits involving exponents of x, taking logarithms of the required limit is often useful.
- In using the above, it should be noted that:
- $\pm q \times \infty= \pm \infty$ as long as $q \neq 0$.
- $\infty+q=\infty$ as long as $q \neq-\infty$.
- $\frac{q}{\infty}=0$ as long as $q \neq \pm \infty$.
- For other expressions involving ∞, we can use L'Hopital's rule:

$$
\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\lim _{x \rightarrow a}\left(\frac{f^{\prime}(x)}{g^{\prime}(x)}\right)
$$

As long as:

- The latter limit exists.
- EITHER $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ OR $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\infty$.

Other indeterminate forms involving ∞ can be converted to either $0 / 0$ or ∞ / ∞ using the following table:

	$\lim _{x \rightarrow a} f(x)$	$\lim _{x \rightarrow a} g(x)$	Converting to 0/0	Converting to ∞ / ∞
$0 / 0$	0	0	N/A	$\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\lim _{x \rightarrow a}\left(\frac{1 / g(x)}{1 / f(x)}\right)$
∞ / ∞	∞	∞	$\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\lim _{x \rightarrow a}\left(\frac{1 / g(x)}{1 / f(x)}\right)$	N/A
$0 \times \infty$	0	∞	$\left.\begin{array}{l}\lim _{x \rightarrow a}(f(x) \times g(x))=\lim _{x \rightarrow a}\left(\frac{f(x)}{1 / g(x)}\right)\end{array}\right)$	$\lim _{x \rightarrow a}(f(x) \times g(x))=\lim _{x \rightarrow a}\left(\frac{g(x)}{1 / f(x)}\right)$
$\infty-\infty$	∞	∞	$\lim _{x \rightarrow a}(f(x)-g(x))$ $=\lim _{x \rightarrow a}\left(\frac{1 / g(x)-1 / f(x)}{1 / f(x) g(x)}\right)$	$\lim _{x \rightarrow a}(f(x)-g(x))=\ln \lim _{x \rightarrow a}\left(\frac{e^{f(x)}}{e^{(x)}}\right)$

The rule for the $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ case can easily be proved by expanding the top and bottom of the fraction as a series. The $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\infty$ case can be inferred by writing

$$
\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\lim _{x \rightarrow a}\left(\frac{1 / g(x)}{1 / f(x)}\right)
$$

Which is now in the form 0/0. Application of L'Hopital's rule leads to the expected result.

- Strategies for finding limits:
- Divide by the dominant term. This hopefully gets us terms that tend to 0 at the top.
- Try and find normally using the rules for limits or l'Hopital's Rule.
- If all else fails, use a series expansion.
- Note that factorials ($n!$) dominate exponentials (a^{n}) which dominate powers (n^{b}) which dominate logarithms $(\log n)$.
- For any limits to 0 , give the direction the 0 is approached.
- If $f(x) \sim x^{n}$ as $x \rightarrow a$, then we say that $f(x)$ is $O\left(x^{n}\right)$ as $x \rightarrow a$

We say that $f(x)$ is $O\left(x^{n}\right)$ as $x \rightarrow \infty$
If and only if
There exist X and κ such that $\left|\frac{f(x)}{x^{n}}\right|<\kappa$ for all $x>X$.

