Differential Equations

Introduction

- Many physical situations can be described by differential equations. The general form of an $n^{\text {th }}$ order differential equation is

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=F\left(\frac{\mathrm{~d}^{n-1} y}{\mathrm{~d} x^{n-1}}, \frac{\mathrm{~d}^{n-2} y}{\mathrm{~d} x^{n-2}}, \cdots, \frac{\mathrm{~d} y}{\mathrm{~d} x}, x, y\right)
$$

First Order Differential Equations

- The general form of a first order differential equation is $\mathrm{d} y / \mathrm{d} x=F(x, y)$. In general it is only possible to write down a closed-form solution of this equation for certain forms of $F(x, y)$.
- When solving these, look for the following, in order:
- Factorise and simplify as much as possible.
- Separatable equations - ie: those of the form $F(x, y)=g(x) f(y)$.
- Linear equations, of the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+p(x) y=q(x)
$$

In such a case, simply multiple both sides by the integrating factor

$$
I(x)=e^{\int p(x) d x} \text {. The equation then becomes: }
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[I(x) y]=I(x) q(x)
$$

Which is hopefully nice and solvable.

- Try substitutions:
- Homogeneous equations, of the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=H\left(\frac{x}{y}\right)
$$

In other words, equations in which stretching the (x, y) plane in both directions makes no difference, use the substitution

$$
y=u x
$$

The best way to identify a homogeneous equation is to notice that the only bits in the equation that include x and y are of the form x / y. If something looks a bit complicated, just divide by an appropriate power of x and y throughout and see if it becomes as required. [In general, we require the sum of powers of x and y in each of the terms at the top and bottom of the fraction to be the same].

- Isobaric equations are a generalisation of homogenous ones. We write the equation out in terms of differentials, and then give y and $\mathrm{d} y$ a weight of m and x and $\mathrm{d} x$ a weight of 1 to make everything dimensionally consistent. Then, substitute $y=v x^{m}$.
- Bernouli style equations, of the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x) y^{n}
$$

The key step here is to divide by some power of y - usually one less power than n, to get:

$$
\frac{1}{y^{n-1}} \frac{\mathrm{~d} y}{\mathrm{~d} x}+P(x) \frac{1}{y^{n-2}}=Q(x) y
$$

And then to realise that the two powers of y on the left-hand side are derivatives of one another. This leads to an obvious substitution of $u=1 / y^{n-1}$, and everything happens from there.

- In equations where x and y only appear in the form $a x+b y+c$, just make the substitution $u=a x+b y+c$.
- If all else fails, the following are always good substitutions to try:
- The bit before the $\mathrm{d} y / \mathrm{d} x$
- Any bit bothering us
- An option, to be fancy, is to write it in terms of differentials (see later).

Second Order Differential Equations

- For linear second order differential equations with constant coefficients of the form

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a \frac{\mathrm{~d} y}{\mathrm{~d} x}+b y=0
$$

We construct the Auxiliary Quadratic:

$$
\lambda^{2}+a \lambda+b=0
$$

We then get one of the following solutions

$$
\begin{gathered}
y=A e^{\lambda_{1} x}+B e^{\lambda_{2} x} \\
y=e^{\lambda x}(A+B x) \\
y=e^{\alpha t}(A \cos [\beta x]+B \sin [\beta x])
\end{gathered}
$$

- To find a particular integral:
- If we have a polynomial, construct a polynomial with all powers up to that one.
- If we have a trig term, construct an expression with both trig terms.
- In all cases, if any of the items already exists in the complementary function, multiply by x repeatedly.

