<u>Elementary Analysis – Continuity and Differentiability</u>

• **Continuity** – there are three good definitions of continuity

f(x) is continuous at the point x_0 if and only if $\lim_{\delta \to 0^+} f(x_0 + \delta) = \lim_{\delta \to 0^+} f(x_0 - \delta)$

f(x) is continuous at the point x_0 if and only if $\lim_{x \to x_0} f(x) = f(x_0)$

As x approaches x_0 from both directions.

$$\begin{split} f(x) \text{ is continuous at } x_0 \text{ if and only if for every } \varepsilon &> 0 \,, \\ \text{there exists } \delta \text{ such that} \\ & \left| f(x_0) - f(x) \right| < \varepsilon \quad \text{ for any } \left| x - x_0 \right| < \delta \end{split}$$

• **Differentiability** – again, there are several good definitions of differentiability – one of them is:

$$f(x)$$
 is differentiable at the point x_0 if and only if the limit

 $\lim_{\delta \to 0} \frac{f(x_0 + \delta) - f(x_0)}{\delta}$

Exists as δ approaches 0 from both directions.

To prove differentiability, it's good enough to differentiate the function and then find the values at which the derivative has discontinuities. The function is not differentiable there.

Maths Revision Notes

© Daniel Guetta, 2006