Elementary Analysis - Continuity and Differentiability

- Continuity - there are three good definitions of continuity
$f(x)$ is continuous at the point x_{0} if and only if

$$
\lim _{\delta \rightarrow 0^{+}} f\left(x_{0}+\delta\right)=\lim _{\delta \rightarrow 0^{+}} f\left(x_{0}-\delta\right)
$$

$f(x)$ is continuous at the point x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

As x approaches x_{0} from both directions.
$f(x)$ is continuous at x_{0} if and only if for every $\varepsilon>0$, there exists δ such that

$$
\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon \quad \text { for any }\left|x-x_{0}\right|<\delta
$$

- Differentiability - again, there are several good definitions of differentiability one of them is:
$f(x)$ is differentiable at the point x_{0} if and only if the limit

$$
\lim _{\delta \rightarrow 0} \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}
$$

Exists as δ approaches 0 from both directions.
To prove differentiability, it's good enough to differentiate the function and then find the values at which the derivative has discontinuities. The function is not differentiable there.

