Calculus

First of all, the usual rubbish:

Strategies...

Function of

J&1@) | & fa)

tan z | sec’(z)

cot x| —cosec’(x)

sec T | In(secx + tanx)

a’ | a" In(a)

Strategy

x2—a2
\/1172 —CL2

sech z

Rational function

of sin z and/or

COS T

V1 —coszx

sin” xcos" &
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[These also work if the top is a function of ax + b/

Substitute z = asin®

Substitute z = a tan @

Substitute z = asinh 0

Substitute z = a cosh

Write in terms of exponentials and substitute u = ¢€”

Substitute ¢ = tan%, and then use the results
2t 1—¢* 2

5 COST = > dr = th
1+t 1+t 1+t

sinx =

Use the half-angle formulae to remove the root

Hold one factor of sin in reserve, and changes all

If mis odd the other sines to cosines. Then, substitute
x = cos b
If nis odd Similar.

If neither are
i Use the half-angle formulae to reduce the powers
0

OR — expand into lots of sin nz using complex numbers!
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1
(az +b)\/p2® + gz + 1 Substitute az +b = +

e cos x Convert cos z into the exponential form of a complex number
2 . .
z Re-write it as —1+1+2°
142 1+2°

Partial fractions:

Fraction Decompose into
f(z) A, B
(x 4+ a)(z + 0) r+a z+0
f(x) Az+B  C
<x2+oz)x+ﬁ :1:2—|—oz+:1:—|—ﬁ
f(x) A N B N C g X
(x+a)(z+6) t+a z+8 (x40 (x + 8)"

e To prove the product rule:
0O yw=fwgw
O y(z+oz)=f(z+bx)g(x+0r)= [f( )+ 6f][g(z) + 6g] = f(z)g(x) + g(@)8f + f(x)bg + b6 f

o & _ylatba)—yl®) _of . 89f

0 lm@—hméf()—l-hmégf()—kl 090 d—fg(:z:)

6x—0 6:13 bx—0 6:13 bx—0 6:13 6x—0 6:(; dx

dg
- f(z)

e To prove the chain rule, let §¢g be the fluctuation in g(x) as x increases by 6x

0y _ O i O i [OL09 | — gy O i 29— U 49
ox  bx =0y =0\ Hg dx) 0 dg —06x  dg  dx
e To prove integration by parts WorkS'
(fg) f -9t f
@ _ i _ d_f
=9~y

[fddz=fg- [fgdz+C

e [eibnitz’s Formula is that

To prove it:

N
0 Assume true for N: ™ =3""¢, [ "

0 Differentiate with respect to x:

if(N) _ i Ney i[f(k) (N*k)]

dx P “dz J
N

f(N+1) _ Z NCk [f(k)g(kaJrl + f k+1) (N k)]
k=0
N N+1
:ZNCSJ[ gNs—i—l +Z Ns—i—l

s=0
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0 Separate out the first term of the first series and the last term of the

other series:

N N
f(N+1) _ (chofg(NJrl)) + Z NCsf(s)g(Nferl) + Z N 571f(5)9(N75+1) + (N Nf(NJrl)g)
s=1 s=1

_ <fg(N+1) 4+ f(N+1)g) 4+ i(NCs + NC#l)(f(s)g(N—sﬂ))
s=1

0 Realise that "C, + "C,, = "*'C, as follows:
N N
+

sIUN—=3s)! (s=D!I(N—-s5+1)!
 (N—=s+1)N!4+sN!
SN —s+1)!

(N+1)N!  (N+1)!
sIUN—s+1)!  sI(N+1-5s)!

NCS + NCs—l -

— = "
0 Simply feed it in

N

f(N+1) _ (fg(N+1) 4+ f(N+1)g) 4+ Z(NHCS)(f(s)g(Nsz))

s=1

0 Realise that the first two terms are simply the thing inside the

summation at s = 0 and s = N + 1, and that therefore:
N+1

f(N+1) — Z N+105f(s)g(Nfs+1)
s=0

QED.

e Special points of a function:

o If j—f — 0, the point is a stationary point. In such a case:
T

2
dz?
2
. 1r 4
dz?

> 0, the point is a minimum.

< 0, the point is a maximum.

= Maxima and minima are also called turning points.
d*f
dz?
» There will always be a point of inflexion between a maximum and

o If

— (0, we have a point of inflexion (whatever the value of df/dz).

a minimuim.

2
» If df/dz is also equal to 0, and d]: changes sign through the

dz

point, then we have a stationary point of inflection.
e Graph plotting:
0 Find values as z gets very big and small, values at x = 0, and derivatives
of all these things.
0 Mark the roots on the graph.

0 Somehow show the envelope, if there is one.
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0 For graphs like e’ cos z, make sure the period stays constant, and note

that maxima and minima aren’t as expected!

Important simplifications:

A function is EVEN if f(z) = f(—z)
A function is ODD if f(x) = —f(-x)

0 For an EVEN function, fa f(z)dz = 2f0a f(z)dz .

o For an ODD function, [ flz)dx =

0] f sin” () = f cos"(z) =0 as long as n is an ODD NUMBER.

whole number whole number
of periods of periods

e Stirling’s Formula:

0 First e note that ) — . [ for large n. No
, W In(n!) ;ln(x) flln(a:)dx g W,

fn In(z)dr =nlnn—mn+1~nlnn—n for large n.  This  gives
1

n

In(n!)~nlnn—n and n!=n"e". Sadly, however, the latter is a bad

approximation, because a small eror in In n! leads to a factor in n!

We note that the function I'tn) = foo " 'e”" dz satisfies I'(n +1) = nl'(n)

0

and I'(1) =1. We therefore define n!=T(n).
Now, if we let = n + y, then

2 3

1nlen<n[1+%]):1nn+1n[1+%]zlnn+£—y—2+y—3+---
n 2n 3n

Now, we can express I'(n+1) as I'(n+1)=n!= fooe”h“’f‘x dz. Feeding the
0

expression we obtained for In x into this, and integrating dy:

n!:f exp

If n is sufficiently large, this is

o [ 2
n!:f exp n[lnn—i—g—y—QJ—n—y

2 3
y_ ¥y Yy
Inn+=—-——"—5+——+-|—(n+
n 2n®  3n’° ] ( 2

dy

n

dy

n 2n

~ [ 2

:f expnlnn—l—y—g——n—y‘dy
o n

— foo enlnn—ne—yg/Qn dy

o0 2
Inn— — /2 -
=e""" ”f e’/ dy = n"e "\ 2mn

—00

e Differentiation of integrals:

0 An integral f b f(z) dz is a function of a and b. We can therefore

differentiate it with respect to either these two variables:
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= % f ’ f(z) dz = f(b) (since increasing the upper limit by 6b will
increase the area by f(b)éb ).
- aﬂ f ' f(z) dz = —f(a) (by swapping limits, or realising that
a a

increasing the lower limit by 6a will decrease the area by f(a)éa ).

b
0 An integral f f(x,\) dz is a function of @ and b and A\. We can therefore
differentiate it with respect to the parameter. It turns out that

0 [ b 0 : . . .
3\ L flz,\) do = fa X f(z,\) dz. This can be rationalised in one of two

ways:
» By noting that changing the parameter by 6\ will change the

function everywhere in between the two limits, by an amount

% f(z,\). We want the sum of all these changes over the

function.

» By using the definition of an integral as the limit of a sum:

O b 0 0 N,
o) F@d) dr =SS @A) dr =30 () b = [ (@) de

0 If a certain variable turns up both in the limits and as a parameter, then
just add contributions, ignoring the “corners”.
0 This allows us to do a rather tricky integral. First, note that
j; e“dr=[—te"] =1
We now differentiate this with respect to the parameter a:

8 oof(m _ 008 —axr _ o0 —ar _ 8 1 _ 1
e da:—j; %e dx—j; —ze dx——[—]_——

%0 dal\a 2

a
Doing this repeatedly, we find that

o nl
f xne axr dx —
0

n+1
a

Rather quicker than integration by parts! Note that if a = 1, this is the T

function.

e Schwatz’s Inequality is an extension of the triangle rule to inner products

(generalisations of dot products):

(fabfgdac)2 §fabf2dxfab92dx
To prove it:

0 We know that f b(f+)\g)2 dz >0, because the function is positive

everywhere. So fbf2 dz +2)\fbfgdx +)\2fb92 dz >0-
0 We can assume that f ' f?dz =0 - otherwise, the both sides of the

inequality above are 0 and it’s trivially true.

Maths Revision Notes © Daniel Guetta, 2006



0 So, doing a bit of re-arrangement:

ol L
fodx ffda:

fg dz fg dZL’ g d:z:
14+ A =t—

ffdx ffda: ffda:

We now chose A\ so that the first bracket becomes 0 (this involves

dividing by [ fg. If this is 0, Schwartz’s is trivially true):

Ly f fq da: f g d:c
f f* dz f f? d:l:
Since A > 0, we can cancel and rearrange:
J;b g’ dx f fq dx
fbf2 dz f f* dz
o] <L 22

ffdx

(j;bfgdxfgj; g2dZL’j;f2dZL‘

e When doing simple multiple integrals in which the limits do not depend on each
other and the function can be separated into an z and a y component, a

simplification is possible:

ffg dxdy—(fg d:z:)(fh dy)

e The substitution ¢ = cos@ is often very useful in spherical polars.

e We can use an elegant trick to evaluate f Y e dz. We first let 1 = f T e da

—0oQ

and we note that since z is a dummy variable, we can also say | = f T dy. So

I’ = f dyf “ dz —foc (12+y2>da:dy = f e_(x2+g/2)d:vdy

2D Plane

We can now change to polar coordinates:

[ e <I+7’)dxdy—fof¢o Prdrdé =

2D Plane

Which means that
f” e dz = |vx| and J;Oce—ﬁ dz = 1|7
Since e is an even function

Thus, the normalised normal distribution is given by

1 7(-73—/‘1)2 .
e > (if X ~ N(u,0))

P X =x)=

2
2mo
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