#### Nucleophilic Substitution at a Saturated Carbon Atom

## Introduction

• The general form of nucleophilic substitution at a saturated carbon atom is as follows:

 $Nu^{-} + R - X \longrightarrow R - Nu + X^{-}$ 

In other words, the **leaving group**  $(X^{-})$  has been **substituted** by the **nucleophile**  $(Nu^{-})$ .

• There are two possible **mechanisms** for these reactions:





• Which of these occurs depends on various factors

# The S<sub>N</sub>2 Mechanism

- Evidence that supports the idea of an S<sub>N</sub>2 mechanism is as follows [this is observed, for example, in the substitution of primary and secondary alkyl halides]:
  - The reaction occurs with **inversion** of **stereochemistry** at the **carbon atom**:



• The reaction displays **second order kinetics** with the following **rate law**:

$$Rate = k [RBr][Nu]$$

• In 1937, Hughes and Ingold proposed the following mechanism that accounts for these observations:



An orbital representation of the reaction is as follows:



The **HOMO** in this case is the lone pair on the **OH**<sup>-</sup>, and the **LUMO** is the **C**-**Br**  $\sigma^*$ . Note that:

- o The reaction occurs in a single step without intermediates.
- The nucleophile attacks the molecule directly opposite (at 180° to) the leaving group, to get into the antibonding orbital.
- The **energy profile** of this reaction is



- Note that the transition state is **not an intermediate**. It can **never be isolated**, because any **change** in its **structure** leads to a **lower energy state**.
  - It's about **halfway** between **reagents** and **products**.
  - $\circ~$  The carbon is roughly  $sp^2~hybridised~(planar)$  in the intermediate, and eventually reverses.
- The rate of the chemical reaction is determined by the activation energy  $(E_A)$ , which is the energy difference between the reactants and the transition state. A change in reaction conditions can change  $E_A$  either by
  - Changing the reactant energy level or
  - Changing the **transition state energy level**.

We shall shortly see exactly how different reacting conditions do that.

- This single step is the **rate determining step** of the reaction.
  - $\circ$  The rate is proportional to both [Nu] and to [R-X] both are involved in the reaction.
  - Therefore, changes in all these reagents will affect the rate of the reaction.
  - Another way of saying this is that all these species are present in the **transition state**.

# The Substrate, R-X

The substrate is included in the rate equation, and there are various factors which determine how fast the reaction will be:

- 1. Steric Effects energy of the transition state
  - The transition state is 5-coordinate (a trigonal bipyramid) its formation involves bond angles decreasing from tetrahedral to about 90° (six of the angles are 90°, and three are 120°).
  - This significantly increases steric crowding.
  - The larger the constituents on the carbon, the harder this is.



Carbon gets more and more crowded – transition state gets higher and higher in energy

- The opposite is true of the  $S_N1$  reaction. The intermediate has three 120° bonds. The transition state will be on its way towards the intermediate, with angles increasing towards 120°, and a reduction in steric crowding. Therefore, there is steric acceleration as opposed to steric hindrance.
- 2. Steric Effects approach of the nucleophile
  - Very crowded carbon atoms also hinder the approach of the nucleophile. This is another reason why  $S_N 2$  does not occur at tertiary butyl groups.

• Similarly,  $S_N 2$  does not occur at  $sp^2$  carbons. This is because the nucleophile would need to approach the carbon in the plane of the C–C double bond to reach the  $\sigma^*$  orbital and carry out a backside displacement. For example:



- 3. Electronic effects
  - In some species, the **transition state** can be **lowered in energy** by **conjugation** for example, **allylic** and **benzyllic** compounds:



There compounds react **rapidly** by the  $S_N 2$  mechanism. (Note that these also increase the rate of  $S_N 1!$ ). The benzene ring is a bit better at  $\pi$  conjugation than an isolated double bond.

• Conjugation with an oxygen lone pair can accelerate the reaction, more than the two above. For example, in:

• Even more effective is conjugation with electron deficient  $\pi$  bonds [in this case, the orbitals it can conjugate with are electron deficient, and so stabilise the negative charge even better]. The most important example is that of the carbonyl group.  $\alpha$ -halo carbonyl compounds display the fastest  $S_N 2$  rates.



What is effectively happening is that the  $\pi^*$  of the C–C bond and the  $\sigma^*$  of the C–Br bond (both low energy) combine with each other to form an even lower energy  $\pi^* + \sigma^*$  orbital. The nucleophile will then attack where this new orbital has the largest coefficients (in the usual place).

Attack *could* occur at the **carbonyl**, but it would be **reversible**.

### The Leaving Group (also applies to $S_N 1$ )

Another variable that affects the reaction is how good the **leaving group** is. Two factors affect this:

- The **strength** of the **C**–**X** bond.
- The stability of the leaving group. In most  $S_N 2$  reactions, the leaving group is expelled with a negative charge, and so we would expect the best leaving groups to be those that can best stabilise the negative charge. From our discussion of  $pK_a$ , these are the conjugate bases of strongest acids [acids with lowest  $pK_a$ ].

| Therefore, | we can | construct a | hierarchy | of | leaving | groups:  |
|------------|--------|-------------|-----------|----|---------|----------|
|            |        |             | •/        |    |         | <u> </u> |

|                    | Leaving group X                                                                                              | Relative reactivity of R–X |
|--------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| <br>Bet            | $\mathrm{OH}^{\scriptscriptstyle -},\mathrm{NH}_2^{\scriptscriptstyle -},\mathrm{OR}^{\scriptscriptstyle -}$ | << 1                       |
| ter leaving groups | $\mathbf{F}^{-}$                                                                                             | 1                          |
|                    | $\mathbf{Cl}^{-}$                                                                                            | 200                        |
|                    | $\mathrm{Br}^-$                                                                                              | 10000                      |
|                    | $\mathbf{I}^-$                                                                                               | 30 000                     |
|                    | $\mathrm{TsO}^{-}$                                                                                           | 60 000                     |

Thus,  $\mathbf{R}$ - $\mathbf{F}$ ,  $\mathbf{R}$ - $\mathbf{OH}$ ,  $\mathbf{R}$ - $\mathbf{NH}_2$  and  $\mathbf{R}$ - $\mathbf{OR}$  do not undergo  $S_N^2$  reactions.

Contrary to what might be expected, this analysis reveals that  $OH^-$  is a terrible leaving group. This is because it is very basic and very reactive. [Any nucleophile strong enough to kick out the OH will certainly be strong enough to act as a base and remove the proton from OH]. Chemists, however, *do* want to use alcohols in nucleophilic substitutions because they are readily available as starting materials. For this to happen, the OH must be made into a better leaving group. There are two ways to do this

• Protonation with a strong acid

**Protonation** with a strong acid transforms the leaving group from  $OH^-$  to  $H_2O$  (*much* better):



This only works if the **nucleophile** is **compatible** with **strong acid**, but this is **usually the case**.

• Combination with an element that forms strong bonds to oxygen

Phosphorous and sulphur are usually chosen. For example:



This is now a good reaction, because the **anion** is **stabilised** by **phosphorous**.