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Chapter 9 – Light-Cone Relativistic Strings 

 

1. Choices for t 
 We previously used the static gauge, in which the world-sheet time is 

identified with the spacetime coordinate X0 by 0( , )X ct s t= . We can, 

however, choose all kinds of different gauges. We choose those in which t  

is set equal to a linear combination of the string coordinates: 

( , )n X m
m t s lt=  

 To understand what this means, consider two points x1 and x2 with the 

same fixed value of t . We then have 

( )1 2
0n x xm m

m - =  

The vector ( )1 2
x xm m-  is clearly on a hyperplane perpendicular to nm . If we 

define the string as the set of points X with constant t , then we see that 

the string with world-sheet time t is the intersection of the world-sheet 

with the hyperplane ⋅ =n x lt  

 We want the interval X mD  between any two points on the string to be 

spacelike. Now, consider 

o We know that ( )1 2
0 0n x x n xm m

m - = ⋅D = . 

o If nm  is timelike, we can anlyse this condition in a frame in which 

only the time compoenent of n is non-zerio. In that case, xD  

clearly has a 0 time compoenent, and is therefore spacelike. 

It turns out that this also works for nm  null. 

 Now – for open strings, pm  is a conserved quantity. We incorporate this in 

our Gauge condition and write 

( )( , )n X n pt s l t⋅ = ⋅  

For open strings attached to D-branes, some components of pm  are not 

conserved, but we assume that n is chosen so that n p⋅  is conserved – for 

this to happen, we need 0n s⋅ =  at the string endpoints. Analysing 

units and working in natural units then gives 

( , ) 2 ( )n X n pt s a t¢⋅ = ⋅   (open strings) 
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Not quite sure about the comment that says that gauge isn’t Lorentz 

invariant for all choices of n. I also don’t understand how 0n s⋅ =  at 

the endpoints is any requirement – surely we already have s  for all 

endpoints. 

 

2. The Associated s parameterization for open strings 

 In the static gauge, we required constant energy density over the string – 

in other words, constant 0t . We now require constancy of n ntm t
m = ⋅  , 

as well as 0,ps é ùÎ ê úë û . 

I don’t understand this range condition on sigma? 

 From our expression for tm , we have 

d d
( , ) ( , ) ( , ) ( , )

d d
n ntm tm m ts s

t s t s t s t s
s s

=  ⋅ = ⋅
       

Thus, we can always find a parameterisation in which ( , ) ( )n at t s t⋅ =  

(ie: does not depend on s ) by adjusting d / ds s  accordingly. Further, we 

note that 

0
d ( )n n p na

p
t s t⋅ = ⋅ =ò   

And so 

(open string world-sheet constant)
n p

n t

p
⋅

⋅ =  

In this parameterisation, s  for a point is therefore proportional to the 

amount of n p⋅  momentum carried by the portion of the string between 

0,sé ùê úë û . 

 Now, consider the equations of motion 

0t s
t m s m¶ +¶ =   

Dotting this with nm , we get 

( ) ( )
( )

0

0

n n

n

t s

s

t s

s

¶ ¶
⋅ + ⋅ =

¶ ¶
¶

⋅ =
¶

 



 

Which implies that n s⋅  is independent of s . 
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 We have already seen that for open strings, 0n s⋅ =  at endpoints, which 

implies that this is the case everywhere. 

 

3. The Associated s parameterization for closed strings 

 In this case, we want 0,2ps é ùÎ ê úë û  and so 

(closed string world-sheet constant)
2

n p
n t

p
⋅

⋅ =  

Because of this factor of two, we write the gauge condition without the 

factor of two, as 

( )n X n pa t¢⋅ = ⋅  

I don’t understand this range condition on sigma? 

 We can still show that n s⋅  is independent of s , but it’s now not 

possible to set it to 0 at any given point. Furthermore, it’s unclear what 

point is 0s = . We solve this by setting a certain point on a certain string 

to have these properties. The proof this can be done is in the book. 

 There is, however, an obvious ambiguity – our whole parameterisation can 

be rigidly moved along the string without affecting anything. 

 

4. Summary 

 In summary, we have 

( )
0

( , )

2

n

n X n p

n p n

s

t

t s ba t
p
b

⋅ =
¢⋅ = ⋅

⋅ = ⋅





 

Where 1b =  for closed strings, and 2b =  for open strings. 

 The first condition above, along with an expression for s  immediately 

gives us 0X X ¢⋅ = . This allows us to simplify our expression for tm , 

and we obtain 2 2 0X X ¢+ = . This is best summarised, together with the 

first condition above, as 

( )2 0X X ¢ =  

 We then get the following simplified expressions 
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( )1 1

2 2
X Xtm m sm m

pa pa
¢= = -

¢ ¢
   

Feeding into the equations of motion, we get 

( ) 0X Xm m ¢¢- =  

These are simply wave equations! 

 When the string is open, we have the additional requirement that the sm  

and therefore the ( )X m ¢
 vanish at the endpoints. 

 

4. Solving the wave equation 

 Assuming we have a space-filling D-brane and therefore free-boundary 

conditions at the endpoints, the most general solution to the wave 

equation is 

( )1
( , ) ( ) ( )

2
X f gm m mt s t s t s= + + -  

Bearing in mind the relation ( ) / 2Xsm m pa¢ ¢= -  and the boundary 

conditions 0sm = , we get 

0 0,
X m

s p
s

¶
= =

¶
 

The boundary condition at 0 informs us that f and g differ at most by a 

constant, which can be absorbed into f. 

( )1
( , ) ( ) ( )

2
X f fm m mt s t s t s= + + -  

The boundary condition at s p=  gives 

( )1
( , ) ( ) ( ) 0

2

X
f f

m
m mt p t p t p

s
¶ ¢ ¢= + - - =
¶

 

Since this must be true for all t , this implies that f m¢  is periodic with 

period 2p . 

 We can therefore write 

( )

( )

1
1

0 1
1

( ) cos sin

( ) cos sin

n n
n

n n
n

f u f a nu b nu

f u f f u A nu B nu

m m m m

m m m m m

¥

=
¥

=

¢ = + +

= + + +

å

å
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Substituting and simplifying, we get 

( )0 1
1

( , ) cos sin cos
n n

n

X f f A n B n nm m m m mt s t t t s
¥

=

= + + +å  

We write 

( ) ( )( )
( )*

cos sin
2

2

in in

n n n n n n

in in

n n

i
A n B n B iA e B iA e

i a e a e
n

m m m m t m m t

m t m t

t t

a

-

-

+ = - + - -

¢
= - -

 

f1 can be shown to be proportional to the momentum carried by the string 

(by integrating the momentum density), and we can say 
0 0
f xm m= . We then 

get 

( )*

0
1

cos
( , ) 2 2 in in

n n
n

n
X x p i a e a e

n

m m m m t m t s
t s a t a

¥
-

=

¢ ¢= + - -å  

Clearly, this corresponds to the zero-mode of the string, its momentum, 

and its oscillations. 

I don’t understand how we can just declare 
0 0
f xm m=  

 Now, let’s define lots of notation 

( )
0

*
*

2

n n n n n

p

a n a n

m m

m m m m m

a a

a a a-

¢=

= = =
 

 We can then write 

0
0

0

1
( , ) 2 2 cosin

n
n

X x i e n
n

m m m m tt s a a t a a s-

¹

¢ ¢= + + å  

And we then have 

2 cos 2 sinin in

n n
n n

X e n X i e nm m t m m ta a s a a s
Î

- -

Î

¢¢ ¢= = -å å
 

  

And 

( )2
in

n
n

X a eX m t sm ma - 

Î

¢ ¢ = å


  

We need to make sure that this satisfies the boundary conditions. 

 

5. Light-cone solutions of equations of motion 
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 To move into a light-cone gauge, we trade coordinates x0 and x1 for 

coordinates x+ and x–, and we set a gauge that has n X X+⋅ = . This gives 

us, via the relations defined above, 

2
( , )X p p tp
t s ba t

b
+ + + +¢= =   

The second equation tells us that p+ density is constant along the string. 

 We want to try and show that all the dynamics are in the transverse 

coordinate XI (ie: not including x+ and x–). First, consider the constraint 

equation, using the dot product in light-cone coordinates 

( )( ) ( )
2

2 0I IX X XX X X+ -+ -- +¢ ¢ ¢  =    

From the equation above for X+, we have that 0,X X pba+ + +¢ ¢= = , and 

so 

( )
21

2
IIX X

p
X X

ba
- -

+
=

¢
¢ ¢    

We have assuming that 0p+ > . This only fails when p+ = 0, which only 

occurs for a massless particle travelling exactly in the negative x1 direction. 

This is an unusual occurrence, but when it does occur, the light-cone 

formalism will not apply. 

 These define X-  and X-¢  in terms of the XI, and therefore completely 

determine X– up to an integration constant. All we need is the value of X– 

at some point on the world sheet, and integrate d d dX X Xt s- - -¢= + . 

On a closed string, we further have a condition that 2

0
d 0Xp s-¢ò = , to 

ensure that the contour we choose around the string does not affect the 

value of X–. Thus, the string motion is characterised by XI, p+ and 
0

x- , 

where the last item is the constant of integration. 
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Chapter 10 – Light Cone Fields & Particles 

 

1. Action for Scalar fields 

 A scalar field is a single real function of spacetime; ( , ) ( )t xf fºx . 

 A natural choice for the Lagrangian Density and action of a field that 

treats time and space on an equal footing is 

2 21 1
d

2 2
Dm S xmn

m nh f f f= - ¶ ¶ - = ò   

Where D = d + 1 is the total number of dimensions. 

 This is for a free scalar field with mass m (a free field is one in which the 

equation of motion is linear in the field, which require the Lagrangian to 

be quadratic in the field). 

Why are those densities and not the Hamiltonian itself? 

 The momentum conjugate to the field is given by 

( ) 0

0

f
f

¶
P º = ¶

¶ ¶


 

And the Hamiltonian density by 

( ) ( )22 2 2

0

1

2
mf f fæ ö÷ç= P ¶ - = P +  + ÷ç ÷è ø

   

How does those refer to T, V’ and V, and why did we expect that? 

The energy is then given by the Hamiltonian 

ddE H x= = ò   

Where d is the number of space dimensions. 

Why use the space dimensions here? 

 

2. Equation of motion and classical solutions 

 Varying the action, we get an equation of motion 

( )
2

2 2

2
2 2

2

0

0

0

m

m

m
t

mn
m nh f f

f

f
f f

¶ ¶ - =

¶ - =

¶
- + - =

¶
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This is the Klein-Gordon equation. 

 Now, finding plane-wave solutions to the classical scalar field. Consider 

(note the two terms, to ensure the solution is real) 
( ) ( )*( , )

i Et i Et
t ae a ef ⋅ - - ⋅ += +p x p x
x  

Where p is an arbitrary vector, and the form of the differential equation 

requires 

2 2

p p
E EE m=  = +p  

A general solution can be obtained by superimposing all the possible 

solutions above (note that p is continuous, so we get an integral). However, 

it has no simple QM interpretation, because the second term represents a 

particle of negative energy… 

 To analyse the scalar field equation, it helps to work in Fourier space 

( )
1

( ) ( )d
2

i D

D
x e p pf f

p

⋅= ò p x  

Note that we require ( )* *

)( ) (( ) p px xf f f fé ùé ù = -ê úé ù é ù=ê ú ê úë û ë û ê úë û ë û  

 Substituting the expression for ( )xf  into the equation of motion, we find 

that the field must be 0 unless it lies on a “mass shell”, on which 
22 2 22 0 E mp m+ =  = +p . This is a hyperboloid, described by the set 

of points ( ),
p

E p  for all p. 

Why do virtual particles not lie on the mass shell? 

 We note that any point pm  on the mass shell has a single number 

associated with it, because the complex number has two degrees of 

freedom, and the condition ( )
*

( )p pf fé ùé ù = -ê ú ê úë û ë û  takes away one of them. We 

thus is there is one classical degree of freedom per point on the mass shell. 

 Don’t understand page 200 

 

3. Scalar Quantum Field Theory 

 When we move to quantum mechanics, the dynamical variables turn to 

operators. Thus, our field becomes a field operator (and we also have 
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momentum and energy operators). The state space is described using a set 

of particle states. 

 Let’s write the plane-wave solutions to the KG equations above in more 

general form, and with normalisation factors: 

( )*1 1
( , ) ( ) ( )

2

i i

p

p

t a t e a t e
V E

f ⋅ - ⋅= +p x p xx  

Why do we add these particular pre-factors? 

We can imagine this as a field in a box of sides Li, with periodicity 

2
i i i

p L np=  

We evaluate the scalar field action and Hamiltonian for this field – we’ll 

need to square the field, square its time derivative and square its gradient. 

All terms with spatial dependence will integrate to 0, and the others will 

cancel the V terms in the field. We then get 

* *

* *

1 1
( ) ( ) ( ) ( ) d

2 2

1 1
( ) ( ) ( ) ( )

2 2

p

p

p
p

S a t a t E a t a t t
E

H a t a t E a t a t
E

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø

= -

ò  

 
 

If we write 
1 2

( ) ( ) ( )a t q t iq t= + , the action becomes 

2
2 2

1

1 1
( ) ( ) d

2 2i p i
i p

S q t E q t t
E=

æ ö÷ç ÷ç= - ÷ç ÷ç ÷çè ø
åò   

This is the action for two harmonic oscillators, with associated momenta 

1 2

)
( )

1(
i

i
p pi

q tL
p t

q E
p ip a

E
 +

¶
= ==

¶




  

And equations of motion 
2 2( ) ( ) ( ) ( )

i p i p
q t E q t a t E a t= - = -   

With solutions 

*( ) p piE t iE t

p p
a t a e a e

-

-= +  

Feeding this into the Hamiltonian, we find 

( )* *

p p p p p
H E a a a a- -= +  

 We postulate, and can check, that the ap and a–p are annihilation operators, 

with q1 and q2 being the relevant coordinates. We then have 
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† †,1, 1
p p p p

a a a a- -
é ù é ù= =ê ú ê úë û ë û  

With a Hamiltonian and momentum 

( )† †

p p p p p
H E a a a a- -= +   ( )† †

p p p p
a a a a- -= -P p  

 More generally, including all momenta, we get 
† † †

,
, , , 0a a a a a adé ù é ùé ù= = =ê úê ú ê úë ûë û ë ûp k p k p k p k

 

And 
† †H E a a a a= =å åp p p p p

p p

P p  

The field operator, with contributions from all momenta, is then 

( ) ( )( )†1 1
( , )

2

p pi E t i i E t

p p

p

t a e a e
V E

f
- + ⋅ - ⋅

= +å p x p x

p

x  

 We then define W  as a vacuum state, containing no particles, and for 

which 0
p

a W = . A state containing particles with momenta p1 … pk is 

then 

1 2

† † †

kpp p
a a ay = W  

With 

k
k

P py =å    
kp

k

H Ey = å  

The number operator, N, gives the number of particles in the state 
†

p p
N a a= å

p

 

To prove the above, consider that 

( ) ( )† † † † † † † † † †0 ,
p p p p p p p p p p p p p p p

a a a a a a a a a a a a a a aé ùW = - W = - W = Wê úë û  

 At the quantum level, we focus on the one-particle states, which lie on the 

physical part of the mass shell, with positive energy, p0 = E > 0. We thus 

have a single particle state for each point on the physical mass shell, 

labelled by its momentum p. 

 In light-cone coordinates, the energy is p– and the momenta are 

characterised by pT and p+. Thus, we label the oscillators with pT and p+ 

( )
,

? ? 2

, ,

†

†

, ,
, ,

†

One particle state

1
ˆ ˆ

2

T

T T T T

T T

p p

I I

p p p p p p p p
p p p p

a

p p a a p p p m a a
p

+

+ + + +

+ +

-
+

= W

= = +å å
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Where, in the last operator, we have used the fact that 

( )2 2 2 / 20 I Ip p p mp m p- ++ =  = +  

 

4. Maxwell Fields & Photon States 

 In the case of Maxwell fields, we have Gauge Invariance, in which An m¶  is 

invariant under the transformation Am md e= ¶ . This yields field equations 

of the form [see previous chapter] 

( )
( )2

0

0

0

F

A A

A A

mn
n

m n n m
n

m m

¶ =

¶ ¶ -¶ =

¶ -¶ ¶ ⋅ =

 

How do we get the last step? 

Compared to the equation for a scalar field, this is conspicuous in its 

absence of a mass term. 

 Transferring this to momentum space, we get 

( )
*d

( ) ( ) ( ) ( )
2

D
ipx

D

p
A x e A p A p A pm m m m

p
é ù= - = ê úë ûò  

Substituting into the field equations, we get 

( )2 0p A p p Am m- ⋅ =  

How do we get this? 

 We can also Fourier Transform the gauge transformation 

( ) ( )
I I

A p ip p

A ip A ip A ip
m md e

d e d e d e+ + - -

=

= = =
 

With *( ) ( )p pe e- = . 

 We then fix our gauge as follows – we set A A ip e+ + +¢ = + , and 

/iA pe + += , which the gives us 

( ) 0A p+ =  

This fixes the gauge, because any addition transformations make A+ non-

zero (with the exception of ( ) ( , ) ( )Ip p p pe e d- += , because 0p e+ = ) 

How does the exception work? 
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 This Gauge condition simplifies the equation of motion. First, take 0m = , 

and get  

( ) 00p p A

p A p A

p A
+

+

+ - -

 ⋅ =

- -

⋅ =

0I I

I I

p A

p A
A

p
-

+

+ =

=

 

And all that remains from the field equation is 
2 ( ) 0p A pm =  

This is automatically satisfied for m = + . For Im = , this leads to a set of 

conditions, and for m =- , it is satisfied because of these conditions and 

the formula for A– above. 

 Each of the equations for Im =  correspond to the equations of motion for 

a massless scalar. Thus 

o When 0p ¹  [ie: a massive particle], the full Gauge field vanishes. 

o When 0p = , each of the AI are independent, and A– is determined 

by the relation above. 

We therefore have D – 2 degrees of freedom per point on the mass shell. 

 Note: we can show that there are no degrees of freedom for 2 0p ¹  by 

noting that if a field only differs from the 0 field by a Gauge 

Transformation mc¶ , then it is effectively equivalent to the 0 vector. We 

call the field pure Gauge. In momentum space, we need 

pure gauge : ( ) ( )A p ip pm mc=  

If we can show that our field has this form for 2 0p ¹ , then we can show 

that it effectively vanishes for 2 0p ¹ . Taking the equation of motion 

( )2p A p p Am m= ⋅  

And using the fact that 2 0p ¹ , we can divide by p2 

2

ip A
A ip

pm m

- ⋅
=  

This is precisely in the pure Gauge form. 

 Finally, let’s consider photon states. We can introduce oscillators for each 

of the AI fields; namely, 
, T

I

p p
a +  and 

,

†
T

I

p p
a + . Each of the I represent a 

different possible polarisation – there are D – 2 of each of these 
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independent states for each point on the mass shell. A general one-photon 

state with p+ and pT contains a linear superposition of these polarisations: 
1

,

†

2

T

D
I

I p p
I

ay x +

-

=

= Wå  

Where the vector x  dictates how we superpose each of the polarisations. 

 For D = 4, we get D – 2 = 2; the familiar two polarisations of light. 

 

5. Gravitational Fields and Graviton States 

 In GR, the dynamical field variable is the metric ( )g xmn , which, in weak 

fields, can be taken to be ( ) ( )g x h xmn mn mnh= + , both g and h being 

symmetric under exchange of indices, and with 

( )2 0h h h hmn m na n ma m n
a¶ -¶ ¶ +¶ +¶ ¶ =  

The momentum-space version is (if there were sources, there’d be an extra 

term including the energy-momentum tensor for these) 

( )2( ) 0S p p h p p h p h p p hmn mn m na n ma m n
aº - + + =  

Where h h hmn m
mn mh= = . 

 The equation of motion are invariant under the Gauge transformations 

0
( ) ( ) ( )h p ip p ip pmn m n n md e e= +  

Where the gauge parameter is a vector, and gauge invariance is effectively 

reparameterisation invariance. To see how, first compute 

( )0 0
2h h i p p ipmn m n n m

mn mnd h d h e e e= = + = ⋅  

And then see that S mnd  does indeed vanish. 

 Since the metric is symmetric and has two indices (+, – or I) we must 

consider 

( ), , , , ,IJ I Ih h h h h h+ - +- ++ --  

By writing the gave conditions for all the above that include a +, it turns 

out we can set all these objects to 0. The Gauge conditions then become 

0Ih h h++ +- += = =  

 Setting m n= = +  in the equations of motion, we find that 
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( )2 0

2 0

0

0
II

II

h

h h

h

p h
+

+

-

 =

- + =

 =

=

 

The equation of motion reduces to 
2 0p h p p h p p hmn m na n ma

a a- - =  

Setting m = + , we get ( ) 0 0p p h p hna
a

na
a

+  == . And so the equation of 

motion reduces to 

2 0p hmn =  

Furthermore, from 0p h na
a = , we can find an equation for the h with a – 

index in terms of the transverse hIJ. 

 For any field with a + index, the equation of motion holds trivially. For 

any field with a – index, it also holds because we found these fields in 

terms of the transverse hIJ. For the remaining transverse components 

o ( ) 0IJh p =  for 2 0p ¹  [massive particles] 

o ( )IJh p  is unconstrained for 2 0p = , except for requiring ( ) 0
II

h p = . 

 Thus, the degrees of freedom are carried by a symmetric, traceless, 

tranverse tensor field hIJ, the components of which satisfy the equations of 

motion of a massless scalar. This has as many compoenents as a symmetric, 

traceless square matrix of size D – 2. Namely 

( )1
( ) 3

2
n D D D= -  

The one-graviton states of momentum ( ), Tp+ p  are then 

†
1

,
, 2

0T

D
IJ

IJ IIp p
I J

ay x x+

-

=

= W =å  



String Theory Notes  Page 15 of 31 

  © Daniel Guetta, 2009 

Chapter 11 – The Relativistic Quantum Point Particle 

 

1. The Light-Cone Point Particle 

 Thinking of t  as a time variable, and the ( )x m t  as coordinates, we define 

an action and a Lagrangian as follows: 

2 2 d d
d

d d

f

i

x x
S L L m x x x x

m nt
m n

mn mnt
t h h

t t
= = - - = =ò      

 The momentum is then given by 

2

mxL
p

x x

m
m m

¶
= =

¶ -



 
 

Which clearly satisfies 
2 2 0p m+ =  

 The Euler-Lagrange equations give 

d
0

d

pm

t
=  

 We define a light-cone Gauge for the particle as follows 

2

1
x p

m
t+ +=  

 Now, consider the + component of momentum 

2 2

2

2

1

1

m p
p x

mx x

x
m

+
+ += =

- -

= -


 


 

We can now simplify the expression for momentum 
2p m xm m=   

And the equation of motion gives 

0xm =  

 Expanding the p2 + m2 = 0 in light-cone components, we can obtain 

( )21

2
I Ip p p m

p
-

+
= +  

 From the expression for momentum, we obtain 
?

? ? ?

02 2

d 1
( )

d

x p
p x x

m m
t t

t

-

= +=  
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The Gauge condition tells us that 
0

0x+ = . 

 Our independent dynamical variables are therefore 

( )0
, , ,I Ix x p p- +  

 

2. Quantising the Point Particle 

 Before we quantise the point particle, we need to decide what operators we 

will use to describe the motion. It seems that the dynamical variables form 

excellent choices, with 

0
, ,I I IJ

IJ
x p i i x p i ih d h- + -+é ù é ù= = = = -ê ú ê úë û ë û  

 The operators x+, x– and p– can be defined using those operators, using the 

relations we’ve already defined above. 

 Since p– is the light-cone energy, we expect it to generate x+ evolution: 

/ x p+ -¶ ¶   (since x+ is the time component). The Hamiltonian, however, 

generates t  evolution. But since 2/x p mt+ += , we can anticipate that 

2 2

p p
p

m x mt

+ +
-

+

¶ ¶
= 

¶ ¶
 

And so we postulate that 

( )2

2 2

( ) 1
( ) ( ) ( ) ( )

2
I Ip

H p p p m
m m

t
t t t t

+
-= = +  

 Now, we know that ,i Hx xé ù= ê úë û
 , and so from this, we can deduce that  

o ( ) ( ) 0Ip pt t+ = =   – this is good, since these are constants of the 

motion. We can therefore write ( )p pt+ +=  and ( )I Ip pt = . 

o 2( ) /I Ix p mt = . This is, one again, in accord with our classical 

expectations, and allows us to write 2

0
( ) /I I Ix x p mt t= + . 

o We do indeed get 
0

0x- = ; expected, since it’s a constant of 

integration. 

o ( )p t-  is a function of the pI only, and is therefore clearly constant. 

o x+ and x– both have explicit time dependence, and we can find that 
2( ) /x p mt- -=  and that 2( ) /x p mt+ += . Both of which are as 

expect classically. 

So it looks like our choice of H is good! 
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 To complete our description, we need to find an appropriate state space. 

In our CSCO, we can only choose one operator from each of the pair (x–, 

p+) and (xI, pI). Because momentum space is usually convenient, we write 

the states of the quantum point particle as ,
T

p+ p . 

 The operators then all act on these states as one might expect – most 

importantly 

( )2

2

1
, ,

2
I I

T T
H p p p m p

m
+ += +p p  

From which it then follows that the time-dependent states 

( )2

2

1
exp ,

2
I I

T
i p p m p

m
t +

é ù
ê ú- +ê úë û

p  

Satisfy the Schrodinger Equation. 

 More generally, consider the time-dependent superpositions of the basis 

states 

, d d ( , , ) ,
T T T

p p pt y t+ + +Y = ò p p p  

And we see that y  is none other than the momentum-space wavefunction: 

, , ( , , )
T T

p pt y t+ +Y =p p  

Taking the Schrodinger Equation for state ,tY  – namely 

, ,i H
t

t t¶
¶

Y = Y  and feeding in the general superposition above, we 

recover a Schrodinger equation for y . 

 

3. Quantum particle and scalar particles 

 There is a natural identification of the quantum states of a relativistic 

point particle of mass m with one-particle states of the quantum theory of 

a scalar field of mass m 

,

†,
T

T p
p a +

+ « W
p

p  

We might have expected this correspondence by noticing that the scalar 

field equations, in light-come coordinates, looks identical to the 

Schrodinger equation in light-cone coordinates. 
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 The scalar field theory looks more complete, though, because it allows 

multi-particle states. What has in fact happened is that we have gone 

through two levels of quantisation. 

o First quantisation involves substituting each of the classical 

coordinates for quantum operators and obtaining a Schrodinger 

equation for the wavefunction (a field). 

o Second quantisation involves quantising the field that we found in 

first quantisation, and obtaining multi-particle states. 

 

3. Light-cone momentum operators 

 Since the Lagrangian depends only on derivatives, it is invariant under the 

translations ( )x m md t e= , where me  is a constant. The resulting conserved 

charges are momenta, and, in the quantum theory, they generate the 

symmetry transformation via commutation. 

 If we had carried out Lorentz-invariant quantisation of the point particle, 

the operators we would have used would have been the ( )x m t  and ( )pm t . 

In that case, the commutation relations would have been 

( ), ( ) , , 0x p i x x p pm n mn m n m nt t hé ù é ù é ù= = =ê ú ê ú ê úë û ë û ë û  

Now, we’d like to check that ( )i pr
re t  does indeed generate the symmetry 

transformation via commutation: 

( )( ), ( ) ( )i p x i i xr m rm m m
r re t t e h e d té ù = - = =ê úë û  

 However, it’s clear that the above commutators don’t work in the light-

cone gauge. They predict that ( ), ( )x p it t+ -é ù = -ê úë û , whereas we predicted 

that they were equal to 0. 

 That said, let us try and expand the generator ( )i pr
re t  in light-cone 

coordinates [note that the momenta are t –independent] 

( ) I Ii p i p i p i pr
re t e e e- + + -= - - +  

Let’s test it in a number of cases 

o 0, 0Ie e¹ = , in which case we have 

( ), ( ) , ( )I Ii p x i p xr m m
re t t e té ù é ù=ê ú ê úë û ë û  
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Taking this for , ,Jm = + -  gives exactly the results we would 

expect. Only a Jxd  compoenent. 

o 0, 0Ie ee +- ¹ = = , similar sensible results are obtained. 

o 0, 0Ie ee -+ ¹ = =  is more complicated, because p– is a nontrivial 

function of other momenta. We then have 

( ) ( ), ( ) , ( )x i p x i p xm r m m
rd t e t t e t+ -é ù é ù= = -ê ú ê úë û ë û  

Which doesn’t satisfy our naïve expectations. In fact, we find that 

2

0 02

( ) , ( ) , 0

1
( ) , ( ) , ( )

2

( ) , , ,

I
I I I I I

x i p x i p p
m

p
x i p x i p p x

p p
p p

x i p x i p x i p x
m p

t
d t e t e

d t e t e t e

d t e e t e e

+ + - + + - +

+ - + +
+ +

- -
- + - - + - - + - - +

+

é ù é ù= - = - =ê ú ê úë û ë û

é ù é ù= - = - = -ê ú ê úë û ë û
é ù

é ù é ùê ú= - = - + = - = -ê ú ê úê úë û ë ûê úë û

 

(To find the last commutator, we note that p– depends on p+, and 

that what we actually need to find is 

( ) ( ){ } ( ) ( ) ( ){ }1 1 1 1 1

0 0 0
,x p p p x p p x p p

- - - - -
- + + + - + + - + +é ù

= -ê ú
ê úë û

 

which gives the result above) 

 We need to understand the translations p– generates. It turns out we can 

understand them as a translation x m md e=  as well as a reparameterisation. 

The general form of a reparameterisation involves ( )t t t l t¢ = + . In 

other 

( )( ) ( ) ( ) ( )

( ) (

(

) ( )

) x xx x

x x

m m m
t

m m

m

t

t l t t l t t

d t l t

t

t

 + = + ¶

= ¶
 

Now, consider the + component of the translation. From above, we have 

that ( ) 0xd t+ = , which means that the translation and reparameterisation 

cancel exactly. In other words 

2

2

( ) 0
p

m p
x

m
te l l et e l +

+

+
+ + +  = -+ ¶ = + =  

And this explains the other components of ( )x md t . In fact, this makes 

sense – if we’d simply change x+ by a small amount, x+ would then violate 

the light-cone Gauge condition. 

Errrrr… How kind of the physics!! Isn’t it a bit circular! 
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 One last comment – it’s important to note that the p+ and p– Gauge 

operators defined above are different to the ( )0 1 / 2p p p =  defined 

above. It turns out the commutation relations are similar. 

 

4. Light-cone Lorentz Generators 

 We saw that Lorentz translations are given by ( ) ( )x xm mn
nd t e t= , with 

mn nme e= - , and with associated Lorentz charges 

( ) ( ) ( ) ( )M x p x pmn m n n mt t t t= -  

These Lorentz charges are Hermitian 

 The Lie Algebra of Lorentz generator is defined by 

,M M i M i M i M i Mmn rs mr ns nr ms ms rn ns rmh h h hé ù = - + -ê úë û  

In any coordinate system we choose, the Lorentz generators will have to 

fulfil these conditions 

 We now need to find the generators in light cone coordinates (not the 

light-cone components of the Gauge invariant coordinates) 
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Chapter 12 – The Relativistic Quantum Open String 

 

1. Light-cone Hamiltonian and Commutators 

 We found a class of world-sheet parameterisations for which the equations 

of motion were wave equations 0X Xm m¢¢- = . 

I don’t get it – didn’t we have those before? 

 These come at the expense of constraints ( )2 0X X ¢ = , with which we 

get 

1

2
Xsm m

pa
¢= -

¢
    

1

2
Xtm m

pa
=

¢
  

 These work in all the Gauges of the class we have considered, but 

particularly with the light-cone gauge, for which 2X pa t+ +¢= . We then 

solved for X– and found that 

( )1 1

2 2
I I I IX X X X X

pa
-

+
¢ ¢= +

¢
    

Which gives us, explicitly 

( )22 2

I I
I I X X

p
t t tp

pa

-
+

æ ö÷ç ¢ ¢ ÷ç ÷ç= + ÷ç ÷ç ÷¢ç ÷çè ø
    

 We next choose operators for our theory 

0

I IX x pt- +  

Sensible commutation relations are 

( )
0

( , ), ( , )

,

I J IJX i

x p i

tt s t s h d s s
- +

é ù¢ ¢= -ê úë û
é ù = -ê úë û


 

With all other commutators vanishing. (Note that x0 and p+ do not depend 

ont ). 

 A Hamiltonian that makes sense (since we know p– generates X+ 

translations and that 2X pa t+ +¢= ) is 

( )20

( ) 2

( , ) ( , )
d ( , ) ( , )

2

I I
I I

H p p

X Xp
t t

t a

t s t s
pa s t s t s

pa

+ -¢=
æ ö÷ç ¢ ¢ ÷ç ÷ç¢= + ÷ç ÷ç ÷¢ç ÷çè ø

ò  
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This is sort of equal to 
0

L^ , but not quite, for reasons we’ll see later. 

 The classical boundary conditions become operator equations 

( , ) 0 0,IXs t s s p¶ = =  

Means that the operator IXs¶  actually vanishes at the endpoints. 

 We can also find the following commutators 

( )( ) ( )( ) ( )

( )( ) ( )( )

d
4

d
, , ,

, , , 0

I J IJI J

I I JJ

X X i

X

X

X X X

X pa h d st s t s

t s t s

s
s

¢ ¢ ¢ ¢   -

¢

é ù =ê úê ú
¢

ë û
é ù =ê úê úë û







 
 

 

2. Commutation relations for oscillators 
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Chapter 13 – Relativistic Quantum Closed Strings 

 

1. Mode Expansions and 

  



String Theory Notes  Page 24 of 31 

  © Daniel Guetta, 2009 

Chapter 14 – Relativistic Superstrings 

 

 Introduction 

o Two operators that anticommute satisfy { }1 2 2 1 1 2
, 0bb b bb b=  =- . 

o Two variables that anticommute satisfy 
1 1 1 1 1

0b b b bb=  =- . 

o To describe the relativistic electron, we use the Dirac Field (a 

classical anticommuting field variable). This leads to creation 

operators 
,

†̂

p s
f , labelled by momentum and spin. They anticommute, 

and so † †

, ,
ˆ ˆ 0
p s p s
f f = , which automatically encodes Pauli’s Exclusion 

principle 

 World-Sheet Fermions 

o For Bosonic strings, we used X m  – variables that classically 

commute. 

o For Fermionic strings, we’ll use new dynamic variables, ( , )m
ay t s , 

where 1,2a = . 

o The light-cone gauge now sets 0ay
+ =  and both the X-  and ay

-  

receive contributions from the transverse IX  and I

ay . 

o By using the Dirac action and all kinds of weird and wonderful 

math, we end up with 

( ) ( )1 2
0 0I I

t ts sy y¶ +¶ = ¶ -¶ =  

And boundary conditions 

( ) ( )( )1 * 1 * 2 * 2 *
( , ) ( , ) , ( , ) 0I I I Iy t s dy t s y t s dy t s- =  

At the endpoints, 
*

0,s p= . 

o From this, we can deduce lots of things 

 The I

ay  fields are anticommuting. 

 
1

Iy  is right-moving and 
2

Iy  is left-moving. 

( ) ( )
( ) ( )

1 1

2 2

,

,

I I

I I

y t s t s

y t s t s

= Y -

= Y +
 

 The boundary conditions require that ( )1 * 2 *
( , ) ,I Iyy t s t s=  . 

The choice is irrelevant, and so 
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 We declare that ( )21
( ,0) ,0I Iyt ty =  

 This makes the sign at the other end relevant 

( ) ( )21
,,I Iy t py t p =  

This divides the string into two sectors. The top sign is the 

Ramond (R) Sector and the bottom sign is the Neveu-

Schwarz (NS) Sector. 

 In fact, we define 

1

2

0,

,0

( , )
( , )

( , )

I
I

I

p

p

y t s s
t s

y t s s

é ùÎ ê úë û
é ùÎ

ìïïïY = íï - ê úë ûî -ïï
 

Notes: 

 The boundary condition at 
*

0s =  ensures that it’s 

continuous. 

 The left-moving and right-moving conditions imply 

that ( , ) ( )I It s c t sY = -  

 The other boundary condition implies that 

( ) ( , ),I It p t pY -Y = . So periodic fermions 

correspond to Ramond BCs and antiperiodic fermions 

corresponds to Neveu-Schwarz BCs. 

 Neveu-Schwarz Sector 

o The Neveu-Schwarz fermion changes sign when 2s s p + , and so 

it must be expanded with fractionally moded exponentials 
( )

1
2

( , ) ~
irI I

r
r

b e
t st s -

Î

-

+

Y å


 

Stuff about the coefficients 

 They’re anticommuting 

{ } ,0
,I J IJ

r s r s
b b d d+=  

 The… 

 Negatively moded coefficients 
1/2 3/2

, ,I Ib b- -   are 

creation operators. 
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 Positively moded coefficients 
1/2 3/2

, ,I Ib b   are 

annihilation operators. 

 These operators act on the Neveu-Schwarz vacuum NS  

o Because the X are still quantised as usual, the states are 

( ) ( ), ,

1 3
2 2

9 9

2 1 2 , ,

NS ,
n I r JI J

n r T
I n J r

b p
l r

l a
¥

+
- -

= = = =

= Ä   p


 

Notes: 

 The order of the b matters not, because changing the order 

will only change overall sign. 

 The r  must be 0 or 1, because the b anticommute and so bb 

= 0. 

o The mass squared operator is (using full ordering) 

1 3
2 2

2

1 , ,

1 1

2
I I I I

p p r r
p r

M N N rb ba a
a

¥
^

-
=

^
-

=

æ ö÷ç ÷= - + = +ç ÷ç ÷ç¢ è ø
å å



 

The eigenvalue of N ^  on 
1 2

NSI J
r r

b b- -  is r1 + r2. 

 The F number 

o We define an operator ( )1 F
- , which is +1 for bosonic states, and –1 

for fermionic states. F is the fermion number. 

o We first declare that the vacuum states are Fermionic 

( )1 NS , NS ,
F

T T
p p+ +- Ä = - Äp p  

Acting on the generic state, we then get 

( ) ( ) ,
,1 1 r J

r J

F r
l lå- = - -  

This follows if we take 

( ){ }1 , 0
F I

r
b- =  

o From this, we get that states with an even/odd number of 

fermionic oscillators are fermions/bosons. 

 Ramond sector 

o With Remond BCs, the field is periodic, and so we need integer 

moded exponentials 
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( )( , ) ~
in

n

I I

n
d e

t st s
Î

- -Y å


 

With, as ever, the negative/positive modes being 

creation/annihilation operators . Once again 

{ } ,0
,I J IJ

m n m n
d d d d+=  

o The eight d0 operators are difficult to deal with, and give distinct 

vacuum. It turns out that they can be organised simply by linear 

combination of four creation operators 
1 2 3 4
, , ,x x x x  and four 

annihilation operators. 

 The zero modes do not contribute to the mass squared. 

 They construct 24 = 16 degenerate Ramond ground states by 

acting on the vacuum 0 . 

 Eight of these states, denoted 
a

R , have an even number of 

creation operators, and the other eight, denoted 
a

R , have 

an odd number of creation operators. 

 We denote them 
A

R , with A = 1, …, 16 

o The states in the Ramond sector are then 

( ) ( ), .
9 9

2 1 2 1

,
n I m JI J

n m A T
I n J m

d R p
l r

l a
¥ ¥

+
- -

= = = =

= Ä  p  

Once again, the r  are either 0 or 1. 

o Once again, we have a (–1)F operator, and ( ){ }1 , 0
F I

n
d- = . We also 

declare ( )1 0 0
F

- = - , which implies that 

 
a

R  are fermionic 

 
a

R  are bosonic 

o We have 

( )
1

2 1 I I I I

n n n n
n

M nd da a
a - -

³

= +
¢å  

o We thus have, for each mass level, a Boson and a fermion. This is 

good – it looks like supersymmetry. But it’s only on the worldsheet, 

not necessarily in spacetime. 

 Generating functions 
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o We want to construct generating functions that encode the number 

of states at any mass levels. We want a function f(x) such that 

0

( ) ( ) n

n

f x a n x
¥

=

= å  

Where a(n) is the number of states with N n^ = . 

o Consider – if we only have one oscillator †

1
a , then there is just one 

state, 0  with 0N ^ = , and one state ( )†1 0
k

a  with N k^ = . As 

such, we want 

2 3

1
(

1
)

1
1f x x x x

x
= + + + + =

-
  

If, on the other hand, we have an oscillator with mode 2 (eg: †

2
a ), 

we can only get even N ^ , so the function we want is 

4

2

2( ) 1
1

1
f x x x

x
= + =+ +

-
  

o It turns out that if we have oscillators 
1 2

† †, ,a a , the function is 

1

1
( )

1 n
n

f x
x

¥

=

=
-

  

Similarly, if we have operators of type A that give fA and operators 

of type B that give fB, then the combination will give fAB. 

o For example, for our bosonic string theory, we have 24 of each 

oscillator, and so we have ( ) 24

1 nx
-

 - . However, these count the 

N ^ , and we want the 2 1M Na ^¢ = -  states, so we divide by x and 

get 

( )24
1

1 1 1
( ) 24 324

1
os

nn

f x x
x xx

¥

=

= = + + +
-

  

Which concurs with our 1 tachionic state, 24 massless Maxwell 

states, etc… 

o What about the fermionic states? If we have a single fermionic 

operator f–r, we can only get two states: 0  and 0
r

f
- , and so 

( ) 1 r

r
f x x= + . 

 For the NS sector, each oscillator comes in 8 species, and so 
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( )1
2

8

1

1
n

n

x
¥

-

=

+  

Finally, remembering that 2 1
2

M Na ^¢ = - , and including the 

8 bosonic coordinates that provide ( ) 8

1 nx
-

- , we get 

1
2

8

NS
1

1 1 1
( ) 8 36 128

1

n

n
n

x
f x x x

xx x

-¥

=

æ ö÷+ç ÷ç= = + + +÷ç ÷ç ÷- ÷çè ø
  

 For the R sector, we have no offset since 2M Na ^¢ = , and 

we only have integer oscillators, and so 
8

2

R
1

1
( ) 16 16 256 2304

1

n

n
n

x
f x x x

x

¥

=

æ ö+ ÷ç ÷= + + + +ç ÷ç ÷÷ç -è ø
   

We note that the NS functions also include half-integer powers of x, 

and that the R coefficients are twice the NS coefficients. 

 Open superstrings 

o The 
0

Id  have spacetime indices and so transform adequately under 

Lorentz transformations. The 
a

R , however, do not. In fact, both 

the 
a

R  and 
a

R  transform as spinors; which is what we need for 

spacetime fermions. 

o However, we do not get two spacetime fermions because (1) the two 

different states have different values of (–1)F and so different 

commuting character (2) we would not get spacetime 

supersymmetry. Similarly, we cannot identify one as fermions and 

one as bosons, because bosons cannot carry spinor indices. 

o Thus, we truncate the R sector into the R– sector (with 

( 1) 1F- = - ) and the R+ sector. The generating functions for each 

are 
8

1

1
( ) 8

1

n

R n
n

x
f x

x

¥

-
=

æ ö+ ÷ç ÷= ç ÷ç ÷÷ç -è ø
  

o Now, for the NS sector. 

 The ground states are tachyonic with (–1)F = –1. 
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 We define the NS+ sector to only keep states with (–1)F = 

+1. These have an odd number of oscillators and so even 

mass squared values. 

 To find a generating function from this sector, we note that 

flipping a sign as follows 

1 1
2 2

8 8

NS
1 1

1 1 1 1
( )

1 1

n n

n n
n n

x x
f x

x xx x

- -¥ ¥

= =

æ ö æ ö÷ ÷+ -ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷ç ç÷ ÷- -÷ ÷ç ç ø


è ø è
   

Only flips the sign which have an odd number of Fermions. 

Thus, we need to subtract this to the original expression and 

divide by two 

1 1
2 2

8 8

NS+
1 1

1 1 1
( )

1 12

n n

n n
n n

x x
f x

x xx

- -¥ ¥

= =

ì üï ïæ ö æ öï ï÷ ÷+ -ç çï ïï ï÷ ÷ç ç= -÷ ÷í ýç ç÷ ÷ç çï ï÷ ÷- -÷ ÷ç çï ïè ø è øï ïï ïî þ

   

For supersymmetry, we require 
NS+ R

( ) ( )f x f x
-

= , an identity 

with was proved by Jacobi. 

 Closed string theories 

o Closed strings are obtained by combining right-movers and left-

movers. We can choose a sector for each copy, and we get four 

combinations (L, R) = (NS, NS), (NS, R), (R, NS), (R, R). 

 Bosons arise from the (NS, NS) and (R, R) [doubly fermionic] 

sectors. 

 Fermions arise from the mixed sectors. 

o To get supersymmetry, we have to truncate each of the sectors. 

Several options are possible 

 Type IIA superstrings: always choose {L} = {NS+, R–} and 

{R} = {NS+, R+}. This gives 

(NS+, NS+)   (NS+, R+)   (R–, NS+)   (R–, R+) 

With masses 2 2 21
2 L R

M M Ma a a¢ ¢ ¢= + , where the leval-

matching condition ensures that the contribution from both 

sides match. The massless states are obtained by combining 

the other various massless states of the different sectors 
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( )
( )
( )
( )

1/2 1/2

1/2

1/2

NS+,NS+ : NS NS ,

NS+,R+ : NS ,

R ,NS : NS ,

R ,R : ,

I J

TL R
I

b TL R
I

b TL R

a b TL R

b b p

b R p

R b p

R R p

+
- -

+
-

+
-

+

Ä Ä

Ä Ä

- + Ä Ä

- + Ä Ä

p

p

p

p

 

 

  

 

 

Questions to ask tomorrow 

 What do the “r” denote in the b operators 

 On the top of page 323, why do we sometimes use Ra and sometimes Rb? 

 On top of page 314, I’m uncomfortable with the r in the second sum of 

equation 14.37 

 Why does is NS¢  bosonic, but the NS  fermionic? 

 Why do we keep R’+ and NS’+, but NS+ and R- 

 In the heterotic SO(32) sting theory, I don’t get why we don’t combine 

any of the left ones with any of the right ones… 

  

 Page 258, at the bottom – how is that implied? 

 Why is the state space defined with an a in chapter 12 and with an alpha 

in chapter 14? 

 
0

II pa µ  is a momentum operator and annihilates the vacuum states 

which hav no momentum. But they commute with everything, so what 

don’t they annihilate? How can we get a state with momentum? 


