<u>Chapter 9 – Light-Cone Relativistic Strings</u>

1. Choices for τ

• We previously used the static gauge, in which the world-sheet time is identified with the spacetime coordinate X^0 by $X^0(\tau, \sigma) = c\tau$. We can, however, choose all kinds of different gauges. We choose those in which τ is set equal to a linear combination of the string coordinates:

$$n_{\mu}X^{\mu}(\tau,\sigma) = \lambda\tau$$

• To understand what this means, consider two points x_1 and x_2 with the same *fixed* value of τ . We then have

$$n_{\mu}\left(x_1^{\mu}-x_2^{\mu}\right)=0$$

The vector $(x_1^{\mu} - x_2^{\mu})$ is clearly on a hyperplane perpendicular to n_{μ} . If we define the string as the set of points X with constant τ , then we see that the string with world-sheet time τ is the intersection of the world-sheet with the hyperplane $n \cdot x = \lambda \tau$

- We want the interval ΔX^{μ} between any two points on the string to be spacelike. Now, consider

 - If n^{μ} is timelike, we can analyse this condition in a frame in which only the time component of n is non-zerio. In that case, Δx clearly has a 0 time component, and is therefore spacelike.

It turns out that this also works for n^{μ} null.

• Now – for open strings, p^{μ} is a conserved quantity. We incorporate this in our Gauge condition and write

$$n \cdot X(\tau, \sigma) = \tilde{\lambda} \left(n \cdot p \right) \tau$$

For open strings attached to D-branes, some components of p^{μ} are not conserved, but we assume that n is chosen so that $n \cdot p$ is conserved – for this to happen, we need $\boxed{n \cdot \mathcal{P}^{\sigma} = 0}$ at the string endpoints. Analysing units and working in natural units then gives

$$n \cdot X(\tau, \sigma) = 2\alpha'(n \cdot p)\tau \qquad \text{(open strings)}$$

Not quite sure about the comment that says that gauge isn't Lorentz invariant for all choices of n. I also don't understand how $\boxed{n \cdot \mathcal{P}^{\sigma} = 0}$ at the endpoints is any requirement – surely we already have \mathcal{P}^{σ} for all endpoints.

2. The Associated σ parameterization for open strings

• In the static gauge, we required constant energy density over the string – in other words, constant $\mathcal{P}^{\tau 0}$. We now require constancy of $n_{\mu}\mathcal{P}^{\tau \mu} = n \cdot \mathcal{P}^{\tau}$, as well as $\sigma \in [0, \pi]$.

I don't understand this range condition on sigma?

• From our expression for $\mathcal{P}^{\tau\mu}$, we have

$$\mathcal{P}^{\tau\mu}(\tau,\sigma) = \frac{\mathrm{d}\tilde{\sigma}}{\mathrm{d}\sigma} \mathcal{P}^{\tau\mu}(\tau,\tilde{\sigma}) \Rightarrow n \cdot \mathcal{P}^{\mu}(\tau,\sigma) = \frac{\mathrm{d}\tilde{\sigma}}{\mathrm{d}\sigma} n \cdot \mathcal{P}^{\tau}(\tau,\tilde{\sigma})$$

Thus, we can always find a parameterisation in which $n \cdot \mathcal{P}^{\tau}(\tau, \sigma) = a(\tau)$ (ie: does not depend on σ) by adjusting $d\tilde{\sigma} / d\sigma$ accordingly. Further, we note that

$$\int_0^{\pi} n \cdot \mathcal{P}^{\tau} \, \mathrm{d}\sigma = n \cdot p = na(\tau)$$

And so

$$n \cdot \mathcal{P}^{\tau} = \frac{n \cdot p}{\pi}$$
 (open string world-sheet constant)

In this parameterisation, σ for a point is therefore proportional to the amount of $n \cdot p$ momentum carried by the portion of the string between $[0,\sigma]$.

• Now, consider the equations of motion

$$\partial_{\tau}\mathcal{P}_{\mu}^{\tau} + \partial_{\sigma}\mathcal{P}_{\mu}^{\sigma} = 0$$

Dotting this with n^{μ} , we get

$$\frac{\partial}{\partial \tau} \left(n \cdot \mathcal{P}^{\tau} \right) + \frac{\partial}{\partial \sigma} \left(n \cdot \mathcal{P}^{\sigma} \right) = 0$$
$$\frac{\partial}{\partial \sigma} \left(n \cdot \mathcal{P}^{\sigma} \right) = 0$$

Which implies that $n \cdot \mathcal{P}^{\sigma}$ is independent of σ .

• We have already seen that for open strings, $n \cdot \mathcal{P}^{\sigma} = 0$ at endpoints, which implies that this is the case *everywhere*.

3. The Associated σ parameterization for closed strings

• In this case, we want $\sigma \in [0, 2\pi]$ and so

 $\boxed{n \cdot \mathcal{P}^{\tau} = \frac{n \cdot p}{2\pi}} \qquad (\text{closed string world-sheet constant})$

Because of this factor of two, we write the gauge condition without the factor of two, as

$$n \cdot X = \alpha' \bigl(n \cdot p \bigr) \tau$$

I don't understand this range condition on sigma?

- We can still show that $n \cdot \mathcal{P}^{\sigma}$ is independent of σ , but it's now not possible to set it to 0 at any given point. Furthermore, it's unclear *what* point is $\sigma = 0$. We solve this by setting a certain point on a certain string to have these properties. The proof this can be done is in the book.
- There is, however, an obvious ambiguity our whole parameterisation can be rigidly moved along the string without affecting anything.

4. Summary

• In summary, we have

$$n \cdot \mathcal{P}^{\sigma} = 0$$
$$n \cdot X(\tau, \sigma) = \beta \alpha' (n \cdot p) \tau$$
$$n \cdot p = \frac{2\pi}{\beta} n \cdot \mathcal{P}^{\tau}$$

Where $\beta = 1$ for closed strings, and $\beta = 2$ for open strings.

• The first condition above, along with an expression for \mathcal{P}^{σ} immediately gives us $\underline{\dot{X} \cdot X' = 0}$. This allows us to simplify our expression for $\mathcal{P}^{\tau\mu}$, and we obtain $\dot{X}^2 + X'^2 = 0$. This is best summarised, together with the first condition above, as

$$\left(\dot{X}\pm X'\right)^2=0$$

• We then get the following simplified expressions

$${\cal P}^{ au\mu}=rac{1}{2\pilpha'}\dot{X}^{\mu} \qquad \qquad {\cal P}^{\sigma\mu}=-rac{1}{2\pilpha'}ig(X^{\mu}ig)'$$

Feeding into the equations of motion, we get

$$\ddot{X}^{\mu} - \left(X^{\mu}\right)^{\prime\prime} = 0$$

These are simply wave equations!

• When the string is open, we have the additional requirement that the $\mathcal{P}^{\sigma\mu}$ and therefore the $(X^{\mu})'$ vanish at the endpoints.

4. Solving the wave equation

• Assuming we have a space-filling D-brane and therefore free-boundary conditions at the endpoints, the most general solution to the wave equation is

$$X^{\mu}(\tau,\sigma) = \frac{1}{2} \Big(f^{\mu}(\tau+\sigma) + g^{\mu}(\tau-\sigma) \Big)$$

Bearing in mind the relation $\mathcal{P}^{\sigma\mu} = -(X^{\mu})'/2\pi\alpha'$ and the boundary conditions $\mathcal{P}^{\sigma\mu} = 0$, we get

$$\frac{\partial X^{\mu}}{\partial \sigma} = 0 \qquad \qquad \sigma = 0, \pi$$

The boundary condition at 0 informs us that f and g differ at most by a constant, which can be absorbed into f.

$$X^{\mu}(\tau,\sigma) = \frac{1}{2} \left(f^{\mu}(\tau+\sigma) + f^{\mu}(\tau-\sigma) \right)$$

The boundary condition at $\sigma = \pi$ gives

$$\frac{\partial X^{\mu}}{\partial \sigma}(\tau,\pi) = \frac{1}{2} \Big(f^{\mu'}(\tau+\pi) - f^{\mu'}(\tau-\pi) \Big) = 0$$

Since this must be true for all τ , this implies that $f^{\mu'}$ is periodic with period 2π .

• We can therefore write

$$f^{\mu'}(u) = f_1^{\mu} + \sum_{n=1}^{\infty} \left(a_n^{\mu} \cos nu + b_n^{\mu} \sin nu \right)$$
$$f^{\mu}(u) = f_0^{\mu} + f_1^{\mu}u + \sum_{n=1}^{\infty} \left(A_n^{\mu} \cos nu + B_n^{\mu} \sin nu \right)$$

© Daniel Guetta, 2009

Substituting and simplifying, we get

$$X^{\mu}(\tau,\sigma) = f_{0}^{\mu} + f_{1}^{\mu}\tau + \sum_{n=1}^{\infty} \left(A_{n}^{\mu}\cos n\tau + B_{n}^{\mu}\sin n\tau\right)\cos n\sigma$$

We write

$$\begin{aligned} A_n^{\mu} \cos n\tau + B_n^{\mu} \sin n\tau &= -\frac{i}{2} \Big(\Big(B_n^{\mu} + iA_n^{\mu} \Big) e^{in\tau} - \Big(B_n^{\mu} - iA_n^{\mu} \Big) e^{-in\tau} \Big) \\ &= -i \sqrt{\frac{2\alpha'}{n}} \Big(a_n^{\mu^*} e^{in\tau} - a_n^{\mu} e^{-in\tau} \Big) \end{aligned}$$

 f_i can be shown to be proportional to the momentum carried by the string (by integrating the momentum density), and we can say $f_0^{\mu} = x_0^{\mu}$. We then get

$$X^{\mu}(\tau,\sigma) = x_{0}^{\mu} + 2\alpha' p^{\mu} \tau - i\sqrt{2\alpha'} \sum_{n=1}^{\infty} \left(a_{n}^{\mu*} e^{in\tau} - a_{n}^{\mu} e^{-in\tau}\right) \frac{\cos n\sigma}{\sqrt{n}}$$

Clearly, this corresponds to the zero-mode of the string, its momentum, and its oscillations.

I don't understand how we can just declare $f_0^\mu = x_0^\mu$

• Now, let's define lots of notation

$$\alpha_0^{\mu} = p^{\mu} \sqrt{2\alpha'}$$
$$\alpha_n^{\mu} = a_n^{\mu} \sqrt{n} \qquad \qquad \alpha_{-n}^{\mu} = \left(\alpha_n^{\mu}\right)^* = a_n^{\mu^*} \sqrt{n}$$

• We can then write

$$X^{\mu}(\tau,\sigma) = x_0^{\mu} + \sqrt{2\alpha'}\alpha_0^{\mu}\tau + i\sqrt{2\alpha'}\sum_{n\neq 0}\frac{1}{n}\alpha_n^{\mu}e^{-in\tau}\cos n\sigma$$

And we then have

$$\dot{X}^{\mu} = \sqrt{2\alpha'} \sum_{n \in \mathbb{Z}} \alpha_n^{\mu} e^{-in\tau} \cos n\sigma \qquad \qquad X^{\mu'} = -i\sqrt{2\alpha'} \sum_{n \in \mathbb{Z}} \alpha_n^{\mu} e^{-in\tau} \sin n\sigma$$

And

$$\dot{X}^{\mu} \pm X^{\mu'} = \sqrt{2\alpha'} \sum_{n \in \mathbb{Z}} a_n^{\mu} e^{-in(\tau \pm \sigma)}$$

We need to make sure that this satisfies the boundary conditions.

5. Light-cone solutions of equations of motion

• To move into a light-cone gauge, we trade coordinates x^0 and x^1 for coordinates x^+ and x^- , and we set a gauge that has $n \cdot X = X^+$. This gives us, via the relations defined above,

$$X^{+}(\tau,\sigma) = \beta \alpha' p^{+} \tau \qquad \qquad p^{+} = \frac{2\pi}{\beta} \mathcal{P}^{\tau+}$$

The second equation tells us that p^+ density is constant along the string.

• We want to try and show that all the dynamics are in the transverse coordinate X^{I} (ie: not including x^{+} and x^{-}). First, consider the constraint equation, using the dot product in light-cone coordinates

$$-2\left(\dot{X}^{+}\pm X^{+\prime}\right)\left(\dot{X}^{-}\pm X^{-\prime}\right)+\left(\dot{X}^{I}\pm X^{I\prime}\right)^{2}=0$$

From the equation above for X^+ , we have that $X^{+\prime} = 0, \dot{X}^+ = \beta \alpha' p^+$, and so

$$\dot{X}^{-} \pm X^{-\prime} = \frac{1}{2\beta \alpha' p^{+}} \Big(\dot{X}^{I} \pm X^{I\prime} \Big)^{2}$$

We have assuming that $p^+ > 0$. This only fails when $p^+ = 0$, which only occurs for a massless particle travelling exactly in the negative x^i direction. This is an unusual occurrence, but when it does occur, the light-cone formalism will not apply.

These define X⁻ and X^{-'} in terms of the X^I, and therefore completely determine X⁻ up to an integration constant. All we need is the value of X⁻ at some point on the world sheet, and integrate dX⁻ = X⁻ dτ + X^{-'} dσ. On a closed string, we further have a condition that ∫₀^{2π} X^{-'} dσ = 0, to ensure that the contour we choose around the string does not affect the value of X⁻. Thus, the string motion is characterised by X^I, p⁺ and x₀⁻, where the last item is the constant of integration.

•

<u>Chapter 10 – Light Cone Fields & Particles</u>

1. Action for Scalar fields

- A scalar field is a single real function of spacetime; $\phi(\mathbf{x}, t) \equiv \phi(x)$.
- A natural choice for the Lagrangian Density and action of a field that treats time and space on an equal footing is

$$\mathcal{L} = -\frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2 \qquad \qquad S = \int \mathcal{L} \, \mathrm{d}^D x$$

Where D = d + 1 is the total number of dimensions.

• This is for a **free scalar field with mass** *m* (a **free field** is one in which the equation of motion is **linear** in the field, which require the Lagrangian to be **quadratic** in the field).

Why are those densities and not the Hamiltonian itself?

• The momentum conjugate to the field is given by

$$\Pi \equiv \frac{\partial \mathcal{L}}{\partial \left(\partial_{_{0}} \phi \right)} = \partial_{_{0}} \phi$$

And the Hamiltonian density by

$$\mathcal{H} = \Pi \left(\partial_{_0} \phi \right) - \mathcal{L} = \frac{1}{2} \bigg(\Pi^2 + \left(\nabla \phi \right)^2 + m^2 \phi^2 \bigg)$$

How does those refer to T, V' and V, and why did we expect that?

The energy is then given by the Hamiltonian

$$E = H = \int \mathcal{H} \,\mathrm{d}^d x$$

Where d is the number of **space** dimensions.

Why use the *space* dimensions here?

2. Equation of motion and classical solutions

• Varying the action, we get an equation of motion

$$\begin{split} \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\phi - m^{2}\phi &= 0\\ \left(\partial^{2} - m^{2}\right)\phi &= 0\\ -\frac{\partial^{2}\phi}{\partial t^{2}} + \nabla^{2}\phi - m^{2}\phi &= 0 \end{split}$$

© Daniel Guetta, 2009

This is the Klein-Gordon equation.

• Now, finding plane-wave solutions to the classical scalar field. Consider (note the two terms, to ensure the solution is real)

$$\phi(t, \boldsymbol{x}) = a e^{i(\boldsymbol{p} \cdot \boldsymbol{x} - Et)} + a^* e^{i(-\boldsymbol{p} \cdot \boldsymbol{x} + Et)}$$

Where p is an arbitrary vector, and the form of the differential equation requires

$$E = \pm E_p$$
 $E_p = \sqrt{p^2 + m^2}$

A general solution can be obtained by superimposing all the possible solutions above (note that p is continuous, so we get an integral). However, it has no simple QM interpretation, because the second term represents a particle of *negative* energy...

• To analyse the scalar field equation, it helps to work in Fourier space

$$\phi(x) = \int \frac{1}{\left(2\pi\right)^{D}} e^{ip \cdot x} \phi(p) d^{D} p$$

Note that we require $\left[\phi(x)\right] = \left[\phi(x)\right]^* \Rightarrow \left[\phi(p)\right] = \left[\phi\left(-p\right)\right]^*$

• Substituting the expression for $\phi(x)$ into the equation of motion, we find that the field **must be 0 unless it lies on a "mass shell**", on which $p^2 + m^2 = 0 \Rightarrow E^2 = p^2 + m^2$. This is a **hyperboloid**, described by the set of points $(\pm E_p, p)$ for all p.

Why do virtual particles not lie on the mass shell?

• We note that any point p^{μ} on the mass shell has a single number associated with it, because the complex number has two degrees of freedom, and the condition $\left[\phi(p)\right] = \left[\phi\left(-p\right)\right]^*$ takes away one of them. We thus is there is one classical degree of freedom per point on the mass shell.

• Don't understand page 200

3. Scalar Quantum Field Theory

• When we move to quantum mechanics, the **dynamical variables** turn to **operators**. Thus, our **field** becomes a **field operator** (and we also have

momentum and **energy operators**). The state space is described using a set of **particle states**.

• Let's write the plane-wave solutions to the KG equations above in more general form, and with normalisation factors:

$$\phi_{p}(t, \boldsymbol{x}) = \frac{1}{\sqrt{V}} \frac{1}{\sqrt{2E_{p}}} \Big(a(t)e^{i\boldsymbol{p}\cdot\boldsymbol{x}} + a^{*}(t)e^{-i\boldsymbol{p}\cdot\boldsymbol{x}} \Big)$$

Why do we add these particular pre-factors?

We can imagine this as a field in a box of sides L_i , with periodicity

$$p_i L_i = 2\pi n_i$$

We evaluate the scalar field action and Hamiltonian for this field – we'll need to square the field, square its time derivative and square its gradient. All terms with spatial dependence will integrate to 0, and the others will cancel the V terms in the field. We then get

$$\begin{split} S &= \int \! \left(\frac{1}{2E_p} \dot{a}^*(t) \dot{a}(t) - \frac{1}{2} E_p a^*(t) a(t) \right) \mathrm{d}t \\ H &= \frac{1}{2E_p} \dot{a}^*(t) \dot{a}(t) - \frac{1}{2} E_p a^*(t) a(t) \end{split}$$

If we write $a(t) = q_1(t) + iq_2(t)$, the action becomes

$$S = \sum_{i=1}^{2} \int \Biggl(\frac{1}{2E_{_{p}}} \dot{q}_{_{i}}^{2}(t) - \frac{1}{2}E_{_{p}}q_{_{i}}^{2}(t) \Biggr) \mathrm{d}t$$

This is the action for two harmonic oscillators, with associated momenta

$$p_i(t) = \frac{\partial L}{\partial \dot{q}_i} = \frac{\dot{q}_i(t)}{E_p} \Rightarrow p_1 + ip_2 = \frac{1}{E_p} \dot{a}$$

And equations of motion

$$\ddot{q}_i(t) = -E_p^2 q_i(t) \Rightarrow \ddot{a}(t) = -E_p^2 a(t)$$

With solutions

$$a(t) = a_p e^{-iE_p t} + a_{-p}^* e^{iE_p t}$$

Feeding this into the Hamiltonian, we find

$$H = E_{p} \left(a_{p}^{*} a_{p} + a_{-p}^{*} a_{-p} \right)$$

• We postulate, and can check, that the a_p and a_{-p} are annihilation operators, with q_1 and q_2 being the relevant coordinates. We then have

Page 10 of 31

$$\begin{bmatrix} a_p, a_p^{\dagger} \end{bmatrix} = 1 \qquad \begin{bmatrix} a_{-p}, a_{-p}^{\dagger} \end{bmatrix} = 1$$

With a Hamiltonian and momentum

$$H = E_p \left(a_p^{\dagger} a_p + a_{-p}^{\dagger} a_{-p} \right) \qquad \qquad \mathbf{P} = \mathbf{p} \left(a_p^{\dagger} a_p - a_{-p}^{\dagger} a_{-p} \right)$$

• More generally, including *all* momenta, we get

$$\begin{bmatrix} a_p, a_k^{\dagger} \end{bmatrix} = \delta_{p,k} \qquad \qquad \begin{bmatrix} a_p, a_k \end{bmatrix} = \begin{bmatrix} a_p^{\dagger}, a_k^{\dagger} \end{bmatrix} = 0$$

And

$$H = \sum_{p} E_{p} a_{p}^{\dagger} a_{p} \qquad \qquad \mathbf{P} = \sum_{p} \mathbf{p} a_{p}^{\dagger} a_{p}$$

The field operator, with contributions from all momenta, is then

$$\phi(t, \boldsymbol{x}) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{p}} \frac{1}{\sqrt{2E_p}} \left(a_p e^{i\left(-E_p t + i\boldsymbol{p}\cdot\boldsymbol{x}\right)} + a_p^{\dagger} e^{i\left(E_p t - \boldsymbol{p}\cdot\boldsymbol{x}\right)} \right)$$

• We then define $|\Omega\rangle$ as a **vacuum state**, containing *no* particles, and for which $a_p |\Omega\rangle = 0$. A state containing particles with momenta $p_1 \dots p_k$ is then

$$\left|\psi\right\rangle = a_{p_{1}}^{\dagger}a_{p_{2}}^{\dagger}\cdots a_{p_{k}}^{\dagger}\left|\Omega\right\rangle$$

With

$$P\left|\psi\right\rangle = \sum_{k} p_{k} \qquad \qquad H\left|\psi\right\rangle = \sum_{k} E_{p_{k}}$$

The number operator, N, gives the number of particles in the state

$$N=\sum_{p}a_{p}^{\dagger}a_{p}$$

To prove the above, consider that

$$a_{p}^{\dagger}a_{p}a_{p}^{\dagger}\left|\Omega\right\rangle = \left(a_{p}^{\dagger}a_{p}a_{p}^{\dagger}-0\right)\left|\Omega\right\rangle = \left(a_{p}^{\dagger}a_{p}a_{p}^{\dagger}-a_{p}^{\dagger}a_{p}^{\dagger}a_{p}\right)\left|\Omega\right\rangle = a_{p}^{\dagger}\left[a_{p},a_{p}^{\dagger}\right]\left|\Omega\right\rangle$$

- At the quantum level, we focus on the one-particle states, which lie on the physical part of the mass shell, with positive energy, $p^0 = E > 0$. We thus have a single particle state for each point on the physical mass shell, labelled by its momentum p.
- In light-cone coordinates, the energy is p^- and the momenta are characterised by p^T and p^+ . Thus, we label the oscillators with p^T and p^+

$$\hat{p}^{?} = \sum_{p^{+}, p^{T}} p^{?} a_{p^{+}, p^{T}}^{\dagger} a_{p^{+}, p^{T}} \qquad \hat{p}^{-} = \sum_{p^{+}, p^{T}} \frac{1}{2p^{+}} \left(p^{I} p^{I} + m^{2} \right) a_{p^{+}, p^{T}}^{\dagger} a_{p^{+}, p^{T}}$$

© Daniel Guetta, 2009

Where, in the last operator, we have used the fact that

$$p^{2} + m^{2} = 0 \Rightarrow p^{-} = (p^{I}p^{I} + m^{2})/2p^{+}$$

4. Maxwell Fields & Photon States

• In the case of Maxwell fields, we have Gauge Invariance, in which $\partial_{\nu}A_{\mu}$ is invariant under the transformation $\delta A_{\mu} = \partial_{\mu}\varepsilon$. This yields field equations of the form [see previous chapter]

$$\begin{split} \partial_{\nu}F^{\mu\nu} &= 0\\ \partial_{\nu}\Big(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}\Big) &= 0\\ \hline \partial^{2}A^{\mu} - \partial^{\mu}\Big(\partial\cdot A\Big) &= 0 \end{split}$$

How do we get the last step?

Compared to the equation for a scalar field, this is conspicuous in its absence of a mass term.

• Transferring this to momentum space, we get

$$A^{\mu}(x) = \int \frac{\mathrm{d}^{D} p}{\left(2\pi\right)^{D}} e^{ipx} A^{\mu}(p) \qquad \qquad A^{\mu}(-p) = \left[A^{\mu}(p)\right]^{*}$$

Substituting into the field equations, we get

$$p^2 A^\mu - p^\mu \left(p \cdot A \right) = 0$$

How do we get this?

• We can also Fourier Transform the gauge transformation

$$\begin{split} \delta A_{\mu}(p) &= i p_{\mu} \varepsilon(p) \\ \delta A^{+} &= i p^{+} \varepsilon & \delta A^{-} &= i p^{-} \varepsilon & \delta A^{I} &= i p^{I} \varepsilon \end{split}$$
 With $\varepsilon(-p) &= \varepsilon^{*}(p)$.

• We then fix our gauge as follows – we set $A^{+\prime} = A^+ + ip^+\varepsilon$, and $\varepsilon = iA^+ / p^+$, which the gives us

$$A^+(p) = 0$$

This fixes the gauge, because any addition transformations make A^+ nonzero (with the exception of $\varepsilon(p) = \varepsilon(p^-, p^I)\delta(p^+)$, because $p^+\varepsilon = 0$) How does the exception work?

$$p^{+}(p \cdot A) = 0 \Rightarrow p \cdot A = 0$$
$$\Rightarrow -p^{+}A^{-} - p^{-}A^{+} + p^{I}A^{I} = 0$$
$$A^{-} = \frac{p^{I}A^{I}}{p^{+}}$$

And all that remains from the field equation is

$$p^2 A^{\mu}(p) = 0$$

This is automatically satisfied for $\mu = +$. For $\mu = I$, this leads to a set of conditions, and for $\mu = -$, it is satisfied because of these conditions and the formula for A^- above.

- Each of the equations for $\mu = I$ correspond to the equations of motion for a massless scalar. Thus
 - When $p \neq 0$ [ie: a massive particle], the full Gauge field vanishes.
 - When p = 0, each of the A^{I} are independent, and A^{-} is determined by the relation above.

We therefore have D-2 degrees of freedom per point on the mass shell.

• Note: we can show that there are no degrees of freedom for $p^2 \neq 0$ by noting that if a field only differs from the 0 field by a Gauge Transformation $\partial_{\mu}\chi$, then it is effectively equivalent to the 0 vector. We call the field *pure Gauge*. In momentum space, we need

pure gauge :
$$A_{\mu}(p) = ip_{\mu}\chi(p)$$

If we can show that our field has this form for $p^2 \neq 0$, then we can show that it effectively vanishes for $p^2 \neq 0$. Taking the equation of motion

$$p^2 A_{\mu} = p_{\mu} \left(p \cdot A \right)$$

And using the fact that $p^2 \neq 0$, we can divide by p^2

$$A_{\!\mu} = i p_{\mu} \frac{-i p \cdot A}{p^2}$$

This is precisely in the pure Gauge form.

• Finally, let's consider photon states. We can introduce oscillators for each of the A^I fields; namely, $a^I_{p^+,p^T}$ and $a^{I\dagger}_{p^+,p^T}$. Each of the I represent a different possible polarisation – there are D - 2 of each of these

independent states for each point on the mass shell. A general one-photon state with p^+ and p^T contains a linear superposition of these polarisations:

$$\left|\psi\right\rangle = \sum_{I=2}^{D-1} \xi_{I} a_{p^{+},p^{T}}^{I\dagger} \left|\Omega\right\rangle$$

Where the vector ξ dictates how we superpose each of the polarisations.

• For D = 4, we get D - 2 = 2; the familiar two polarisations of light.

5. Gravitational Fields and Graviton States

• In GR, the dynamical field variable is the metric $g_{\mu\nu}(x)$, which, in weak fields, can be taken to be $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x)$, both g and h being symmetric under exchange of indices, and with

$$\partial^2 h^{\mu\nu} - \partial_{\alpha} \left(\partial^{\mu} h^{\nu\alpha} + \partial^{\nu} h^{\mu\alpha} \right) + \partial^{\mu} \partial^{\nu} h = 0$$

The momentum-space version is (if there were sources, there'd be an extra term including the energy-momentum tensor for these)

$$S^{\mu\nu}(p) \equiv p^{2}h^{\mu\nu} - p_{\alpha}\left(p^{\mu}h^{\nu\alpha} + p^{\nu}h^{\mu\alpha}\right) + p^{\mu}p^{\nu}h = 0$$

Where $h = \eta^{\mu\nu} h_{\mu\nu} = h^{\mu}_{\mu}$.

• The equation of motion are invariant under the Gauge transformations

$$\delta_{_{0}}h^{_{\mu\nu}}(p)=ip^{_{\mu}}\varepsilon^{_{\nu}}(p)+ip^{_{\nu}}\varepsilon^{_{\mu}}(p)$$

Where the gauge parameter is a vector, and gauge invariance is effectively reparameterisation invariance. To see how, first compute

$$\delta_{_{0}}h = \eta_{_{\mu\nu}}\delta_{_{0}}h^{_{\mu\nu}} = i\eta_{_{\mu\nu}}\left(p^{_{\mu}}\varepsilon^{_{\nu}} + p^{_{\nu}}\varepsilon^{_{\mu}}\right) = 2ip\cdot\varepsilon$$

And then see that $\delta S^{\mu\nu}$ does indeed vanish.

• Since the metric is symmetric and has two indices (+, - or I) we must consider

$$\left(h^{{}_{IJ}},h^{+{}_{I}},h^{-{}_{I}},h^{+-},h^{++},h^{--}
ight)$$

By writing the gave conditions for all the above that include a +, it turns out we can set all these objects to 0. The Gauge conditions then become

$$h^{++} = h^{+-} = h^{+I} = 0$$

• Setting $\mu = \nu = +$ in the equations of motion, we find that

$$(p^{+})^{2} h = 0 \Rightarrow h = 0 \Rightarrow -2h^{+-} + h^{II} = 0 \Rightarrow h^{II} = 0$$

The equation of motion reduces to

$$p^2 h^{\mu\nu} - p^{\mu} p_{\alpha} h^{\nu\alpha} - p^{\nu} p_{\alpha} h^{\mu\alpha} = 0$$

Setting $\mu = +$, we get $p^+(p_{\alpha}h^{\nu\alpha}) = 0 \Rightarrow p_{\alpha}h^{\nu\alpha} = 0$. And so the equation of motion reduces to

$$p^2 h^{\mu
u} = 0$$

Furthermore, from $p_{\alpha}h^{\nu\alpha} = 0$, we can find an equation for the h with a – index in terms of the transverse h^{IJ} .

- For any field with a + index, the equation of motion holds trivially. For any field with a - index, it also holds because we found these fields in terms of the transverse h^{IJ} . For the remaining transverse components
 - $\circ h^{IJ}(p) = 0$ for $p^2 \neq 0$ [massive particles]
 - $\circ \quad h^{{}^{I\!J}}(p) \text{ is unconstrained for } p^2=0\,, \text{ except for requiring } h_{\!_{I\!I}}(p)=0\,.$
- Thus, the degrees of freedom are carried by a symmetric, traceless, tranverse tensor field h^{IJ} , the components of which satisfy the equations of motion of a massless scalar. This has as many components as a symmetric, traceless square matrix of size D - 2. Namely

$$n(D) = \frac{1}{2}D(D-3)$$

The one-graviton states of momentum $\left(p^{+}, \boldsymbol{p}^{T}\right)$ are then

$$\left|\psi\right\rangle = \sum_{I,J=2}^{D-1} \xi_{IJ} a_{p^{+},p^{T}}^{IJ\dagger} \left|\Omega\right\rangle \qquad \xi_{II} = 0$$

<u>Chapter 11 – The Relativistic Quantum Point Particle</u>

1. The Light-Cone Point Particle

• Thinking of τ as a time variable, and the $x^{\mu}(\tau)$ as coordinates, we define an action and a Lagrangian as follows:

$$S = \int_{\tau_i}^{\tau_f} L \,\mathrm{d}\tau \qquad \qquad L = -m\sqrt{-\dot{x}^2} \qquad \qquad \dot{x}^2 = \eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = \eta_{\mu\nu}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}$$

• The momentum is then given by

$$p_{\mu} = \frac{\partial L}{\partial \dot{x}^{\mu}} = \frac{m \dot{x}_{\mu}}{\sqrt{-\dot{x}^2}}$$

Which clearly satisfies

$$p^2 + m^2 = 0$$

• The Euler-Lagrange equations give

$$\frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau} = 0$$

• We define a light-cone Gauge for the particle as follows

$$x^+ = \frac{1}{m^2} p^+ \tau$$

• Now, consider the + component of momentum

$$p^{+} = \frac{m}{\sqrt{-\dot{x}^{2}}} \dot{x}^{+} = \frac{1}{\sqrt{-\dot{x}^{2}}} \frac{p^{+}}{m}$$
$$\dot{x}^{2} = -\frac{1}{m^{2}}$$

We can now simplify the expression for momentum

$$p_{\mu}=m^2\dot{x}_{\mu}$$

And the equation of motion gives

$$\ddot{x}_{\mu} = 0$$

• Expanding the $p^2 + m^2 = 0$ in light-cone components, we can obtain

$$p^- = \frac{1}{2p^+} \left(p^I p^I + m^2 \right)$$

• From the expression for momentum, we obtain

$$\frac{\mathrm{d}x^{?}}{\mathrm{d}\tau} = \frac{1}{m^{2}} p^{?} \Rightarrow x^{?}(\tau) = x_{0}^{?} + \frac{p^{-}}{m^{2}} \tau$$

© Daniel Guetta, 2009

The Gauge condition tells us that $x_0^+ = 0$.

• Our independent dynamical variables are therefore

$$\left(x^{I},x_{0}^{-},p^{I},p^{+}
ight)$$

2. Quantising the Point Particle

• Before we quantise the point particle, we need to decide what operators we will use to describe the motion. It seems that the dynamical variables form excellent choices, with

$$\begin{bmatrix} x^{\scriptscriptstyle I}, p^{\scriptscriptstyle I} \end{bmatrix} = i\eta^{\scriptscriptstyle IJ} = i\delta_{\scriptscriptstyle IJ} \qquad \qquad \begin{bmatrix} x_{\scriptscriptstyle 0}^{\scriptscriptstyle -}, p^{\scriptscriptstyle +} \end{bmatrix} = i\eta^{\scriptscriptstyle -+} = -i$$

- The operators x^+ , x^- and p^- can be defined using those operators, using the relations we've already defined above.
- Since p^- is the light-cone energy, we expect it to generate x^+ evolution: $\partial / \partial x^+ \Leftrightarrow p^-$ (since x^+ is the time component). The Hamiltonian, however, generates τ evolution. But since $x^+ = p^+ \tau / m^2$, we can anticipate that

$$\frac{\partial}{\partial \tau} = \frac{p^+}{m^2} \frac{\partial}{\partial x^+} \Leftrightarrow \frac{p^+}{m^2} p^-$$

And so we postulate that

$$H(\tau) = \frac{p^+(\tau)}{m^2} p^-(\tau) = \frac{1}{2m^2} \left(p^I(\tau) p^I(\tau) + m^2 \right)$$

- Now, we know that $i\dot{\xi} = [\xi, H]$, and so from this, we can deduce that
 - $\dot{p}^{+}(\tau) = \dot{p}^{I}(\tau) = 0$ this is good, since these are constants of the motion. We can therefore write $p^{+}(\tau) = p^{+}$ and $p^{I}(\tau) = p^{I}$.
 - $\circ \dot{x}^{I}(\tau) = p^{I} / m^{2}$. This is, one again, in accord with our classical expectations, and allows us to write $x^{I}(\tau) = x_{0}^{I} + p^{I}\tau / m^{2}$.
 - $\circ~$ We do indeed get $\dot{x}_{_{0}}^{-}=0$; expected, since it's a constant of integration.
 - $\circ p^{-}(\tau)$ is a function of the p^{I} only, and is therefore clearly constant.
 - x^+ and x^- both have explicit time dependence, and we can find that $\dot{x}^-(\tau) = p^- / m^2$ and that $\dot{x}^+(\tau) = p^+ / m^2$. Both of which are as expect classically.

So it looks like our choice of H is good!

- To complete our description, we need to find an appropriate state space. In our CSCO, we can only choose one operator from each of the pair (\bar{x}, p^+) and (x^I, p^I) . Because momentum space is usually convenient, we write the states of the quantum point particle as $|p^+, p_T\rangle$.
- The operators then all act on these states as one might expect most importantly

$$H\left|p^{+},\boldsymbol{p}_{T}\right\rangle = rac{1}{2m^{2}}\left(p^{I}p^{I}+m^{2}
ight)\left|p^{+},\boldsymbol{p}_{T}
ight
angle$$

From which it then follows that the time-dependent states

$$\exp\left[-i\frac{1}{2m^2}\left(p^{\scriptscriptstyle I}p^{\scriptscriptstyle I}+m^2\right)\tau\right]\right|p^+,\boldsymbol{p}_{\scriptscriptstyle T}\rangle$$

Satisfy the Schrodinger Equation.

• More generally, consider the time-dependent superpositions of the basis states

$$\left|\Psi,\tau\right\rangle = \int \mathrm{d}p^{+}\mathrm{d}\boldsymbol{p}_{T}\psi(\tau,p^{+},\boldsymbol{p}_{T})\left|p^{+},\boldsymbol{p}_{T}\right\rangle$$

And we see that ψ is none other than the momentum-space wavefunction:

$$\left\langle p^{+}, \boldsymbol{p}_{T} \middle| \Psi, \tau \right\rangle = \psi(\tau, p^{+}, \boldsymbol{p}_{T})$$

Taking the Schrodinger Equation for state $|\Psi, \tau\rangle$ – namely $i \frac{\partial}{\partial \tau} |\Psi, \tau\rangle = H |\Psi, \tau\rangle$ and feeding in the general superposition above, we recover a Schrodinger equation for ψ .

3. Quantum particle and scalar particles

• There is a natural identification of the quantum states of a relativistic point particle of mass m with one-particle states of the quantum theory of a scalar field of mass m

$$\left| p^{+}, \boldsymbol{p}_{\scriptscriptstyle T} \right\rangle \leftrightarrow a^{\dagger}_{_{p^{+}, \boldsymbol{p}_{\scriptscriptstyle T}}} \left| \Omega \right\rangle$$

We might have expected this correspondence by noticing that the scalar field equations, in light-come coordinates, looks identical to the Schrodinger equation in light-cone coordinates.

- The scalar field theory looks more complete, though, because it allows multi-particle states. What has in fact happened is that we have gone through two levels of quantisation.
 - *First quantisation* involves substituting each of the classical coordinates for quantum operators and obtaining a Schrodinger equation for the wavefunction (a **field**).
 - Second quantisation involves quantising the field that we found in first quantisation, and obtaining multi-particle states.

3. Light-cone momentum operators

- Since the Lagrangian depends only on derivatives, it is invariant under the translations $\delta x^{\mu}(\tau) = \varepsilon^{\mu}$, where ε^{μ} is a constant. The resulting conserved charges are momenta, and, in the quantum theory, they generate the symmetry transformation via commutation.
- If we had carried out Lorentz-invariant quantisation of the point particle, the operators we would have used would have been the x^μ(τ) and p^μ(τ). In that case, the commutation relations would have been

$$\left[x^{\mu}(\tau), p^{\nu}(\tau)\right] = i\eta^{\mu\nu} \qquad \qquad \left[x^{\mu}, x^{\nu}\right] = \left[p^{\mu}, p^{\nu}\right] = 0$$

Now, we'd like to check that $i\varepsilon_{\rho}p^{\rho}(\tau)$ does indeed generate the symmetry transformation via commutation:

$$\left[i\varepsilon_{\rho}p^{\rho}(\tau),x^{\mu}(\tau)\right] = i\varepsilon_{\rho}\left(-i\eta^{\rho\mu}\right) = \varepsilon^{\mu} = \delta x^{\mu}(\tau)$$

- However, it's clear that the above commutators don't work in the lightcone gauge. They predict that $[x^+(\tau), p^-(\tau)] = -i$, whereas we predicted that they were equal to 0.
- That said, let us try and expand the generator $i\varepsilon_{\rho}p^{\rho}(\tau)$ in light-cone coordinates [note that the momenta are τ -independent]

$$i\varepsilon_{\rho}p^{\rho}(\tau) = -i\varepsilon^{-}p^{+} - i\varepsilon^{+}p^{-} + i\varepsilon^{I}p^{I}$$

Let's test it in a number of cases

$$\circ \quad \boxed{\varepsilon^{\scriptscriptstyle I} \neq 0, \varepsilon^{\pm} = 0} \text{, in which case we have} \\ \left[i \varepsilon_{\scriptscriptstyle \rho} p^{\scriptscriptstyle \rho}(\tau), x^{\scriptscriptstyle \mu}(\tau) \right] = i \varepsilon^{\scriptscriptstyle I} \left[p^{\scriptscriptstyle I}, x^{\scriptscriptstyle \mu}(\tau) \right]$$

Taking this for $\mu = J, +, -$ gives exactly the results we would expect. Only a δx^J component.

- $\circ \quad \overline{\varepsilon^- \neq 0, \varepsilon^+ = \varepsilon^I = 0} \text{, similar sensible results are obtained.}$
- $\varepsilon^+ \neq 0, \varepsilon^- = \varepsilon^I = 0$ is more complicated, because p^- is a nontrivial function of other momenta. We then have

$$\delta x^{\mu}(\tau) = \left[i\varepsilon_{\rho}p^{\rho}(\tau), x^{\mu}(\tau)\right] = -i\varepsilon^{+}\left[p^{-}, x^{\mu}(\tau)\right]$$

Which doesn't satisfy our naïve expectations. In fact, we find that

$$\begin{split} \delta x^{+}(\tau) &= -i\varepsilon^{+}\left[p^{-}, x^{+}(\tau)\right] = -i\varepsilon^{+}\frac{\tau}{m^{2}}\left[p^{-}, p^{+}\right] = 0\\ \delta x^{I}(\tau) &= -i\varepsilon^{+}\left[p^{-}, x^{I}(\tau)\right] = -i\varepsilon^{+}\frac{1}{2p^{+}}\left[p^{I}p^{I}, x^{I}(\tau)\right] = -\varepsilon^{+}\frac{p^{I}}{p^{+}}\\ \delta x^{-}(\tau) &= -i\varepsilon^{+}\left[p^{-}, x^{-}\right] = -i\varepsilon^{+}\left[p^{-}, x^{-}_{0} + \frac{p^{-}}{m^{2}}\tau\right] = -i\varepsilon^{+}\left[p^{-}, x^{-}_{0}\right] = -\varepsilon^{+}\frac{p^{-}}{p^{+}} \end{split}$$

(To find the last commutator, we note that p^- depends on p^+ , and that what we actually need to find is

$$\left[x_{0}^{-},\left(p^{+}\right)^{-1}\right] = \left\{\left(p^{+}\right)^{-1}p^{+}\right\}x_{0}^{-}\left(p^{+}\right)^{-1}-\left(p^{+}\right)^{-1}x_{0}^{-}\left\{p^{+}\left(p^{+}\right)^{-1}\right\}$$

which gives the result above)

• We need to understand the translations p^- generates. It turns out we can understand them as a translation $\delta x^{\mu} = \varepsilon^{\mu}$ as well as a reparameterisation. The general form of a reparameterisation involves $\tau \to \tau' = \tau + \lambda(\tau)$. In other

$$x^{\mu}(\tau) \to x^{\mu} \left(\tau + \lambda(\tau)\right) = x^{\mu}(\tau) + \lambda(\tau)\partial_{\tau} x^{\mu}(\tau)$$
$$\delta x^{\mu}(\tau) = \lambda(\tau)\partial_{\tau} x^{\mu}(\tau)$$

Now, consider the + component of the translation. From above, we have that $\delta x^+(\tau) = 0$, which means that the translation and reparameterisation cancel exactly. In other words

$$\varepsilon^+ + \lambda \partial_\tau x^+(\tau) = \varepsilon^+ + \lambda \frac{p^+}{m^2} = 0 \Rightarrow \lambda = -\frac{m^2}{p^+} \varepsilon^+$$

And this explains the other components of $\delta x^{\mu}(\tau)$. In fact, this makes sense – if we'd simply change x^{+} by a small amount, x^{+} would then violate the light-cone Gauge condition.

Errrr... How <u>kind</u> of the physics!! Isn't it a bit circular!

• One last comment – it's important to note that the p^+ and p^- Gauge operators defined above are different to the $p^{\pm} = (p^0 \pm p^1) / \sqrt{2}$ defined above. It turns out the commutation relations are similar.

4. Light-cone Lorentz Generators

• We saw that Lorentz translations are given by $\delta x^{\mu}(\tau) = \varepsilon^{\mu\nu} x_{\nu}(\tau)$, with $\varepsilon^{\mu\nu} = -\varepsilon^{\nu\mu}$, and with associated Lorentz charges

$$M^{\mu\nu}=x^{\mu}(\tau)p^{\nu}(\tau)-x^{\nu}(\tau)p^{\mu}(\tau)$$

These Lorentz charges are Hermitian

• The Lie Algebra of Lorentz generator is defined by

$$\left[M^{\mu\nu}, M^{\rho\sigma}\right] = i\eta^{\mu\rho}M^{\nu\sigma} - i\eta^{\nu\rho}M^{\mu\sigma} + i\eta^{\mu\sigma}M^{\rho\nu} - i\eta^{\nu\sigma}M^{\rho\mu}$$

In any coordinate system we choose, the Lorentz generators will have to fulfil these conditions

• We now need to find the generators in light cone *coordinates* (not the light-cone components of the Gauge invariant coordinates)

<u>Chapter 12 – The Relativistic Quantum Open String</u>

1. Light-cone Hamiltonian and Commutators

- We found a class of world-sheet parameterisations for which the equations of motion were wave equations \(\bar{X}^{\mu} X^{\mu''} = 0\).
 I don't get it didn't we have those before?
- These come at the expense of constraints $(\dot{X} \pm X')^2 = 0$, with which we get

$$\mathcal{P}^{\sigma\mu} = -\frac{1}{2\pilpha'} X^{\mu'} \qquad \qquad \mathcal{P}^{\tau\mu} = \frac{1}{2\pilpha'} \dot{X}^{\mu}$$

• These work in all the Gauges of the class we have considered, but particularly with the light-cone gauge, for which $X^+ = 2\alpha' p^+ \tau$. We then solved for X^- and found that

$$\dot{X}^{-} = \frac{1}{2\alpha'} \frac{1}{2p^{+}} \left(\dot{X}^{I} \dot{X}^{I} + X^{I'} X^{I'} \right)$$

Which gives us, explicitly

$$\mathcal{P}^{\tau-} = \frac{\pi}{2p^+} \left(\mathcal{P}^{\tau I} \mathcal{P}^{\tau I} + \frac{X^{I'} X^{I'}}{\left(2\pi\alpha'\right)^2} \right)$$

• We next choose operators for our theory

$$X^I \qquad x_0^- \qquad \mathcal{P}^{ au I} \qquad p^+$$

Sensible commutation relations are

$$\begin{bmatrix} X^{I}(\tau,\sigma), \mathcal{P}^{\tau J}(\tau,\sigma') \end{bmatrix} = i\eta^{IJ}\delta(\sigma - \sigma')$$
$$\begin{bmatrix} x_{0}^{-}, p^{+} \end{bmatrix} = -i$$

With all other commutators vanishing. (Note that x_0 and p^+ do not depend on τ).

• A Hamiltonian that makes sense (since we know p^- generates X^+ translations and that $X^+ = 2\alpha' p^+ \tau$) is

$$H(\tau) = 2\alpha' p^+ p^-$$

= $\pi \alpha' \int_0^{\pi} d\sigma \left(\mathcal{P}^{\tau I}(\tau, \sigma) \mathcal{P}^{\tau I}(\tau, \sigma) + \frac{X^{I'}(\tau, \sigma) X^{I'}(\tau, \sigma)}{\left(2\pi\alpha'\right)^2} \right)$

© Daniel Guetta, 2009

•

This is sort of equal to L_0^{\perp} , but not quite, for reasons we'll see later.

• The classical boundary conditions become operator equations

$$\partial_{\sigma} X^{I}(\tau,\sigma) = 0 \qquad \qquad \sigma = 0, \pi$$

Means that the operator $\,\partial_{_{\sigma}} X^{I}\,$ actually vanishes at the endpoints.

• We can also find the following commutators

$$\begin{split} \left[\left(\dot{X}^{I} \pm X^{I\prime} \right) (\tau, \sigma), \left(\dot{X}^{J} \pm X^{J\prime} \right) (\tau, \sigma) \right] &= \pm 4\pi \alpha' i \eta^{IJ} \frac{\mathrm{d}}{\mathrm{d}\sigma} \delta \left(\sigma - \sigma' \right) \\ & \left[\left(\dot{X}^{I} \pm X^{I\prime} \right) (\tau, \sigma), \left(\dot{X}^{J} \mp X^{J\prime} \right) (\tau, \sigma) \right] = 0 \end{split}$$

2. Commutation relations for oscillators

<u>Chapter 13 – Relativistic Quantum Closed Strings</u>

- 1. Mode Expansions and
 - •

<u>Chapter 14 – Relativistic Superstrings</u>

• <u>Introduction</u>

- Two operators that anticommute satisfy $b_1b_2 = -b_2b_1 \Rightarrow \{b_1, b_2\} = 0$.
- $\circ \quad \text{Two variables that anticommute satisfy } b_1 b_1 = -b_1 b_1 \Rightarrow b_1 = 0 \,.$
- To describe the relativistic electron, we use the **Dirac Field** (a classical anticommuting field variable). This leads to **creation operators** $\hat{f}_{p,s}^{\dagger}$, labelled by momentum and spin. They anticommute, and so $\hat{f}_{p,s}^{\dagger}\hat{f}_{p,s}^{\dagger} = 0$, which automatically encodes Pauli's Exclusion principle

• <u>World-Sheet Fermions</u>

- For **Bosonic strings**, we used X^{μ} variables that classically commute.
- For **Fermionic strings**, we'll use new dynamic variables, $\psi^{\mu}_{\alpha}(\tau, \sigma)$, where $\alpha = 1, 2$.
- The light-cone gauge now sets $\psi_{\alpha}^{+} = 0$ and both the X^{-} and ψ_{α}^{-} receive contributions from the transverse X^{I} and ψ_{α}^{I} .
- By using the Dirac action and all kinds of weird and wonderful math, we end up with

$$\left(\partial_{_{t}}+\partial_{_{\sigma}}\right)\psi_{1}^{^{I}}=0 \qquad \qquad \left(\partial_{_{t}}-\partial_{_{\sigma}}\right)\psi_{2}^{^{I}}=0$$

And boundary conditions

$$\psi_1^I(\tau,\sigma_*) \Big(\delta \psi_1^I(\tau,\sigma_*) \Big) - \psi_2^I \Big(\tau,\sigma_* \Big) \Big(\delta \psi_2^I(\tau,\sigma_*) \Big) = 0$$

At the endpoints, $\sigma_* = 0, \pi$.

- From this, we can deduce lots of things
 - The ψ^I_{α} fields are anticommuting.
 - ψ_1^I is **right-moving** and ψ_2^I is **left-moving**.

$$\psi_1^I(\tau,\sigma) = \Psi_1^I(\tau-\sigma)$$

$$\psi_2^I(\tau,\sigma) = \Psi_2^I(\tau+\sigma)$$

• The boundary conditions require that $\psi_1^I(\tau, \sigma_*) = \pm \psi_2^I(\tau, \sigma_*)$. The choice is irrelevant, and so

- We declare that $\psi_1^I(\tau,0) = \psi_2^I(\tau,0)$
- This makes the sign at the other end relevant $\overline{\psi_1^I(\tau,\pi) = \pm \psi_2^I(\tau,\pi)}$

This divides the string into two sectors. The top sign is the Ramond (R) Sector and the bottom sign is the Neveu-Schwarz (NS) Sector.

• In fact, we define

$$\Psi^{I}(\tau,\sigma) = \begin{cases} \psi_{1}^{I}(\tau,\sigma) & \sigma \in [0,\pi] \\ \psi_{2}^{I}(\tau,-\sigma) & \sigma \in [-\pi,0] \end{cases}$$

Notes:

- The boundary condition at $\sigma_* = 0$ ensures that it's continuous.
- The left-moving and right-moving conditions imply that $\overline{\Psi^{I}(\tau,\sigma) = \chi^{I}(\tau-\sigma)}$
- The other boundary condition implies that $\overline{\Psi^{I}(\tau,\pi)} = \pm \Psi^{I}(\tau,-\pi)$. So periodic fermions correspond to Ramond BCs and antiperiodic fermions corresponds to Neveu-Schwarz BCs.

• <u>Neveu-Schwarz Sector</u>

• The Neveu-Schwarz fermion changes sign when $\sigma \to \sigma + 2\pi$, and so it must be expanded with **fractionally moded exponentials**

$$\Psi^{I}(\tau,\sigma) \sim \sum_{r \in \mathbb{Z} + \frac{1}{2}} b_{r}^{I} e^{-ir(\tau-\sigma)}$$

Stuff about the coefficients

• They're **anticommuting**

$$\left\{\boldsymbol{b}_{r}^{I},\boldsymbol{b}_{s}^{J}\right\}=\boldsymbol{\delta}_{r+s,0}\boldsymbol{\delta}^{IJ}$$

- The...
 - Negatively moded coefficients $b_{-1/2}^I, b_{-3/2}^I, \cdots$ are creation operators.

- Positively moded coefficients $b_{1/2}^I, b_{3/2}^I, \cdots$ are annihilation operators.
- These operators act on the **Neveu-Schwarz vacuum** $|NS\rangle$
- \circ Because the X are still quantised as usual, the states are

$$\left|\lambda
ight
angle = \prod_{I=2}^{9} \prod_{n=1}^{\infty} \left(lpha_{-n}^{I}
ight)^{\lambda_{n,I}} \prod_{J=2}^{9} \prod_{r=rac{1}{2},rac{3}{2},\cdots} \left(b_{-r}^{J}
ight)^{
ho_{r,J}} \left|\operatorname{NS}
ight
angle \otimes \left|p^{+}, p_{T}
ight
angle$$

Notes:

- The order of the *b* matters not, because changing the order will only change overall sign.
- The ρ must be 0 or 1, because the *b* anticommute and so *bb* = 0.
- o The mass squared operator is (using full ordering)

$$M^{2} = \frac{1}{\alpha'} \left(-\frac{1}{2} + N^{\perp} \right) \qquad \qquad N^{\perp} = \sum_{p=1}^{\infty} \alpha_{-p}^{I} \alpha_{p}^{I} + \sum_{r=\frac{1}{2}, \frac{3}{2}, \cdots} r b_{-r}^{I} b_{r}^{I}$$

The eigenvalue of N^{\perp} on $b_{-r_1}^I b_{-r_2}^J \left| \text{NS} \right\rangle$ is $r_1 + r_2$.

• <u>The *F* number</u>

- We define an operator $(-1)^F$, which is +1 for bosonic states, and -1 for fermionic states. *F* is the **fermion number**.
- $\circ~$ We first declare that the vacuum states are Fermionic

Acting on the generic state, we then get

$$\left(-1\right)^{F}\left|\lambda\right\rangle = -\left(-1\right)^{\sum \rho_{r,J}}_{r,J}\left|\lambda\right\rangle$$

This follows if we take

$$\left\{ \left(-1\right) ^{F},b_{r}^{I}\right\} =0$$

- From this, we get that states with an even/odd number of fermionic oscillators are fermions/bosons.
- <u>Ramond sector</u>
 - With **Remond BCs**, the field is periodic, and so we need **integer moded exponentials**

$$\Psi^{I}(\tau,\sigma) \sim \sum_{n \in \mathbb{Z}} d_{n}^{I} e^{-in(\tau-\sigma)}$$

With, as ever, the **negative/positive** modes being **creation/annihilation** operators . Once again

$$\left\{d_{m}^{I},d_{n}^{J}\right\}=\delta_{m+n,0}\delta^{IJ}$$

- The eight d_0 operators are difficult to deal with, and give distinct vacuum. It turns out that they can be organised simply by **linear** combination of four creation operators $\xi_1, \xi_2, \xi_3, \xi_4$ and four annihilation operators.
 - The zero modes do not contribute to the mass squared.
 - They construct $2^4 = 16$ degenerate Ramond ground states by acting on the vacuum $|0\rangle$.
 - Eight of these states, denoted \$\Big| R_a\$\$, have an even number of creation operators, and the other eight, denoted \$\Big| R_a\$\$, have an odd number of creation operators.
 - We denote them $|R_A\rangle$, with A = 1, ..., 16
- The states in the Ramond sector are then

$$\left|\lambda\right\rangle = \prod_{I=2}^{9} \prod_{n=1}^{\infty} \left(\alpha_{-n}^{I}\right)^{\lambda_{n,I}} \prod_{J=2}^{9} \prod_{m=1}^{\infty} \left(d_{-m}^{J}\right)^{\rho_{m,J}} \left|R_{A}\right\rangle \otimes \left|p^{+}, \boldsymbol{p}_{T}\right\rangle$$

Once again, the ρ are either 0 or 1.

• Once again, we have a $(-1)^F$ operator, and $\left\{\left(-1\right)^F, d_n^I\right\} = 0$. We also

declare $(-1)^{F} | 0 \rangle = - | 0 \rangle$, which implies that

- $\begin{array}{c|c} & & R_a \\ \hline \\ & & R_{\overline{a}} \\ \end{array} \text{ are bosonic}$
- o We have

$$M^{2} = \frac{1}{\alpha'} \sum_{n \ge 1} \left(\alpha_{-n}^{I} \alpha_{n}^{I} + n d_{-n}^{I} d_{n}^{I} \right)$$

- We thus have, for each mass level, a Boson and a fermion. This is good – it looks like supersymmetry. But it's only on the worldsheet, not necessarily in spacetime.
- <u>Generating functions</u>

• We want to construct generating functions that encode the number of states at any mass levels. We want a function f(x) such that

$$f(x) = \sum_{n=0}^{\infty} a(n) x^n$$

Where a(n) is the number of states with $N^{\perp} = n$.

• Consider – if we only have one oscillator a_1^{\dagger} , then there is just one state, $|0\rangle$ with $N^{\perp} = 0$, and one state $(a_1^{\dagger})^k |0\rangle$ with $N^{\perp} = k$. As such, we want

$$f_1(x) = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

If, on the other hand, we have an oscillator with mode 2 (eg: a_2^{\dagger}), we can only get even N^{\perp} , so the function we want is

$$f(x) = 1 + x^{2} + x^{4} + \dots = \frac{1}{1 - x^{2}}$$

o It turns out that if we have oscillators $a_1^{\dagger}, a_2^{\dagger}, \cdots$, the function is

$$f(x) = \prod_{n=1}^{\infty} \frac{1}{1 - x^n}$$

Similarly, if we have operators of type A that give f_A and operators of type B that give f_B , then the combination will give f_{AB} .

• For example, for our bosonic string theory, we have 24 of each oscillator, and so we have $\Pi (1-x^n)^{-24}$. However, these count the N^{\perp} , and we want the $\alpha' M^2 = N^{\perp} - 1$ states, so we divide by x and get

$$f_{os}(x) = \frac{1}{x} \prod_{n=1}^{\infty} \frac{1}{\left(1 - x^n\right)^{24}} = \frac{1}{x} + 24 + 324x + \cdots$$

Which concurs with our 1 tachionic state, 24 massless Maxwell states, etc...

- What about the fermionic states? If we have a single fermionic operator f_{-r} , we can only get two states: $|0\rangle$ and $f_{-r}|0\rangle$, and so $f_r(x) = 1 + x^r$.
 - For the NS sector, each oscillator comes in 8 species, and so

$$\prod_{n=1}^{\infty} \Bigl(1+x^{n-\frac{1}{2}}\Bigr)^8$$

Finally, remembering that $\alpha' M^2 = N^{\perp} - \frac{1}{2}$, and including the 8 bosonic coordinates that provide $(1 - x^n)^{-8}$, we get

$$f_{\rm NS}(x) = \frac{1}{\sqrt{x}} \prod_{n=1}^{\infty} \left(\frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8 = \frac{1}{\sqrt{x}} + 8 + 36\sqrt{x} + 128x$$

• For the R sector, we have no offset since $\alpha' M^2 = N^{\perp}$, and we only have integer oscillators, and so

$$f_{\rm R}(x) = 16 \prod_{n=1}^{\infty} \left(\frac{1+x^n}{1-x^n} \right)^8 + 16 + 256x + 2304x^2 + \cdots$$

We note that the NS functions also include half-integer powers of x, and that the R coefficients are twice the NS coefficients.

• <u>Open superstrings</u>

- The d_0^I have spacetime indices and so transform adequately under Lorentz transformations. The $|R_a\rangle$, however, do not. In fact, both the $|R_a\rangle$ and $|R_{\overline{a}}\rangle$ transform as **spinors**; which is what we need for **spacetime fermions**.
- However, we do not get two spacetime fermions because (1) the two different states have different values of $(-1)^F$ and so different commuting character (2) we would not get spacetime supersymmetry. Similarly, we cannot identify one as fermions and one as bosons, because bosons cannot carry spinor indices.
- Thus, we **truncate** the R sector into the R- sector (with $(-1)^F = -1$) and the R+ sector. The generating functions for each are

$$f_{R-}(x) = 8 \prod_{n=1}^{\infty} \left(\frac{1+x^n}{1-x^n} \right)^8$$

- o Now, for the NS sector.
 - The ground states are tachyonic with $(-1)^F = -1$.

- We define the NS+ sector to only keep states with (-1)^F = +1. These have an odd number of oscillators and so even mass squared values.
- To find a generating function from this sector, we note that flipping a sign as follows

$$f_{\rm NS}(x) = \frac{1}{\sqrt{x}} \prod_{n=1}^{\infty} \left(\frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8 \to \frac{1}{\sqrt{x}} \prod_{n=1}^{\infty} \left(\frac{1-x^{n-\frac{1}{2}}}{1-x^n} \right)^8$$

Only flips the sign which have an *odd* number of Fermions. Thus, we need to subtract this to the original expression and divide by two

$$f_{\rm NS+}(x) = \frac{1}{2\sqrt{x}} \left\{ \prod_{n=1}^{\infty} \left(\frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8 - \prod_{n=1}^{\infty} \left(\frac{1-x^{n-\frac{1}{2}}}{1-x^n} \right)^8 \right\}$$

For supersymmetry, we require $f_{_{\rm NS+}}(x)=f_{_{\rm R-}}(x)\,,$ an identity with was proved by Jacobi.

• <u>Closed string theories</u>

- Closed strings are obtained by combining right-movers and leftmovers. We can choose a sector for each copy, and we get four combinations (L, R) = (NS, NS), (NS, R), (R, NS), (R, R).
 - **Bosons** arise from the (NS, NS) and (R, R) [doubly fermionic] sectors.
 - **Fermions** arise from the mixed sectors.
- To get supersymmetry, we have to truncate each of the sectors. Several options are possible
 - Type IIA superstrings: always choose {L} = {NS+, R-} and {R} = {NS+, R+}. This gives

(NS+, NS+) (NS+, R+) (R-, NS+) (R-, R+) With masses $\frac{1}{2}\alpha' M^2 = \alpha' M_L^2 + \alpha' M_R^2$, where the levalmatching condition ensures that the contribution from both sides match. The massless states are obtained by combining the other various massless states of the different sectors

Questions to ask tomorrow

- What do the "r" denote in the b operators
- On the top of page 323, why do we sometimes use R_a and sometimes R_b ?
- On top of page 314, I'm uncomfortable with the r in the second sum of equation 14.37
- Why does is $|NS'\rangle$ bosonic, but the $|NS\rangle$ fermionic?
- Why do we keep R'+ and NS'+, but NS+ and R-
- In the heterotic SO(32) sting theory, I don't get why we don't combine *any* of the left ones with *any* of the right ones...
- •
- Page 258, at the bottom how is that implied?
- Why is the state space defined with an *a* in chapter 12 and with an alpha in chapter 14?
- $\alpha_0^I \propto p^I$ is a momentum operator and annihilates the vacuum states which hav no momentum. But they commute with everything, so what *don't* they annihilate? How can we get a state with momentum?