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Chapter 2 + 3 – Relativity & Extra Dimensions 

 

1. Stuff 

 The UP indices are the real ones. The DOWN indices are missing a minus 

sign. So ( )0 1 2 3

0
d d ,d ,d ,dx x x x x= -  

 A three-ball, B3 is surrounded by the two-sphere S2. In general 
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For each extra dimension, we get an extra factor of 1/r. 

 3 2/G m kg sé ù =ê úë û , 1c ms-é ù =ê úë û  and 2 /kgm sé ù =ê úë û . 3/
P

G c=   

 V=-g  and 2 ( ) ( )4D D

m
V Gp r = . Since the dimensions of the density 

change, the dimensions of G must change as well. 
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= , where Vc is the product of all the different characteristic 

lengths of the extra dimensions. 
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Chapter 4 – Nonrelativstic Strings 

 

1. Introduction 

 Small oscillations of a string imply that 

1
y

x

¶
¶

  

 Using ( / ) tany x q»¶ ¶ , we can derive the fact that the motion of the 

string satisfies the wave equation 
2 2

0
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Disturbances along the string therefore move at a velocity 

0 0 0
/v T m=  

 If each point on the string is oscillating sinusoidally and in phase, with 

( )( , ) ( )sin
n

y t x y x tw f= + , we can feed this into our wave equation, and 

find solutions for Dirichlet and Neumann boundary conditions 

o Dirichlet conditions give 
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o Neumann conditions give 
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This case clearly admits an extra mode of motion (n = 0) which 

corresponds to the string translating along the y-axis. 

 More generally, the most general solution of this equation is given by 

( ) ( )0 0
( , )y t x h x v t h x v t

+ -
= - + +  

[This is the superposition of a wave travelling towards the left and one 

travelling towards the right]. 

 The functions for h+ and h– can be related using initial and/or boundary 

conditions – these can be of two forms 

o Dirichlet conditions specify the value of y. 
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o Neumann conditions specify the value of a derivative of y with 

respect to position along the string. 

 For strings with non-constant densities ( )xm , the wave equation still 

applies, since it was derived by considering a small piece of string. The 

analysis leading to y(x) involves solving a slightly more complex 

differential equation. 

 

2. Lagrangian Mechanics 

 The lagrangian for a system is defined by 

L T V= -  
Where T is the kinetic energy and V is the potential energy of the system. 

 The action for a given path   the particle might take is defined as 

( )dS L t t= ò  

Hamilton’s Principle states that the path   which a system actually takes 

is one for which the action S does not change to first order when   is 

varied infinitesimally. 

 Usually, the path is parameterised by time as x(t), and the perturbed path 

takes the form ( ) ( )x t x td+ . The integral then takes the form 

( , )d
f

i

t

t
S L x x t= ò   

We usually only consider variations to the path that are fixed at the start 

and end of the motion, such that ( ) ( ) 0
i f

x t x td d= = . 

 

3. Lagrangian Mechanics for a nonrelativistic string 

 For a string, the kinetic energy is the sum of the kinetic energies of all the 

infinitesimal segments that comprise the string: 
2

00

1
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2

a y
T x

t
m

æ ö¶ ÷ç ÷= ç ÷ç ÷ç¶è øò  

The potential energy comes from the work that must be done to stretch 

each individual segment of the string. If each small part of the string is 

stretched by an amount d , then the work done stretching it is 
0
dT   and 
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0string
dV T= ò   

For a small segment dx of string that is displaced dy vertically, we have 
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Where the small-oscillation approximation was used to ignore higher terms 

in the Taylor expansion. 

 The string Lagrangian is therefore 
2 2
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Where   is known as the Lagrangian Density. 

 Varying the action gives 
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There are three terms in this action 

o The first one corresponds to insisting our path does not vary at its 

time end-points. 

o The third involves the domain ( )(0, ), ,
i f

a t t tx Î Î , and so we can 

simply set the coefficient to 0 and recover the wave equation 

0 0
0T y ym¢¢ - = . 

o The second term involves the end of the strings (boundary 

conditions). There are two ways to make this term vanish 

 Set 0y ¢ =  at the ends – this corresponds to Neumann 

boundary conditions. 

 Set 0yd =  at the ends ( 0y =  at the ends, since t is what 

is being varied in this integral) – this corresponds to 

Dirichlet boundary conditions. 
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 Note that the momentum in the y-direction along the string is given by 
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Thus, we see this is only conserved for Neumann boundary conditions. 

 It is useful to define the following quantities 
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We can then vary the action as follows 
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Which gives us an equation of motion which looks like 

0
t x

t x

¶ ¶
+ =

¶ ¶
 

 

A few points of interest regarding this formulation 

o t  is the momentum density along the string in the y-direction. 

This is because y  is a velocity in the y direction, and so /L y¶ ¶  is 

the conjugate momentum in that direction. 

o The Neumann boundary condition implies 0x = , and the 

Dirichlet boundary condition implies 0t = . 

 

4. Practical matters 

 Tips for solving the wave equation using ( ) ( )0 0
( , )y t x h x v t h x v t

+ -
= - + +  

o First apply all boundary conditions, and see what they imply about 

the single variable functions h+ and h–. These tell us things at the 

boundary of the domain concerned. 
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o It is useful to remember that 

( ) ( )h x vt h h x vt vh
x y

¶ ¶¢+ = + =
¶ ¶

  

o It is also useful to note that if U x vt= +  and V x vt= - , then 

d d d d d
1 0

d d d d d

U U x U t v

V x V t V v
= + = - =  

So the two variables are indeed independent of each other. 

 Tips for varying an action… 

o Vary terms as if you were differentiating them. If in doubt, 

substitute x x xd¬ +  and simply, using Taylor series if any 

functions are involved. 

o It is a useful property that 

( )x
x

t t
d d
æ ö¶ ¶÷ç ÷ =ç ÷ç ÷ç ¶ ¶è ø

 

o If any derivatives of xd  appear in the variation of S, use the 

strategy exemplified in the following example 

( )d d d
d d d
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The first term vanishes because ( ) ( ) 0
i f

x t x td d= = . 

 The canonical momentum for a given Lagrangian is  

L

t

¶
=

æ ö¶ ÷ç ÷¶ç ÷ç ÷ç ¶è ø

p
x

 

And the Hamiltonian is given by 

H L
t

æ ö¶ ÷ç ÷= ⋅ -ç ÷ç ÷ç ¶è ø

x
p  

When trying to find these for Hamiltonians including space-time vectors, it 

often helps to remove the time parts in dot products by explicitly 

multiplying them out. 
 

If the Lagrangian does not depend explicitly, then the Hamiltonian is 

identified with the energy and is constant. 
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5. Questions remaining on this chapter 

 For strings of non-constant densities, does the h+
 + h– solution still work? 

 In problem 4.6, where does the m2 come from? 

 In problem 4.6, how do we do part (a)? 
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Chapter 5 – Relativistic Point Particle 

 

1. The Relativistic Lagrangian 

 By requiring the Lagrangian for a relativistic particle to be Lorentz 

invariant and dimensionally consistent, we find 

dS mc s= - ò  

For an observer moving with the particle, we have 

2
2

2
d 1

f

i

t

t

v
S mc t

c
= - -ò  

Which we can show is, indeed, kinetic minus potential energy. 

 We can parameterize the worldline in terms of a parameter t . This means 

that we have expressions for the coordinates in terms of t : ( )x xm m t= . 

Note that even the time coordinate is parameterized. We then can then 

use 2d d ds x xm n
mnh= -  to write 

( )22 d d
d d

d d

x x
s

m n

mnh t
t t

= -  

Which gives 

d d
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t t
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We can show that this expression is manifestly parameterisation invariant 

by noting that if we choose a new parameter t ¢ , then 

d d d

d d d

x xm m t
t t t

¢
=

¢
 

 We can vary this action to find the equation of motion 

( )dS mc sd d= - ò  

And 
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d d
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Feeding this back in and remembering that ( )d / dp mc x sm m=  gives 

d
0

d

pm
t

=  

 

2. Relativistic Particle with Electric Charge 

 If a particle is charged and in a region in which magnetic fields are present, 

the equation of motion is 

d d

d d

p q x
F
c s

n
m

mnt
=  

 The action that leads to this equation of motion is 

( )
d

d ( ) ( )
d

xq
S A x

c
m

mt t t
t

é ù
ê ú= ê ú
ê úë û
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 This term needs to be added to the relativistic Lagrangian found above to 

obtain the total Lagrangian for a charged particle in electromagnetic fields. 

 

3. Practical Matters 

 The current density from a single point particle of charge q moving 

through D = d + 1-dimensional space-time with ( )0( ) ( ), ( )x xm t t t= x  is 

given by 
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0( , ) ( )

d
( , ) ( )

d
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t q t
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This can be written as 
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( , ) d ( ) ( )

d
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m

m t d t t
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By noting that we can re-write this as 

( ) ( )0 0d
( , ) d ( ) ( ) ( )

d
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And changing variables to 
0

0 0
0d

d
dx /
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d

X
X x tt

t
 ==  
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Which is precisely as above. 

 It is sometimes useful to write 

( ) ( )( ) ( ) ( )dDA x x x A x xm mt d t= -ò  

 

4. Questions remaining on this chapter 

 Don’t understand the second component of the equation for current 

density above. 

 In problem 5.3, why did we pick out x0 in particular to separate, and not 

the other ones? 

 Not entirely sure I’m confident with the ( )( )x xd t-  notation. Shouldn’t 

there be indices somewhere. 
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Chapter 6 – Relativistic Strings 

 

1. Area Functionals 

 Any surface can be characterised by two parameters – call them 1x  and 2x . 

Any point on the surface is then described by 

( ) ( )1 2 1 1 2 2 1 2 3 1 2, ( , ), ( , ), ( , )x x xx x x x x x x x=x  

 Consider a rectangle of sides 1dx  and 2dx  in the image space. The 

corresponding “side-vectors” on our surface are 

1 2

1 21 2
d d d dx x

x x
¶ ¶

= =
¶ ¶
x x

v v  

Using the formula for the area of a parallelogram 

1 2

2

1 2

1 1 2 2 1 2

d d d sin

d d d

A

A

q

x x
x x x x x x

=

æ öæ ö æ ö¶ ¶ ¶ ¶ ¶ ¶÷ ÷ ÷ç ç ç÷ ÷ ÷= ⋅ ⋅ - ⋅ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç¶ ¶ ¶ ¶ ¶ ¶è øè ø è ø

v v

x x x x x x  

 This can be neatly summarised as 

1 2d d dA gx x=  

Where det
ij

g gº , where 

ij i j
g

x x
¶ ¶

= ⋅
¶ ¶
x x

 

is called the induced metric, such that the length ds of a vector on our 

surface is given by 
2d ( )d di j

ij
s g x x x=  

 

2. Spacetime surfaces 

 For a spacetime surface, we use a similar device, and we call the two 

parameters special names – t  and s . The mapping functions ( , )X m t s  

give us every coordinate on our spacetime surface in terms of these 

parameters. 

 It so happens that the proper area of our spacetime surface is given by 
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 To prove that the quantity under the square root must be positive, we 

consider the set of tangent vectors to the space-time surface given by 

( )
X X

v
m m

m l l
t s

¶ ¶
= +

¶ ¶
 

We then take the dot product of v with itself, and since we require both 

timelike and spacelike tangent vectors to the string, this must take both 

positive and negative values. Thus, the discriminant of the resulting 

quadratic must be possible, and this gives us the proof we seek. 

 If the quantity under the square root is 0, then the quadratic can only be 

positive or 0 – in other words, there are only spacelike or null vectors at 

that point on the string. 

 

3. Nambu-Goto String Action 

 Requiring the string action to be Lorentz Invariant and dimensionless 

gives us a string action of the following form 
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Where a dot denotes a derivative with respect to t , and a prime denotes a 

derivative with respect to s . 

 

4. Equations of motion 

 We can vary this action 
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Where t
m  and s

m  are given by horribly complicated formulae… 
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 Since the action must vanish, we require: 

0
t s
m m

t s

¶ ¶
+ =

¶ ¶

 
 

 The first term above is a list that contains two terms for each index m . 

This is a total of 2D conditions, each of which must be satisfied. There are 

two ways to satisfy each condition [ *s  denotes the s -coordinate of an 

endpoint]: 

o Dirichlet boundary conditions: ( )*, 0X m t s = . This can apply for 

all indices except for 0m = , because time (of course) varies with t . 

In general, these conditions are best expressed as X = ?. Most 

importantly this condition does not need to be checked explicitly. 

It is automatically satisfied if the equation of motion holds and if 
*( , ) 0s

m t s =  is not also satisfied. 

o Free endpoint condition: *( , ) 0s
m t s = . This sets no constraint on 

the variation *( , )X md t s , and allows the end of the string to do 

whatever it needs to make the variation vanish. This must apply for 

time, and so 
0 1 0
( , ) ( ,0) 0s st s t= =  . 
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 For the end of a string to satisfy a Dirichlet boundary condition, it must 

be fixed to some object. 

o A Dp-brane is an object with p spatial dimensions. 

o The ends of the string must be fixed on the Dp-brane. So for every 

m  describing a direction orthogonal to the brane, we must have 

0X m = . 

o When open string endpoints have free boundary conditions along all 

directions, we have a space-filling D-brane. 

 For the end of a string to be “free”, we must have that 

0 0

2

2

0

1

T s t
c v

c

s

^

¶ ¶
⋅

¶ ¶= - =

-

X X

  

[Where we have used an expression derived later, using the static gauge]. 

This implies that 

o 0
s t

¶ ¶
⋅ =

¶ ¶
X X

, which implies that the velocity of the end-point is 

transverse to the string (since / s¶ ¶X  is a vector parallel to the 

string). 

o Using the above fact, we can write 
2

0 2
1 0
v

T
sc

^ ¶
= - - =

¶
X

 , and 

this implies that at the endpoints, 2 2v c= . 

 

5. The Static Gauge – Parameterising time 

 The static gauge is a choice of parameterisation that results in lines of 

constant t  being “static strings”. In fact, we declare that for any point on 

the world-sheet, tt = , or 

( ) ( )0 , ,X ct ct s t s tº =  

 This choice of gauge implies that 
0 0

, 0, , ,
X X

X X cm m

s s s t t t

æ ö æ öæ ö æ ö¶ ¶ ¶ ¶ ¶ ¶÷ ÷÷ ÷ç çç ç÷ ÷¢ ÷ ÷= = = =ç çç ç÷ ÷÷ ÷ç çç ç÷ ÷÷ ÷ç ç÷ ÷ç ç¶ ¶ ¶ ¶ ¶ ¶è ø è øè ø è ø

X X X X  

We have successfully separated time and space. 
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6. Tension and Energy of a Stretched String 

 Consider a string stretched between points where x1 = 0, a, with all other 

coordinates equal to 0. We say that the end are at ( )0,0  and ( ),a 0 . We 

then have that 

( ), ( ),0,X ct fm s=   

Where (0) 0f =  and 
1

( )f as =  is the s  parameterisation of the string, 

and we have used the static gauge. We require 0f ¢ >  to ensure that every 

point on the string has a unique s  coordinate. 

 We then have 

( ) ( ), 0, 0, ,X c X fm m¢ ¢= =0 0  

And so 

( )22 0X X c X X f X X¢ ¢ ¢ ¢⋅ = - ⋅ = ⋅ =    

 The action them becomes 

( )1

0 00

d
d d d

d

f f

i i

t t

t t

f
S T t T a t

s
s

s
= - = -ò ò ò  

As expected, this does not depend on the way we parameterised s . 

 Now, since our string has no kinetic energy, we know that L = –V, and 

that S is the integral of that quantity. As such 

0
V T a=  

This result is consistent with the observation that we are dealing with a 

“massless” string – all its “mass” comes from the energy expended to 

stretch it (= T0a). Indeed 

2 0
0 0 0 2

TV
c T

a c
m m= ==  

This confirms the identification of T0 with the string tension, and confirms 

the negative sign in front of our action. 

 We can also check that this configuration satisfies the equation of motion 

by using the horrible formulae for t  and s  above, and it does indeed. 

 

7. Action in terms of transverse velocity 
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 Defining a string velocity as / t¶ ¶X  is too simplistic, because it depends 

on our choice of s  parameterisation (indeed, the vector / t¶ ¶X  is 

parallel to lines of constant s , since t tµ ). 

 It turns out that the longitudinal velocity along the string is not physically 

meaningful, because it necessarily depends on s  parameterisation. 

 Instead, we define a transverse velocity, v^ , which is (more or less) the 

velocity perpendicular to the string at any given time. 

 To define it, we first note that if ( )s s  is a function measuring the length 

along the string at a given time, then d ds = X  and / s¶ ¶X  is a unit 

vector tangent to the string. 

 Now, we note that the perpendicular component of a vector v to a 

direction n̂  is given by ( )ˆ ˆ- ⋅v v n n . As such, the component of the 

velocity / t¶ ¶X  perpendicular to the string is 

2 2

2

t t s s

t t s

^

^

æ ö¶ ¶ ¶ ¶÷ç ÷= - ⋅ç ÷ç ÷ç¶ ¶ ¶ ¶è ø
æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷= - ⋅ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶ ¶è ø è ø

X X X X
v

X X X
v

 

 We can then express the action in terms of this transverse velocity 

1
2

0 20

d
d d 1

d

vs
S T t

c

s
s

s
^

æ ö÷ç ÷= - -ç ÷ç ÷çè øò ò  

With 

2

0 2
d 1

v
L T s

c
^= - -ò  

In this form, the Lagrangian looks all nice and well – T0ds is the rest 

energy, and we multiply it by a relativistic factor. 

 From these, we can derive the following relations 
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-
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8. String endpoints 

 We remember that at the endpoint, 0 0s = , which implies that 

0
s t

¶ ¶
⋅ =

¶ ¶
X X . 

 This implies [see next chapter] 

/ t
^
= ¶ ¶v X  

 We can use this to simply the expression for sm  at the endpoints. We get 

2

0 2
1
v X

T
sc

m
sm ¶

= - -
¶

  

For the space coordinates 

2

0 2
1 0
v

T
sc

s ¶
= - - =

¶
X

  

Since / s¶ ¶X  is a unit vector, we must have v = c. 

 

9. Practical matters 

 In some examples, it is obvious what v
^
. For example, in a circular string 

that remains circular and just shrinks and grows, d / dv R t^ = . 

 

10. Questions remaining on this chapter 

 I don’t get the reparametrisation invariant bit at the bottom of page 111. 
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Chapter 7 – String Parameterisation and Classical Motion 

 

1. Parameterising the String 

 We choose a paramaterisation in which lines of constant s  are 

perpendicular to the string (ie: to lines of constant t). Thus 

0
ts

¶ ¶
⋅ =

¶ ¶
X X

 

In this case, since / t¶ ¶X  is parallel to the string, we must have 

t^

¶
=

¶
X

v  

 In this parameterisation, we have 

0
2 2

2

d 1

d
1

T s X

c v

c

m
tm

s t
^

¶
=

¶
-

   and 
2

0 2
1
vX

T
s c

m
sm ^¶

= - -
¶

  

[The latter used to be the case at string endpoints]. 

 The string equation of motion was 

t

tm sm

s
¶ ¶

= -
¶ ¶
 

 

o The 0m =  component gives 

0
0

2

2

1 d
0

d
1

T s

t t c v

c

t

s
^

æ ö÷ç ÷ç ÷ç ÷ç¶ ¶ ÷ç ÷= =ç ÷ç ÷¶ ¶ ÷ç ÷ç ÷ç - ÷ç ÷çè ø


 

For a small piece of string with ds , therefore, we find that the 

expression 

0

2

2

1
d

1

T
s

c v

c
^-

 

Is constant. This represents the energy stored in that piece of string. 

o The space components give 
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Using the time-component derived above, we can re-write this last 

step as 

2

0
0 2 2 2

2

2

0
0 2 2 2

2

1 d
1

d
1

1
1

1

v T s
T
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Comparing to a non-relativstic string with s x» , we see that they 

match. 

 Now is time to actually find a s  parameterisation. Consider the equation 

above, but slightly re-written 

2 2

2 2 2

2 2 d
d

1 1
1

s s

v v

c c
c t s s

s s¶

^

¶

^

é ù
ê ú- -ê ú¶ ¶ ¶ê ú= ê ú¶ ¶¶ ê ú
ê ú
ê úë û

X X
 

And now, if we let 
d
d

2

2

( ) 1

1

s

A
v

c

ss
^

= =

-

 

We get 

2 2

2 2 2

1

c t s
¶ ¶

=
¶ ¶
X X

 

Which is a wave equation, and we have 

1
0

2
0

2

d 1
d d

1

s
E

Tv

c

E

T
ss

^

= =  =

-

 

Which means that we’ve sub-divided the string into bits of energy. This 

condition is equivalent to 
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 And so we finally get 

0
2

T X

c

m
tm

t
¶

=
¶

  and 
0

X
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m
sm

s
¶

= -
¶

  

 

2. General Motion Open & Closed Strings 

 Solving the wave equation, we get 

1
( , ) ( ) ( )

2
t ct cts s sé ù= + + -ê úë ûX F G  

We can add the two parameterisation conditions to each other, and get 

2
1

1
c ts

æ ö¶ ÷ç ÷ =ç ÷ç ÷ç ¶è ø

¶


¶
XX

 

Which gives 
2

1¢ =F . This implies that u is a distance parameter along 

the string. 

 For an open string, the relevant conditions are free conditions at the end 

of the string 0sm = . 

 For a closed string 

o We take derivatives of X with respect to t and s , form linear 

combinations and use the parameterisation conditions above. 

o Then, use the periodicity conditions and differentiate with respect 

to u and v to find periodicity conditions for F and G. 

This means that ¢F  and ¢G  lie on the surface of the sphere (they have 

unit modulus and are periodic). This means that at some time, they’ll 

cross, and 

o 
0

/ ( )t c u¢¶ ¶ =X F  – and this implies that the speed these is the 

speed of light, in the direction of ¢F . 

o We then get ( ) ( )2 3

0 0 0 0

1 1
( , )

2 3!
t s s s s s= + - + - +X X T R  , 

where 2 2

0 0
/ ( , )ts s= ¶ ¶T X  and 3 3

0 0
/ ( , )ts s= ¶ ¶R X . 


