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8.033 Relativity ~ Additional Notes 

 

Aberration and the Doppler Effect 
 If a particle is moving with speed u at an angle q  to the horizontal, then, in a 

frame moving horizontally at a speed v, the horizontal and vertical velocities 

will be 
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 When using the aberration and Doppler formulae, the angle is the one 

between the direction of motion of the photon and the direction in which the 

observer is moving. 

 Relations for a photon /E pc hcw l= = =  

 

Extra Dynamics Stuff 
 To find a threshold energy, evaluate E2 – p2c2 in the ZMF after the collision 

(in which p is 0) 

 Equate it to the invariant before the collision in the lab frame. 

 

4-Vectors, Formally 
 4-vectors are vectors that transform like (c dt, dx, dy, dz). 

 In deriving them, we use the fact that t  is invariant and 
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 Examples are 

o Velocity 4-vector – obtained by dividing every component above by the 

proper time (dt ). Since dt  is invariant, the result is a 4-vector 

( ) ( ) ( )1 1
d ,d ,d ,d d ,d ,d ,d 1,

d d
t x y z t x y z

t
g g

t
= = =U u  

Note – the g  refers to the u, because the dx, etc… are taken in the 

frame of the moving object. 

o Energy-momentum 4-vector obtained by multiplying U by the 

invariant m. 

( ) ( ), ,m m m Eg= = =P U u p  

o Acceleration 4-vector – obtained by taking the derivative of the 

velocity 4-vector with respect to t . 
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If u points along the x-direction 

( )
( )( )

( )

3 3 2

3 2 2

4 4 2 2

, , ,

, 1 , ,

, , ,

x x x x x y z

x x x x y z

x x x y z

u a u a a a a

u a u a a a

u a a a a

g g g g g g

g g g g g g

g g g g

= +

= +

=

A

 

o Force 4-vector – obtained by taking the derivative of the momentum 4-

vector with respect to t . 
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If the mass is constant, we have (d / d )m t m= =U a , and we can 

write 

( )3 3,m uu uug g g g= +u a   

Comparing these two expressions 

3m uu mg g= +F u a  

If u is in the x-direction, we can use the result above 

( )3 , ,
x y z

m a a ag g g=F  

A very useful result indeed. 
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o Current density 4-vector – obtained by multiplying the velocity 4-

vector by the proper charge density 
0 0

/Q Vr = , where V0 is the rest 

volume of the charge. 

( )0
1,r g=J u  

We note that 

 The first component, is the effective charge density, because the 

effective volume is 
0
/V g . 

 The other components are the effective current densities. 

 Velocity transformation can easily be derived by considering two particles 

moving away from each other in one frame, and taking the inner product. 

 Energy momentum calculations can easily be done with 4-vectors. Particularly 

o For a single particle, we recover 2 2 2E p m- =  

o For a group of particles, we get 

( ) ( )2 2
Sum of energies in ZMFE - =å åp  

 We can derive the transformation of forces from the above 

o In the rest frame of a particle 
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o As such, in a new frame 
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But using the definition of the force 4-vector 
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o The last three components give us the law of transformation of force, 

and the first gives us the work-energy Theorem. 

 We can also derive the transformation of accelerations from the above 
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o In the rest frame of a particle 

(0, , , )
x y z

a a a=A  

o As such, in a new frame 

( ), , ,
x x y z

ua a a ag g¢ =A  

But we also know, using the definition of A if u points in the x-

direction, that 
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GR & Metrics 
 The central principle of GR is that “mass tells spacetime how to curve, 

spacetime tells mass how to move”. 

 The Einstein Field Equations allow us to determine how spacetime curves 

given the masses present. The result is a metric, which is an expression for the 

spacetime interval between two events. 

 Metrics are formulated such that the wristwatch time measured along a curve 

r(t) through spacetime is given by 

dt tD = ò  

 The principle of extremal aging states that the path of a massive object from 

A to B is the geodesic between these two points – in other words, the path 

that extremises tD  above. 

 A photon will move along a null geodesic, with 0tD = . 

 The simplest metric studied so far is the Minkowski Metric 
2 2 2 2d d d d dt x y zt = - - -  

This can be expressed in polar coordinates as 

2 22 2d d d dt r rt = - - W  
Where 
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2 2 2 2d d sid nq f qW = +  

We have 

 General relativity allows us to express things in any frame using the general 

covariance to convert to any such frame. 

 

The Newtonian Metric 
 Matter affects the gravitational field as 2 4 Gf p r =  and the gravitational 

field affects matter as F m f=-  . 

 The equivalence principle comes in two forms 

o Weak equivalence principle – no local experiment can distinguish 

between a uniform gravitational field g and a frame accelerating with a 

= g. 

o Strong equivalence principle – the laws of physics take on their special-

relativistic forms in any locally inertial frame. 

These arise from the fact that inertial mass = gravitational mass, and that the 

gravitational acceleration is therefore independent of mass. 

 This implies that gravity is a purely geometric object. If we know the 

worldline of an object moving under the influence of gravity (ie: velocity 4-

vector), its future trajectory does not depend on its mass or composition. 

 This implies that the lower we are in a gravitational potential, the slower our 

clocks will run. 

2

d
1

dt c

t f
= +  

Where t  is the measured (wristwatch) time and t is the far-away time, 

measured far away from any potential. This implies that we must modify our 

metric 

( )2 2 2 2 2d 1 2 d d d dt x y zt f= + - - -  

[Where we have used a Taylor Expansion and used c = 1]. This is the 

Newtonian Metric. 

 To derive the relation above 
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o Consider two pulses send ft  apart at a point with potential f . They 

are received at a time 
0

t  apart at a point with potential 0.  

o This is equivalent to the pulses being send from the top to the bottom 

of an elevator in free fall g and height / gf . 

o The pulses have a distance cft  between them, and take a time / gcf  

to travel to the bottom of the elevator. 

o By that time, the bottom of the elevator is moving at a speed 

( / ) /gc g cf f´ = , and so the relative velocity between the bottom of 

the elevator and the photons is ( / )c cf + . 

o As such, the separation in time between the two pulses arriving is  

0 2
0

1
( / )

c

c c c
f ft t f

t
f t

= = +
+

  

 Using the metric above, we can re-derive Newton’s Laws for the geodesics. 

 

Cosmology 
 The most general metric that is isotropic and homogeneous is the FRW metric: 

2
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 Lines in space with constant , ,r q f  are geodesics, and objects on such lines are 

commoving at that commoving position. Galaxies are (approximately) 

commoving. 

 The distance between commoving objects increases with time, proportionally 

to a(t). Space streches. Furthermore, a can often be used as a convenient 

variable instead of t. 

 If k = 0, this is just expanding flat space 

 Light emitted at a time a1 and observed at a time a2 will have red-shifted due 

to space stretching. The red-shift (z) is defined as 

2 now

1 1

1
a

z
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l
l
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When we say something happened “at red-shift z”, it means that it was 

emitted at a time such that the light emitted will now be observed with a red-

shift z. z = 0 is now, z = ¥  is the big bang, and z = –1 is the distant future. 

 It turns out that the FRW metric is only a solution of the Einstein Field 

Equations if it obeys the Friedmann Equation 

2 2
2

2

8

3

a G kc
H

a a

p
r
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Where H is the Hubble Parameter, defined as above, and r  is the density of 

stuff in space. The “stuff” is photons, ordinary matter and dark energy. We 

usually also define 2 23 / 8
k

kc Gar pº - , so that we can write 

( )2 8

3 m k

G
H g

p
r r r rL= + + +  

 The cosmological parameter W  for “stuff” in the universe is given by the 

density of the stuff divided by the critical density, which is defined as 
2

crit

3

8

H

G
r

p
=  

As such 
tot,matter

1
k

W = -W . So for 
tot,matter

1W > , space is finite (like a 

hypersphere), and for 
tot,matter

1W £ , space is infinite. 

 Different stuff, however, dilutes differently in space 

o 4 4(1 )a zgr
-µ µ +  [photons] 

o 3 3(1 )
m

a zr -µ µ +  [ordinary matter] 

o 2 2(1 )
k

a zr -µ µ +  [special curvature; the k-term in the Friedmann eq.] 

o constantr
L
=  [vacuum energy; the cosmological constant] 

A few points 

o We can also find dependence on t by feeding into the Friedmann 

Equation, using the fact that 2 2( / )H a a r= µ  and solving. 

o We can find exact expressions for all of these in terms of current 

densities by noting that 

 Currently, z = 0. 

 Currently, a = 1 (as we scale it). 

And so, for example, 4

,now

4

,now
(1 )a zgg g rr r - = +=  
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We can therefore re-write the Friedmann Equation in terms of t, a or z instead 

of r . 

 In many cases, it also helps to just write everything in terms of cosmological 

factors W  instead of densities r . 

 The “Hubble constant” (dimensionless Hubble parameter) is defined as 

1 0
0

1100kg s Mpc
9.78 Gyr

H
Hh

- -
» ´=  

 

The Schwarzschild Metric & Black Holes 
 Units 

o Mass in geometrical (length) units is given by 2

kg
( / )M G c M= . 

o Length in geometrical (time) units is given by 
m

/D D c=  

 Timelike Schwarzschild Metric in geometric units 

1

2 2 2 222 2
d 1 d 1 d d

M M
t r r

r r
t

-æ ö æ ö÷ ÷ç ç÷ ÷= - - - -ç ç÷ ÷ç ç÷ ÷ç çø è ø
W

è
 

With 2 2 2 2d s n dd iq q fW = + . 

 Coordinate systems: 

o Schwarzschild Bookeeper 

 r at a shell is the reduced circumference (Circumference / 2p ). 

 t is the far-away time. It can be determined for an event at the 

shell either by (1) sending light signals out and timing their 

difference far away or (2) keeping a clock at the shell that runs 

at a different, corrected rate and is synchronised. 

o Free-float 

 Coordinates as “seen” by a freely falling observer. 

 No force felt in such a frame. 

o Shell 

 Coordinates as “seen” by an observer seated on a shell around 

the black hole. 
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 Only possible outside the Horizon. Inside the horizon, the 

character of time and space are reversed, and just as time 

irresistibly moves forward outside the radius, so must space 

inside the radius – a shell cannot stay stationary. 

 Because of the departure from natural motion entailed by sitting 

on a shell, we need a force to keep us there. We interpret this as 

the “fictitious” force of gravity. 

 Substituting values for 
shell

dt  and 
shell

dr  into the metric reveals 

that spacetime looks flat in the shell frame. Most importantly, 

the speed of light there is measured to be 1 (most easily proved 

by substituting 2 2

shell shell
d d dr r xf+ =  and noting that 0t =  for 

light). 

 Information can be exchanged between the free-fall frame and 

the shell frame using special relativity (see below). 

o Conversions 

 Successively set dr = 0 and dt = 0 in the metric to find the 

proper time and proper length at a shell. We obtain 

1

shell
d d

r
t tg-=    

shell
d d

r
r rg=  

With ( ) 1/2
21

r r
g b

-
º -  and 2 /

r
M rb º . 

  

 Conserved Quantities 

o Consider a particle travelling into a black hole. Its wristwatch time 

must be extremized (we assume an orbit at a constant q ): 
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The Euler-Lagrange Equation for f  gives 
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And for r, we note that the functional does not include t explicitly, and 

we assume that the orbit is completely radial (d 0f = ) so: 

1 2

2

constant

1 2 d
1 constant

d

1 2
1 constant

2 d
1

d
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F r
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F r t
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o These two quantities are therefore conserved. 

 The Energy 

o The energy is the total unified energy of the system. (It can most easily 

calculated by finding its effect on a mass at a great distance – the 

resulting “apparent mass” is equal to the energy). 

o We can calculate the energy E in two important cases. Since E is 

constant, this value will remain for the whole orbit. 

 When the particle is launched from rest at infinity, d dtt =  and 

r = ¥ , and so 

1E =  

 When the particle is launched from a radius r, at a speed with 

gamma factor 
v

g , we first note that 
shell

d d
v

t g t=  (using special 

relativity). We then note that 
shell

d d
r

t tg= . As such 

2
1

v

M
E

r
g= -  

 The Angular Momentum – can be calculated using very similar methods to the 

above. The most general case is a launch at speed v0, angle 
0
q  to the outwards 

radial from a shell r. In that case 

shell

d

tangential 0 0 d
sin

t
v v r fq= =  

We multiply by 
0shell

d / d
v

t t g= , and get 

0

d

0 0d
sin

v
r vf

t
g q=  

From which we get 
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0 0 0
sin

v
L r vg q=  

 Miscellaneous points 

o The red-shift of light from a shell can be deduced using conversions 

between shell and far-away coordinates, either by considering the time 

between two peaks in a wave, or the distance between such peaks. 

 

Motion Around & In a Black Hole 
 Radial Plunge 

o Consider a particle with energy E  radially plunging into a black hole. 

We have that 
2

2

2
d 1

d

2 d 2
1 1

d t E

M t M
E

r r

t
t
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And from the Schwarzchild metric, we have that (for a radial plunge) 
2 1 2

d 2 2 d
1 1

d d

M M r

t r r t

t
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And so combining the two, we get 

2

1
1

d 2 2
1 1

d

r M M

r Et r
+
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We take the negative root because this describes a plunge – radius 

decreases with time. 

o The SHELL OBSERVER, however, measures something different 

shell
21

shell

d d 2
1

1

d d
1r

r

r r M

t rt E

g

g-
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The energy measured at the shell (Eshell) can be calculated using special 

relativity, which the shell observer can use: 

1/2

shell

2
1

v

M
E E

r
g

-æ ö÷ç ÷= = -ç ÷ç ÷çè ø
   

This is a general formula, which applies even for photons. 
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o To find the point of view of the PLUNGING OBSERVER (wristwatch time 

rain
dtt = ), we note that 

1
d 2

1
d

t M
E

rt
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And so 

i
2
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[The reduced circumference takes meaning even inside the radius, since 

the free-faller can simply measure a piece of circumference and deduce r]. 

o Salient points are: 

 The faraway observer never sees the object cross the horizon. It 

simply comes to a slow stop before it, and red-shifts out of sight. 

 The shell observer at the radius would see the object whizzing by 

at the speed of light. However, shells cannot exist at or past the 

horizon, so this is purely academic. 

 For the falling observer, we can find the time from horizon to 

crunch by integrating dt  given by the last equation above. We 

get 4 / 3Mt =  from an observer from infinity, or Mt p=  from 

an observer just from the horizon. 

 The energy Eshell is a local quantity and not a constant of the 

motion. 

o The Gullstrand-Painlevé Metric 

 We can convert dr and dt in the Schwarzchild metric to 
rain

dr  

and 
rain

dt  by first converting to the shell frame, and then using 

SR to convert to the rain frame. This gives [only for free fall from 

rest at infinity]: 
2

rain
d d d

r r
t t rb g= +  

rain
d dr r=  

The resulting metric is 

( )2 2 2 2 2 2

rain rain
d 1 d 2 d d d d

r r
t t r r rt b b f= - - - -  
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With 2 /
r

M rb º . This provides a global metric for the free 

fall frame. It can be used inside and outside the horizon. 

 We can use this to understand why light cannot escape back 

across the Horizon. Consider a beam of light falling or leaving 

radially (d 0t =  and df = 0 ). The solutions to the above are: 

rain

1
d

d r

r

t
b= -   

One corresponds to the inwards-moving photon, and the other to 

the outwards moving photon. Clearly, past r = 2M, even the 

outward going electron moves inwards in r coordinate. 

 We can also use this expression to find the radial trajectory of 

light into our out of the black hole, by numerical integration. 

 Applying variational calculus to the rain metric shows that 

constants of the motion for this fall are 

rain
rain

d2 2 d
1

d d

tM M r
E

r rt t
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rain bookkeeper
L L=   

 Radial and tangential motion 

o In our case, we know that 

2

/
d d

L m

r
f t=  

If we take the Schwarzchild metric and substitute the above for df  and 

use the expression for energy to substitute for dt, and solve for dr, we 

get 
2 2

2

2

d 2
1 1

d

r M L
E

r rt
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We multiply this by ( )2dt  to get a formula for increments in f  and r 

as t  changes. This can, in principle, be used to solve for the entire orbit.  

o In Newtonian Mechanics, the effective potential is given by 
1

eff2
r E V= -  . By analogy, and looking at the equation above, we can 

define 
2

2

eff 2

2
( ) 1 1

M L
V r

r r
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Such that 

( )2 2 2d / dr E Vt = -   

o The effective potential looks like 

 
o A number of comments: 

 The “dip” is larger than in the Newtownian effective potential. 

This means that an elliptically orbiting satellite stays “closer” to 

the planet for longer. There is therefore precession of the orbit of 

the ellipse. 

 The case shown above is in fact the smallest possible stable 

circular orbit, with r = 6M. 

 Standard effective potential arguments help us analyse a general 

motion. 

 Light around a black hole 

o For light, dt = 0 . We can use this, and the metric, to show that for the 

bookkeeper, the radial and tangential speed of light are not equal to 1. 

o For a shell observer, however, the speed of light is always 1 (we know 

this given that the metric for the shell observer is flat). 

o We can derive an “effective potential for light”. Start with the metric 
1

2 2 2

2 2

2

2

2

2 2
0 1 d 1 d d

d 2 2
1 1 d

d

M M
t r r

r r

r M M
r

t r r
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Then convert to shell coordinates, to get 

Schwarzchild
/r R

eff
( )V r

1

1 3

4L M=
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2 1

2shell

shell
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We can write the RHS in terms of L and E 
2

2
shell

2 2
shell

2
2

shell
2 2

shell
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r M L

t rr E
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And so by analogy, our effective potential here is 

2

eff 2

1 (2 / )
( )

M r
V r

r

-
=  

This is totally independent of frequency and everything else. It is 

plotted below. Note, however, that this potential is expressed in terms 

of the local shell coordinates. It can therefore only be used for 

qualitative estimations of what will happen to the light. 

 
There is therefore only one possible circular orbit, which occurs at r = 

3M. 

Schwarzchild
/r R

eff
( )V r

1 3
2


