8.05 Review Notes

Information on the formula sheet is not usually reproduced here...

The First Bits of the Course...

- For a free particle

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(x)=\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

- General features of wavefunctions
o The ground state must be even.
o The number of nodes indicates how "high" the state is.
- To incorporate the fact a particle decays as $\exp (-t / \tau)$, add $-i \hbar / 2 \tau$ to the potential.
- The particle flux is given by $J(x, t)=\frac{\hbar}{m} \operatorname{Im}\left(\psi^{*} \frac{\partial \psi}{\partial x}\right)$ with $\dot{\rho}+J^{\prime}=0$. To prove, write an expression for $\dot{\rho}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\psi \psi^{*}\right)$ and simplify with a complexconjugated SE. Integrating the conservation law over all space, we end up with the fact total probability is conserved. For a fluid, $J=\rho v$ which gives us a nice definition of quantum velocity.
- $[\hat{x}, \hat{p}]=i \hbar$
- General tips and tricks with Dirac Notation
o A crucial step in many derivations is that

$$
\begin{aligned}
\langle x| \hat{p}|p\rangle & =p\langle x \mid p\rangle \\
& =p \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \\
& =-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \\
& =-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}\langle x \mid p\rangle
\end{aligned}
$$

And similarly that

$$
\begin{aligned}
\langle p| \hat{x}|x\rangle & =x\langle p \mid x\rangle \\
& =x \frac{1}{\sqrt{2 \pi \hbar}} e^{-i p x / \hbar} \\
& =i \hbar \frac{\mathrm{~d}}{\mathrm{~d} p}\langle x \mid p\rangle
\end{aligned}
$$

o When working out expressions like $\langle x| \hat{p}|\psi\rangle$, write it as $\int\langle x| \hat{p}|p\rangle\langle p \mid \psi\rangle \mathrm{d} p$.
o To find $\langle x| \hat{p}|y\rangle$, insert the identity into $\langle x| \hat{p}|\psi\rangle$ and compare.

- When showing that $e^{\hat{A}}|\alpha\rangle$ is an eigenstate (of x, say), easiest way to do it is

$$
\hat{x} e^{\hat{A}}|\alpha\rangle=e^{\hat{A}}\left(e^{-\hat{A}} \hat{x} e^{\hat{A}}\right)|\alpha\rangle=e^{\hat{A}}(\hat{x}+[\hat{x}, \hat{A}])|\alpha\rangle
$$

[This uses the fact that $e^{\hat{A}} \hat{B} e^{-\hat{A}}=\hat{B}+[\hat{A}, \hat{B}]$, quoted on the formula sheet].

- To find the Fourier Transform of a function like $x e^{i p x}$, eliminate the x by expressing it as a derivative of the exponential.
- The function of the doubly differentiated delta function is to "pick out" the double derivative.
- To find the maximum and/or minimum value of an operator \hat{A}, consider a normalised eigenvector ψ and realise that $\langle\psi| \hat{A}|\psi\rangle=a\langle\psi \mid \psi\rangle$. Then, write \hat{A} in two ways that makes $\langle\psi| \hat{A}|\psi\rangle$ a norm, and realise it must therefore be greater than 0 (for example, $\langle\psi| \hat{a}^{\dagger} \hat{a}|\psi\rangle=\| \hat{a}|\psi\rangle \| \geq 0$ and $\left.\langle\psi| 1-\hat{a} \hat{a}^{\dagger}|\psi\rangle\right)$.
- For a free particle, the wavelength is given by

$$
\frac{\hbar^{2} k^{2}}{2 m}=E-V_{e f f}
$$

- Translation operators in QM

$$
\begin{array}{r}
\mathcal{U}=e^{-i x_{0} \hat{p} / \hbar} \\
\mathcal{U}=e^{i \phi \hat{J}_{z}}
\end{array}
$$

$$
\langle x| \hat{\mathcal{U}}|\psi\rangle=\psi\left(x-x_{0}\right) \quad \hat{\mathcal{U}}^{\dagger} \hat{x} \hat{\mathcal{U}}=x+x_{0}
$$

rotates the system by ϕ about the z-axis

- The postulates of QM :
o At each instant, the state of a physical system is represented by a ket $|\psi\rangle$ in the space of states.
o Every observable attribute of a physical system is described by an Hermitian operator that acts on the kets that describe the system.
o The only possible result of the measurement of an observable A is one of the eigenvalues of the corresponding operator A.
o When a measurement of an observable A is made on a generic state $|\psi\rangle$, the probability of obtaining an eigenvalue a_{n} is given by the square of the inner product of $|\psi\rangle$ with the eigenstate $\left|a_{n}\right\rangle$ $\left|\left\langle a_{n} \mid \psi\right\rangle\right|^{2}$.
o Immediately after the measurement of an observable A has yielded a value a_{n}, the state of the system is the normalised eigenstate $\left|a_{n}\right\rangle$.
o The time-evolution of a quantum system preserves the normalisation of the associated ket. The time evolution of the state of a quantum system is described by $|\psi(t)\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$ where U is unitary.

Uncertainty

- If $[\hat{A}, \hat{B}]=0$, then A and B are compatible - simultaneous eigenfunctions.
- The complete set of commuting observables is one in which each basis state is specified by a unique set of eigenvalues.
- For incompatible observables, the generalised uncertainty principle states that

$$
(\Delta A)^{2}(\Delta B)^{2} \geq\left(\langle\psi| \frac{1}{2 i}[\hat{A}, \hat{B}]|\psi\rangle\right)^{2}
$$

We note that $\frac{1}{2 i}[\hat{A}, \hat{B}]$ is Hermitian and so has real expectation values. Thus, the RHS is always real and positive. Note that even if $[\hat{A}, \hat{B}] \neq 0$, the expectation value of $i[\hat{A}, \hat{B}]$ might still be 0 .

- To prove the generalised uncertainty principle, consider

$$
\begin{aligned}
& |f\rangle=(\hat{A}-\langle\hat{A}\rangle)|\psi\rangle \\
& |g\rangle=(\hat{B}-\langle\hat{B}\rangle)|\psi\rangle
\end{aligned}
$$

And

$$
\begin{aligned}
&\langle f \mid f\rangle\langle g \mid g\rangle \geq|\langle f \mid g\rangle|^{2} \\
&(\Delta A)^{2}\left(\Delta B^{2}\right) \geq\left(\frac{\langle f \mid g\rangle+\langle g \mid f\rangle}{2}\right)^{2}+\left(\frac{\langle f \mid g\rangle-\langle g \mid f\rangle}{2 i}\right)^{2} \\
&(\Delta A)^{2}\left(\Delta B^{2}\right) \geq\left(\left\langle\frac{[\hat{A}, \hat{B}]}{2 i}\right\rangle\right)^{2}
\end{aligned}
$$

- For minimum uncertainty, we need
o $|g\rangle=\alpha|f\rangle$ (with complex α). This gives us equality in the Schwarz Inequality.
o $\langle f \mid g\rangle+\langle g \mid f\rangle=0 \Rightarrow \alpha=i \lambda$
And so $(\hat{B}-\langle\hat{B}\rangle)|\psi\rangle=i \lambda(\hat{A}-\langle\hat{A}\rangle)|\psi\rangle$
- For an eigenstate, the uncertainty of the operator is 0 . To see why, consider $\langle\beta \mid \beta\rangle$ where $|\beta\rangle=(\hat{A}-a)|\alpha\rangle$. If $\left\langle\hat{A}^{2}\right\rangle=\langle\hat{A}\rangle^{2}$.

Quantum Dynamics

- Time evolution operator defined such that $|\psi, t\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi, t_{0}\right\rangle$
o If \hat{H} is independent of time

$$
\hat{U}\left(t, t_{0}\right)=e^{-i\left(t-t_{0}\right) \hat{H} / \hbar}
$$

o If \hat{H} dependent on time but $\left[\hat{H}(t), \hat{H}\left(t^{\prime}\right)\right]=0$

$$
\hat{U}\left(t, t_{0}\right)=e^{-\frac{i}{\hbar} \int_{t_{0}}^{t} \hat{H}(\tilde{t}) \mathrm{d} \dot{t}}
$$

[Eg: field with constant position and varying direction].
o If \hat{H} dependent of time and $\left[\hat{H}(t), \hat{H}\left(t^{\prime}\right)\right] \neq 0$, not 8.05

- For the first case above, insert the identity before and after \hat{U} to find that

$$
|\psi, 0\rangle=\sum_{n} C_{n}|n\rangle \Rightarrow|\psi, t\rangle=\sum_{n} C_{n} e^{-\frac{i}{\hbar}\left(t-t_{0}\right) E_{n}}|n\rangle
$$

- We can view expectation values in two different ways

$$
\overbrace{\langle\psi, 0| U^{\dagger}(t, 0)}^{{ }_{s}\langle\psi, t|} \overbrace{\hat{A}}^{\hat{A}_{S}} \overbrace{U(t, 0)|\psi, 0\rangle}^{|\psi, t\rangle_{S}}=\underbrace{\langle\psi, 0|}_{H} \underbrace{\langle\psi, \underbrace{\text { Heisenberg }}}_{\hat{A}_{H}} \underbrace{U^{\dagger}(t, 0) \hat{A} U(t, 0)}_{|\psi\rangle_{H}} \underbrace{\psi \psi, 0\rangle}
$$

In the Schrodinger Picture, the wavefunctions evolve with time and operators stay constant. In the Heisenberg picture, the opposite is true.

- Schrodinger and Heisenberg operators are related by the Heisenberg Equation of Motion

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{A}_{H}(t)=\left[\hat{A}_{H}(t), \hat{H}_{H}(t)\right]+i \hbar \underbrace{\dot{\hat{A}}_{H}(t)}_{=\hat{U}^{\nmid} \dot{A}_{s} \hat{U}}
$$

This last term disappears if the Schrodinger operator does not vary with time, which is true most of the time. To solve this equation, find the right-hand-side and integrate. Taking expectation values of each side gives the Ehrenfest Theorem.

- A few notes
o Changing picture does not change the form of commutators

$$
\left[\hat{A}_{S}, \hat{B}_{S}\right]=\hat{C}_{S} \Leftrightarrow\left[\hat{A}_{H}, \hat{B}_{H}\right]=\hat{C}_{H}
$$

o If $\left[\hat{H}(t), \hat{H}\left(t^{\prime}\right)\right]=0$, then $[\hat{U}, \hat{H}]=0$ and $\hat{H}_{H}=U^{\dagger} \hat{H}_{S} \hat{U}=\hat{H}_{S}$.
o If $[\hat{H}, \hat{A}]=0$, then A is a conserved quantity.

Two-State Systems

- The matrix element $\langle 2| \hat{H}|1\rangle$ is a measure of the tunnelling probability 1 $\rightarrow 2$.
- The Hamiltonian for a spin in a field \boldsymbol{B} is

$$
\hat{H}=-\gamma \boldsymbol{B} \cdot \hat{\boldsymbol{S}}
$$

Where \boldsymbol{S} is a vector containing the spin operators as its components. By using the Heisenberg Equation of Motion for S_{x}, S_{y} and S_{z} and integrating, we can show that any spin precesses about \boldsymbol{B} with angular velocity $\omega=\gamma|B|$.

- Any general two-state Hamiltonian can be written as a sum of the identity matrix and the Pauli matrices, and so can be thought of as a precessing spin.
- Now, consider instead a system with a constant field in the z-direction, and a rotating field in the $x-y$ plane $\left(\omega_{0}=\gamma B_{0}\right.$ and $\left.\omega_{1}=\gamma B_{1}\right)$

$$
\hat{H}(t)=-\frac{\hbar}{2} \omega_{0} \hat{\sigma}_{3}-\frac{\hbar}{2} \omega_{1}\left[\cos (\omega t) \hat{\sigma}_{1}-\sin (\omega t) \hat{\sigma}_{2}\right]
$$

Using the properties of the Pauli Matrices

$$
\begin{aligned}
\hat{H}(t) & =-\frac{\hbar}{2} \omega_{0} \hat{\sigma}_{3}-\frac{\hbar}{2} \omega_{1} \exp \left(\frac{1}{2} i \omega t \sigma_{3}\right) \hat{\sigma}_{1} \exp \left(-\frac{1}{2} i \omega t \sigma_{3}\right) \\
& =-\exp \left(\frac{1}{2} i \omega t \sigma_{3}\right)\left[\frac{\hbar}{2} \omega_{0} \hat{\sigma}_{3}+\frac{\hbar}{2} \omega_{1} \hat{\sigma}_{1}\right] \exp \left(-\frac{1}{2} i \omega t \sigma_{3}\right) \\
& =-\exp \left(\frac{1}{2} i \omega t \sigma_{3}\right)\left[\omega_{0} \hat{S}_{z}+\omega_{1} \hat{S}_{x}\right] \exp \left(-\frac{1}{2} i \omega t \sigma_{3}\right)
\end{aligned}
$$

So in other words, our Hamiltonian is constant in a rotating frame. So if the state is $\left|\psi_{R}(t)\right\rangle$ in the rotating frame, then in the lab frame, it is $|\psi(t)\rangle=\exp \left(\frac{1}{2} i \omega t \sigma_{3}\right)\left|\psi_{R}(t)\right\rangle$.

- Substitute $|\psi(t)\rangle=\exp \left(\frac{1}{2} i \omega t \sigma_{3}\right)\left|\psi_{R}(t)\right\rangle$ into the LHS of the SE to get

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\psi_{R}(t)\right\rangle=\left[\left(\omega-\omega_{0}\right) \hat{S}_{z}-\omega_{1} \hat{S}_{x}\right]\left|\psi_{R}(t)\right\rangle
$$

So in the rotating frame, there is precession about a new field $\boldsymbol{B}_{\text {eff }}$. Since, typically, $\omega_{1} \ll \omega_{2}$, the possible options are as follows
o ω very different from ω_{0} - the field basically precesses around the z axis (ie: nearly not at all for a spin up).
o $\omega \approx \omega_{0}$ - the field precesses around the x-axis at a frequency ω_{1}. Since our rotating frame is also moving around the z-axis, the spins spirals all the way down.

- NMR works as follows
o We turn on a radio pulse with $\omega=\gamma_{\text {proton }} B_{0}$, for strength B_{1} for a time $\Delta t=\pi / 2 \gamma_{\text {proton }} B_{1}$. This brings the spin"down" and makes it maximally perpendicular to the z-axis.
o We then switch the field off and look for radio emission of precessing spins at a frequency ω_{0} resulting from such spins.

QM in Three-Dimensions

- Using all kinds of horribly complicated maths, we derive

$$
\boldsymbol{L}^{2}+(\boldsymbol{r} \cdot \boldsymbol{p})^{2}=\boldsymbol{r}^{2} \boldsymbol{p}^{2}+i \hbar \boldsymbol{r} \cdot \boldsymbol{p} \Rightarrow \boldsymbol{p}^{2}=\frac{(\boldsymbol{r} \cdot \boldsymbol{p})^{2}-i \hbar \boldsymbol{r} \cdot \boldsymbol{p}+\boldsymbol{L}^{2}}{\boldsymbol{r}^{2}}
$$

Using this relation and even more complicated maths, we get

$$
\boldsymbol{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)+\frac{\boldsymbol{L}^{2}}{2 m r^{2}}+V(r)
$$

And finally, using a last dose of complicated maths, we find that a maximal set of commuting operators for this system is

$$
\left\{H, \boldsymbol{L}^{2}, L_{z}\right\}
$$

- Start with eigenfunctions $|\ell, m\rangle$, and assume that

$$
\begin{gathered}
\boldsymbol{L}^{2}|\ell, m\rangle=\hbar^{2} \ell(\ell+1)|\ell, m\rangle \\
L_{z}|\ell, m\rangle=\hbar m|\ell, m\rangle
\end{gathered}
$$

Use horrible maths once again to get

$$
\boldsymbol{L}^{2}=L_{+} L_{-}+L_{z}^{2}-\hbar L_{z}
$$

Then, derive facts about these as follows:
o Constraint on ℓ

$$
\begin{gathered}
\langle\ell, m| \boldsymbol{L}^{2}|\ell, m\rangle=\| L_{i}|\ell, m\rangle \| \geq 0 \\
\langle\ell, m| \boldsymbol{L}^{2}|\ell, m\rangle=\ell(\ell+1)\langle\ell, m \mid \ell, m\rangle
\end{gathered}
$$

And so

$$
\ell(\ell+1) \geq 0 \Rightarrow \ell \geq 0
$$

o Constraint on m

$$
\begin{gathered}
\langle\ell, m| L_{-} L_{+}|\ell, m\rangle=\| L_{+}|\ell, m\rangle \| \geq 0 \\
\langle\ell, m| L_{+} L_{-}|\ell, m\rangle=\langle\ell, m| \boldsymbol{L}^{2}-L_{z}^{2}-\hbar L_{z}|\ell, m\rangle
\end{gathered}
$$

And so

$$
\ell(\ell+1) \geq m(m+1)
$$

When we have $\left|\ell, m_{\max }\right\rangle$, we have equality because $L_{+}\left|\ell, m_{\max }\right\rangle=0$, and so $m_{\max }=\ell$. Doing the same with $L_{+} L_{-}$, we find

$$
-\ell \leq m \leq \ell
$$

o Action of ladder operators - consider $\hat{\boldsymbol{L}}^{2}$ and \hat{L}_{z} acting on $L_{ \pm}|\ell, m\rangle$ to prove the lowering action. Write

$$
\begin{gathered}
L_{ \pm}|\ell, m\rangle=C_{ \pm}|\ell, m \pm 1\rangle \\
\left|C_{ \pm}(\ell, m)\right|^{2}=\langle\ell, m| L_{\mp} L_{ \pm}|\ell, m\rangle
\end{gathered}
$$

And then find $C_{ \pm}$by writing the product of ladder operators as above.

- To find $Y_{\ell m}=\langle\theta, \phi \mid \ell, m\rangle$
o Apply $\langle\theta, \phi|$ to the left of both sides of $L_{z}|\ell, m\rangle=\hbar m|\ell, m\rangle$
o Separate variables, and get ϕ dependence directly.
o Apply $\langle\theta, \phi|$ to the left of both sides of $L_{+}|\ell, \ell\rangle=0$ to find $Y_{\ell \ell}$
o Lower to find others.
Note that $Y_{1,0}$ is a dumbbell, but $Y_{1, \pm 1}$ are doughnuts.
- Half-integer ℓ is impossible for spatial wavefunctions, because they can otherwise be lowered forever.
- The parity operator Π is defined by $\Pi|\boldsymbol{r}\rangle=|-\boldsymbol{r}\rangle$, and it is hermitian and unitary. It can be shown that

$$
\Pi|\ell, m\rangle=(-1)^{\ell}|\ell, m\rangle
$$

- Separating variables on the Schrodinger Equation gives

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\hbar^{2} \ell(\ell+1)}{2 m r^{2}}+V(r)\right) U(r)=E U(r)
$$

Where

$$
\psi(\boldsymbol{r})=\frac{1}{r} U(r) Y_{\ell m}(\theta, \phi)
$$

And normalisation implies that

$$
\int_{0}^{\infty}|U(r)|^{2} \mathrm{~d} r=1
$$

- We can derive some asymptotic conditions on U :
o If $U(r) \underset{r \rightarrow 0}{\rightarrow} r^{S}$, then $S=\ell+1$, assuming that the potential is no more singular than $1 / r$. Can be shown by solving the above and normalising, or by requiring H to be Hermitian.
o Assuming that V vanishes at infinity, then $U(r) \sim e^{ \pm r \sqrt{-2 m E / \hbar^{2}}}$, and depending on whether $E>0$ or $E<0$, we get planes waves or decaying exponentials.
- When "sketching" states:
o The states starts off as $U(r) \sim r^{\ell+1}$
o At ∞, we either have a sinusoidal function or a decaying exponential.
o In between, we have oscillatory behaviour, where a higher potential (less energy) means a higher amplitude and a longer wavelength.
- The super symmetric method
o We define pairs of related Hamiltonians, $H^{(1)}=\mathcal{A}^{\dagger} \mathcal{A}, H^{(2)}=\mathcal{A} \mathcal{A}^{\dagger}$. [Note that in each of the Hamiltonians, only the sign of the \mathcal{W}^{\prime} changes].
o Important facts are that:

1. $H^{(1)}$ and $H^{(2)}$ have the same energy spectrum, and if ϕ_{n} is an eigenstate of $H^{(1)}$, then $\mathcal{A} \phi_{n}$ is an eigenstate of $H^{(2)}$ with the same eigenvalue.
2. There is usually some sort of relationship between $H^{(1)}$ and $H^{(2)}$.
3. Only one of $H^{(1)}$ and $H^{(2)}$ can have a normalisable state with 0 energy.
o So the tactic for these problems is

- Use 3 to get a state of $H^{(1)}$, say.
- Use 2 to get the next level state, but for $H^{(2)}$.
- Use 1 to make that into a state of $H^{(1)}$
- Rinse, lather, repeat...

Spin

- Eigenvalues of the Pauli matrices are
o $\frac{\sqrt{2}}{2}(1,-1)$ and $\frac{\sqrt{2}}{2}(1,1)$ for σ_{x}.
o $\frac{\sqrt{2}}{2}(-i, 1)$ and $\frac{\sqrt{2}}{2}(1,-i)$ for σ_{y}.
- We can decompose any 2 by 2 matrix into

$$
\begin{gathered}
\boldsymbol{M}=a_{0} \boldsymbol{I}+\boldsymbol{a} \cdot \boldsymbol{\sigma} \\
{\left[a_{0}=\frac{1}{2} \operatorname{tr}(\boldsymbol{M}) \quad \boldsymbol{a}=\frac{1}{2} \operatorname{tr}(\boldsymbol{M} \boldsymbol{\sigma})\right]}
\end{gathered}
$$

Addition of Angular Momenta

- Two angular momenta \boldsymbol{L} and \boldsymbol{L}^{\prime}, with $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{L}^{\prime}$ can be described in two difference bases
o $\quad \hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{L}}^{\prime 2}, \hat{L}_{z}, \hat{L}_{z}^{\prime}$, and states are $\left|\ell, \ell^{\prime}, m_{\ell}, m_{\ell}^{\prime}\right\rangle$
o $\quad \hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{L}}^{\prime 2}, \hat{\boldsymbol{J}}^{2}, \hat{J}_{z}$, and states are $\left|\ell, \ell^{\prime}, J, M_{j}\right\rangle$
- It is useful to have the $\boldsymbol{L} \cdot \boldsymbol{L}^{\prime}$ operator in the two bases

$$
\begin{gathered}
\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{L}}^{\prime}=\frac{1}{2}\left(\hat{\boldsymbol{J}}^{2}-\hat{\boldsymbol{L}}^{2}-\hat{\boldsymbol{L}}^{\prime 2}\right) \\
\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{L}}^{\prime}=\hat{L}_{z} \hat{L}_{z}^{\prime}+\hat{L}_{x} \hat{L}_{x}^{\prime}+\hat{L}_{y} \hat{L}_{y}^{\prime}=\hat{L}_{z} \hat{L}_{z}^{\prime}+\frac{1}{2}\left(\hat{L}_{+} \hat{L}_{-}^{\prime}+\hat{L}_{-} \hat{L}_{+}^{\prime}\right)
\end{gathered}
$$

In systems in which both bases are referred to in the Hamiltonian, it pays to stay in the $\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{L}}^{\prime 2}, \hat{L}_{z}, \hat{L}_{z}^{\prime}$ basis and diagonalise the Hamiltonian.

- The transformations between the two bases are listed in tables, and are obtained roughly as follows:
o Start from the maximum J and M_{j} value (trivially obtained by adding all the maximum states). Lower using the ladder operators.
o Find the state with $\boldsymbol{J}-1$ and $M_{j}=\boldsymbol{J}-1$ by using the fact it will be orthogonal to the $\boldsymbol{J}, \boldsymbol{M}_{\boldsymbol{j}}=\boldsymbol{J}-\mathbf{1}$ state. Lower.
o Rinse, lather, repeat...

Identical Particles

- $\hat{P}_{i j}$ is the exchange operator - it exchanges all the labels i and j in a state. It is Hermitian and unitary, and can have eigenvalues +1 (bosons with integer spin) or -1 (fermions with half-integer spin).
- Constructing symmetric and antisymmetric wavefunctions
o Consider \boldsymbol{N} Fermions $(1,2, \ldots, N)$ which could be in any state $\alpha, \beta, \cdots, \nu$. The most general antisymmetric linear combination of these states is given by the Slater Determinant

$$
\Psi(1,2, \cdots, N)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
u_{\alpha}(1) & u_{\alpha}(2) & \cdots & u_{\alpha}(N) \\
u_{\beta}(1) & u_{\beta}(2) & \cdots & u_{\beta}(N) \\
\vdots & \vdots & & \vdots \\
u_{\nu}(1) & u_{\nu}(2) & \cdots & u_{\nu}(N)
\end{array}\right|
$$

Thus, if we're looking for a state in which we know one particle is in α, one in β and one in γ, we simply calculate the above. Notes:

- Swapping one particle does exactly what is expected.
- If any states are identical, the determinant goes to 0 and the wavefunction cannot be anti-symmetrised.
o For \boldsymbol{N} bosons, similar considerations apply, but with all the alternating signs in the Slater determinant changed to "positives".
- General results - if we have N particles and j possible states, then the number of different three particle states possible is
o j^{N} if the particles are distinguishable.
o ${ }^{N+j-1} C_{j-1}$ if the particles are indistinguishable bosons. [Placing $j-1$ barriers between $N+j-1$ states].
$0{ }^{j} C_{N}$ if the particles are indistinguishable fermions.
- Spatial and spin parts
o It is also possible to factor a wavefunction into spin and spatial wavefunctions. It is the product of both that has to satisfy appropriate symmetry.
o We can individually symmetrise/antisymmetrise each part using the tactics above.
o In general, for the $\ell \otimes \ell^{\prime}$ spin case, states with resulting even J will be even, and states with resulting odd J will be odd.
- Correlation and exchange forces
o Symmetric wavefunctions result in particles appearing to "attract" each other, and vice-versa.
o Thus, energy levels in the Helium molecule are lower when spins are aligned (symmetric) because the spatial part then has to be antisymmetric, which results in less repulsion.
o Similarly, bonds are caused by antisymmetric spins, which then cause the electrons to attract.

