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8.05 Review Notes 
 

Information on the formula sheet is not usually 

reproduced here… 

 

The First Bits of the Course… 
 For a free particle 

2 2 2
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= + = +
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 General features of wavefunctions 

o The ground state must be even. 

o The number of nodes indicates how “high” the state is. 

 To incorporate the fact a particle decays as ( )exp /t t- , add / 2i t-   to 

the potential. 

 The particle flux is given by ( )*( , ) Im
m x

J x t yy ¶

¶
=   with 0Jr ¢+ = . To 

prove, write an expression for *d
d

( )
t

r yy=  and simplify with a complex-

conjugated SE. Integrating the conservation law over all space, we end up 

with the fact total probability is conserved. For a fluid, J vr=  which 

gives us a nice definition of quantum velocity. 

 ˆ ˆ,x p ié ù =ê úë û   

 General tips and tricks with Dirac Notation 

o A crucial step in many derivations is that 
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And similarly that 
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o When working out expressions like ˆ| |x p y , write it as 

ˆ| | | dx p p p pyò . 

o To find ˆ| |x p y , insert the identity into ˆ| |x p y  and compare. 

 When showing that Âe a  is an eigenstate (of x, say), easiest way to do it 

is 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ,̂A A A A Axe e e xe e x x Aa a a- é ù= = + ê úë û  

[This uses the fact that 
ˆ ˆ ˆˆ ˆ ˆ[ , ]A Ae Be B A B- = + , quoted on the formula sheet]. 

 To find the Fourier Transform of a function like xeipx, eliminate the x by 

expressing it as a derivative of the exponential. 

 The function of the doubly differentiated delta function is to “pick out” 

the double derivative. 

 To find the maximum and/or minimum value of an operator Â , consider a 

normalised eigenvector y  and realise that ˆ| |A ay y y y= . Then, 

write Â  in two ways that makes ˆ| |Ay y  a norm, and realise it must 

therefore be greater than 0 (for example, †ˆ ˆ ˆ| | 0a a ay y y= ³  and 

†ˆˆ| 1 |aay y- ). 

 For a free particle, the wavelength is given by 
2 2

2 eff

k
E V

m
= -


 

 Translation operators in QM 

0 ˆ/

0 0

†ˆ ˆ ˆˆ( )ix pe x x x x x xy y-= = - = +     

ˆ
zi Je f=  rotates the system by f  about the z-axis 

 The postulates of QM: 

o At each instant, the state of a physical system is represented by a 

ket y  in the space of states. 
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o Every observable attribute of a physical system is described by an 

Hermitian operator that acts on the kets that describe the system. 

o The only possible result of the measurement of an observable A is 

one of the eigenvalues of the corresponding operator A. 

o When a measurement of an observable A is made on a generic state 

y , the probability of obtaining an eigenvalue an is given by the 

square of the inner product of y  with the eigenstate 
n

a  – 

2

n
a y . 

o Immediately after the measurement of an observable A has yielded 

a value an, the state of the system is the normalised eigenstate 
n

a . 

o The time-evolution of a quantum system preserves the 

normalisation of the associated ket. The time evolution of the state 

of a quantum system is described by 
0 0

ˆ( ) ( , ) ( )t U t t ty y=  where U 

is unitary. 

 

Uncertainty 

 If ˆ ˆ, 0A Bé ù =ê úë û , then A and B are compatible – simultaneous eigenfunctions. 

 The complete set of commuting observables is one in which each basis 

state is specified by a unique set of eigenvalues. 

 For incompatible observables, the generalised uncertainty principle states 

that 

( ) ( ) ( )
2

1
2 2

2
ˆ ˆ| [ , ] |

i
A BA B y y³D D  

We note that 1
2

ˆ ˆ[ , ]
i
A B  is Hermitian and so has real expectation values. 

Thus, the RHS is always real and positive. Note that even if ˆ ˆ[ , ] 0A B ¹ , 

the expectation value of ˆ ˆ[ , ]i A B  might still be 0. 

 To prove the generalised uncertainty principle, consider 

( )
( )
ˆ ˆ

ˆ ˆ

f A A

g B B
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= -
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And 
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 For minimum uncertainty, we need 

o g fa=  (with complex a ). This gives us equality in the 

Schwarz Inequality. 

o | | 0f g g f ia l+ =  =  

And so ( ) ( )ˆ ˆˆ ˆB B i A Ay l y- = -  

 For an eigenstate, the uncertainty of the operator is 0. To see why, 

consider b b  where ( )Â ab a= - . If 
2

2ˆ ˆA A= . 

 

Quantum Dynamics 
 Time evolution operator defined such that 

0 0
ˆ, ( , ) ,t U t t ty y=  

o If Ĥ is independent of time 

0
ˆ( ) /

0
ˆ( , ) i t t HU t t e- -=   

o If Ĥ  dependent on time but ˆ ˆ( ), ( ) 0H t H té ù¢ =ê úë û  

0

ˆ( )d

0
ˆ( , )

t

t

i
H t t

U t t e
- ò

=
 

  

[Eg: field with constant position and varying direction]. 

o If Ĥ  dependent of time and ˆ ˆ( ), ( ) 0H t H té ù
ê úë û ¹

¢ , not 8.05 

 For the first case above, insert the identity before and after Û  to find that 

0( )

, 0 ,
n

i
t t E

n n
n n

C n t C e ny y
- -

= =å å   

 We can view expectation values in two different ways 
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ˆ ,,

† †

ˆ

Schrodinger

ˆ ˆ,0 ( ,0) ( ,0) ,0 ,0 ( ,0) ( ,0) ,0

Heisenberg

S SS

H H H

tt A

A

U t AU t U t AU t

yy

y y

y y y y=
 


 

In the Schrodinger Picture, the wavefunctions evolve with time and 

operators stay constant. In the Heisenberg picture, the opposite is true. 

 Schrodinger and Heisenberg operators are related by the Heisenberg 

Equation of Motion 


†ˆ ˆ

d ˆ ˆ ˆˆ( ) ( ), ( ) ( )
d

S

H H H H

U A U

i A t A t H t i A t
t

=

é ù= +ê úë û


   

This last term disappears if the Schrodinger operator does not vary with 

time, which is true most of the time. To solve this equation, find the right-

hand-side and integrate. Taking expectation values of each side gives the 

Ehrenfest Theorem. 

 A few notes 

o Changing picture does not change the form of commutators 

ˆ ˆˆ ˆ ˆ ˆ, ,
S S S H H H

A B C A B Cé ù é ù=  =ê ú ê úë û ë û  

o If ˆ ˆ( ), ( ) 0H t H té ù¢ =ê úë û , then ˆ ˆ, 0U Hé ù =ê úë û  and †ˆ ˆ ˆ ˆ
H S S

H U H U H= = . 

o If ˆˆ, 0H Aé ù =ê úë û , then A is a conserved quantity. 

 

Two-State Systems 
 The matrix element ˆ2 1H  is a measure of the tunnelling probability 1 

 2. 

 The Hamiltonian for a spin in a field B is 

ˆ ˆH g= - ⋅B S  

Where S is a vector containing the spin operators as its components. By 

using the Heisenberg Equation of Motion for Sx, Sy and Sz and integrating, 

we can show that any spin precesses about B with angular velocity 

Bw g= . 
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 Any general two-state Hamiltonian can be written as a sum of the identity 

matrix and the Pauli matrices, and so can be thought of as a precessing 

spin. 

 Now, consider instead a system with a constant field in the z-direction, 

and a rotating field in the x–y plane (
0 0

Bw g=  and 
1 1

Bw g= ) 

0 3 1 1 22 2
ˆ ˆ ˆ ˆ( ) cos( ) sin( )H t t tw s w w s w sé ù= - - -ê úë û

   

Using the properties of the Pauli Matrices 

( ) ( )
( ) ( )
( ) ( )

1 1
0 3 1 3 1 32 2 2 2

1 1
3 0 3 1 1 32 2 2 2

1 1
3 0 1 32 2

ˆ ˆ ˆ( ) exp exp

ˆ ˆexp exp
ˆ ˆexp exp

z x

H t i t i t

i t i t

i t S S i t

w s w w s s w s

w s w s w s w s

w s w w w s

= - - -
é ù= - + -ê úë û
é ù= - + -ê úë û

 

   

So in other words, our Hamiltonian is constant in a rotating frame. So if 

the state is ( )
R

ty  in the rotating frame, then in the lab frame, it is 

( )1
32

( ) exp ( )
R

t i t ty w s y= . 

 Substitute ( )1
32

( ) exp ( )
R

t i t ty w s y=  into the LHS of the SE to get 

0 1

d ˆ ˆ( ) ( ) ( )
d R z x R

i t S S t
t
y w w w yé ù= - -ê úë û  

So in the rotating frame, there is precession about a new field Beff. Since, 

typically, 
1 2

w w , the possible options are as follows 

o w  very different from 
0

w  – the field basically precesses around the 

z axis (ie: nearly not at all for a spin up). 

o 
0

w w»  – the field precesses around the x-axis at a frequency 
1

w . 

Since our rotating frame is also moving around the z-axis, the spins 

spirals all the way down. 

 NMR works as follows 

o We turn on a radio pulse with 
proton 0

Bw g= , for strength B1 for a 

time 
proton 1

/ 2t Bp gD = . This brings the spin “down” and makes it 

maximally perpendicular to the z-axis. 

o We then switch the field off and look for radio emission of 

precessing spins at a frequency 
0

w  resulting from such spins. 
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QM in Three-Dimensions 
 Using all kinds of horribly complicated maths, we derive 

( )
2 2

2 2

2

2 2 2 ( )
i

i⋅ - ⋅ +
 =+ ⋅ = + ⋅

r p r p L
pL r p r p

r
r p 

 

Using this relation and even more complicated maths, we get 

2 2 2

2 2

2
( )

2 2
V r

m r rr mr

æ ö¶ ¶ ÷ç ÷= - + + +ç ÷ç ÷÷ç ¶¶è ø

L
H


 

And finally, using a last dose of complicated maths, we find that a 

maximal set of commuting operators for this system is 

{ }2, ,
z

H LL  

 Start with eigenfunctions ,m , and assume that 

2 2, ( 1) ,

, ,
z

m m

L m m m

= +

=

L     
  

 

Use horrible maths once again to get 

2 2

z z
L L L L

+ -
= + -L   

Then, derive facts about these as follows: 

o Constraint on   
2

2

, | | , , 0

, | | , ( 1) , ,
i

m m L m

m m m m

= ³

= +

L

L

  

     
 

And so 

( ) 0 01 ³ ³+    

o Constraint on m 

2 2

, | | , ,

, | | , , | | ,

0

z z

m L L m L m

m L L m m L L m
- + +

+ -

=

= - -

³

L

  

    
 

And so 

( 1) ( 1)m m³+ +   

When we have 
max

,m , we have equality because 
max

, 0L m
+

= , 

and so 
max

m =  . Doing the same with L L+ -
, we find 

m- £ £   
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o Action of ladder operators – consider 2̂L  and ˆ
z

L  acting on ,L m   

to prove the lowering action. Write 

2

, ,

( , ) , | ,

1

|

L m C m

C m m L L m

 

 

=

=





 

  
 

And then find C+ by writing the product of ladder operators as 

above. 

 To find , ,
m

Y mq f=   

o Apply ,q f  to the left of both sides of , ,
z

L m m m=    

o Separate variables, and get f  dependence directly. 

o Apply ,q f  to the left of both sides of , 0L
+

=   to find Y  

o Lower to find others. 

Note that Y1,0 is a dumbbell, but Y1,+1 are doughnuts. 

 Half–integer   is impossible for spatial wavefunctions, because they can 

otherwise be lowered forever. 

 The parity operator P  is defined by P = -r r , and it is hermitian and 

unitary. It can be shown that 

( ), 1 ,m mP = -


   

 Separating variables on the Schrodinger Equation gives 

2 2 2

2 2

d ( 1)
( ) ( ) ( )

2 d 2
V r U r EU r

m r mr

æ ö+ ÷ç ÷- + + =ç ÷ç ÷÷çè ø

   
 

Where 

1
( ) ( ) ( , )

m
U r Y

r
y q f=r   

And normalisation implies that 
2

0
( ) d 1U r r

¥
=ò  

 We can derive some asymptotic conditions on U: 

o If 
0

( ) S

r
U r r


 , then 1S = + , assuming that the potential is no 

more singular than 1/r. Can be shown by solving the above and 

normalising, or by requiring H to be Hermitian. 
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o Assuming that V vanishes at infinity, then 
22 /( ) ~ r mEU r e -  , and 

depending on whether E > 0 or E < 0, we get planes waves or 

decaying exponentials. 

 When “sketching” states: 

o The states starts off as 1( ) ~U r r +  

o At ¥ , we either have a sinusoidal function or a decaying 

exponential. 

o In between, we have oscillatory behaviour, where a higher potential 

(less energy) means a higher amplitude and a longer wavelength. 

 The super symmetric method 

o We define pairs of related Hamiltonians, †(1)H =   , †(2)H =  . 

[Note that in each of the Hamiltonians, only the sign of the ¢  

changes]. 

o Important facts are that: 

1. H(1) and H(2) have the same energy spectrum, and if 
n

f  is an 

eigenstate of H(1), then 
n

f  is an eigenstate of H(2)
  with the 

same eigenvalue. 

2. There is usually some sort of relationship between H(1) and 

H(2). 

3. Only one of H(1)
 and H(2) can have a normalisable state with 0 

energy. 

o So the tactic for these problems is 

 Use 3 to get a state of H(1), say. 

 Use 2 to get the next level state, but for H(2). 

 Use 1 to make that into a state of H(1) 

 Rinse, lather, repeat… 

 

Spin 
 Eigenvalues of the Pauli matrices are 

o 2

2
(1, 1)-  and 2

2
(1,1)  for 

x
s . 

o 2

2
( ,1)i-  and 2

2
(1, )i-  for 

y
s . 
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 We can decompose any 2 by 2 matrix into 

( ) ( )
0

1 1
0 2 2

tr tr

a

a

= + ⋅
é ù= =ê úë û

M I a

M a M

s

s
 

 

Addition of Angular Momenta 
 Two angular momenta L  and ¢L , with ¢= +J L L  can be described in 

two difference bases 

o 
22̂ ˆ ˆ ˆ, , ,

z z
L L¢ ¢L L , and states are , , ,m m¢ ¢

    

o 
22 2ˆ ˆ ˆ ˆ, , ,

z
J¢L L J , and states are , , ,

j
J M¢   

 It is useful to have the ¢⋅L L  operator in the two bases 

( )
( )

22 21
2

1
2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
z z x x y y z z

L L L L L L L L L L L L+ - - +

¢ ¢⋅ = - -

¢ ¢ ¢ ¢ ¢ ¢ ¢⋅ = + + = + +

L L J L L

L L
 

In systems in which both bases are referred to in the Hamiltonian, it pays 

to stay in the 
22̂ ˆ ˆ ˆ, , ,

z z
L L¢ ¢L L  basis and diagonalise the Hamiltonian. 

 The transformations between the two bases are listed in tables, and are 

obtained roughly as follows: 

o Start from the maximum J and Mj value (trivially obtained by 

adding all the maximum states). Lower using the ladder operators. 

o Find the state with J – 1 and Mj = J – 1 by using the fact it will 

be orthogonal to the J, Mj = J – 1 state. Lower. 

o Rinse, lather, repeat… 

 

Identical Particles 
 ˆ

ij
P  is the exchange operator – it exchanges all the labels i and j in a state. 

It is Hermitian and unitary, and can have eigenvalues + 1 (bosons with 

integer spin) or –1 (fermions with half-integer spin). 
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 Constructing symmetric and antisymmetric wavefunctions 

o Consider N Fermions (1, 2, …, N) which could be in any state 

, , ,a b n . The most general antisymmetric linear combination of 

these states is given by the Slater Determinant 

(1) (2) ( )

(1) (2) ( )1
, )

!
(1

(1) (2) (

2,

)

,

u u u N

u u u N
N

N
u u u N

a a a

b b b

n n n

Y =





  



 

Thus, if we’re looking for a state in which we know one particle is 

in a , one in b  and one in g , we simply calculate the above. Notes: 

 Swapping one particle does exactly what is expected. 

 If any states are identical, the determinant goes to 0 and the 

wavefunction cannot be anti-symmetrised.  

o For N bosons, similar considerations apply, but with all the 

alternating signs in the Slater determinant changed to “positives”. 

 General results – if we have N particles and j possible states, then the 

number of different three particle states possible is 

o jN if the particles are distinguishable. 

o 1

1

N j

j
C+ -

-
 if the particles are indistinguishable bosons. [Placing j – 1 

barriers between N + j – 1 states]. 

o j

N
C  if the particles are indistinguishable fermions. 

 Spatial and spin parts 

o It is also possible to factor a wavefunction into spin and spatial 

wavefunctions. It is the product of both that has to satisfy 

appropriate symmetry. 

o We can individually symmetrise/antisymmetrise each part using 

the tactics above. 

o In general, for the ¢Ä   spin case, states with resulting even J will 

be even, and states with resulting odd J will be odd. 

 Correlation and exchange forces 
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o Symmetric wavefunctions result in particles appearing to “attract” 

each other, and vice-versa. 

o Thus, energy levels in the Helium molecule are lower when spins are 

aligned (symmetric) because the spatial part then has to be 

antisymmetric, which results in less repulsion. 

o Similarly, bonds are caused by antisymmetric spins, which then 

cause the electrons to attract. 


