15.053 Exam 3 Notes

Minimum Cost Flow

- General formulation of problem
o Specified net demand b_{i} for every node. >0 for demand node, <0 for supply node,$=0$ for transhipment node.
o Cost $c_{i, j}$ and capacity $u_{i, j}$ for every arc.
o Objective-minimize $\sum_{\text {all arcs }} c_{i, j} x_{i, j}=\boldsymbol{c} \cdot \boldsymbol{x}$
o Conservation constraints $\sum_{\text {all arcs in }} x_{i, k}-\sum_{\text {all arcs out }} x_{k, j}=b_{k} \Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
o Non-negativity and capacity constraints for each arc $0 \leq x_{i, j} \leq u_{i, j} \Rightarrow 0 \leq \boldsymbol{x} \leq \boldsymbol{u}$
- Dummy indices

0 If $\sum b_{k}>0$, the problem is infeasible - demand exceeds supply.
o If $\sum b_{k}<0$, need to add a dummy index to consume excess demand via zero-cost arcs from all source/supplies.

- The matrix \boldsymbol{A}
o Items are either +1 and -1 .
o Column \rightarrow arc and row \rightarrow node conservation constraint.
o Obviously, each column has exactly one " +1 " and one " -1 ".
- Notes
o Any LP method will work to solve this
o Network simplex method works better for minimum cost flow (MCF) problem.
o If supplies, demands and capacities are integer, the optimal solution will be integer.
- Formulating shortest path as MCF problem
o Start node capacity -1 , final node capacity +1 , other capacity 0 , arcs have capacity 1.
o Integrality of solutions implies that each arc will have flow 0 or 1 .
o Thus, can solve shortest path as LP.

Other problems

- Maximum flow problem
o General formulation of problem
- Source and sink node, and capacity for each arc (no costs).
o Dealing with it as MCP
- Insert return arc from t to s to capture max flow. Cost -1 , infinite capacity.
- All other arcs are given cost 0 . All nodes are transhipment.

- Transportation problem

o General formulation of problem

- Set of factories N_{1} with supply s_{i} and of markets N_{2} with demand d_{j}
- $c_{i, j}$ cost of shipping from factory i to market j.
- $\sum s_{i}=\sum d_{j}$
- Choosing bids optimally
o General formulation of problem
- Group N_{1} and N_{2}
- Set of allowable assignments with costs $c_{i, j}$
o Formulation as MCP
- Each assignment becomes a directed edge of infinite capacity.
- Each in N_{1} becomes a source of 1 , each in N_{2} becomes a sink of 1
- Require flow to minimise cost
- If $N_{1}>N_{2}$, add dummies with cost 0 linked to all the N_{1}.
- Including time effects
o Just replicate every node for every time period - flows can be between nodes of different times or same times.
- Multi-commodity flow problem
o General formulation
- Set of commodities Q
- $c_{q, i, j}$ and $u_{q, i, j}$ - unit cost and capacity of flow of commodity Q on $\operatorname{arc}(i, j)$
- $u_{i, j}-$ shared capacity of $\operatorname{arc}(i, j)$.
- $b_{q, k}$ - net demand of commodity q at node k.
- Decision is $x_{q, i, j}-$ net flow of commodity q on $\operatorname{arc}(i, j)$.

o Program

- Minimise $\sum_{q} \sum_{(i, j)} c_{q, i, j} x_{q, i, j}$
- Flow constraint for each node and each commodity

$$
\sum_{\text {flow in }} x_{q, i, k}-\sum_{\text {flow out }} x_{q, k, j}=b_{q, k}
$$

- Total capacity constraint at each arc

$$
\sum_{Q} x_{q, i, j} \leq u_{i, j}
$$

- Non-negativity and flow capacity at each arc for each capacity

$$
0 \leq x_{q, i, j} \leq u_{q, i, j}
$$

Integral Linear Programming

- Knapsack problem

o General formulation of problem

- Items $\{1, \ldots, n\}$ to put into sack.
- Each item has weight w_{i} and value c_{i}
- Maximum weight knapsack can hold is b
- Decision variables

$$
x_{i}=\left\{\begin{array}{cc}
1 & \text { choose item } i \\
0 & \text { otherwise }
\end{array}\right.
$$

- Maximise $\sum c_{i} x_{i}$ such that $\sum w_{i} x_{i} \leq b$ and $x_{i} \in\{0,1\}$
o Modifications
- If E is a set of mutually exclusive choices, we require $\sum_{i \in E} x_{i} \leq 1$.
- If we want at least one element from E to be chosen (we want to cover E), we require $\sum_{i \in E} x_{i} \geq 1$.
- If we want exactly some element from E to be chosen, we require $\sum_{i \in E} x_{i}=1$.
- If j can only be chosen if k is also chosen, require $x_{j} \leq x_{k}$

- Fixed Charges

o Let's imagine we have a cost that is non-linear

$$
\theta\left(x_{j}\right)=\left\{\begin{array}{cc}
f_{j}+h_{j} x_{j} & x_{j}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

o We can deal with this non-linear cost by introducing a new binary variable. We require that $x_{j} \leq M y_{j}$, with M a very large number, or the upper bound on x. This ensures that

$$
y_{j}=\left\{\begin{array}{cc}
1 & x_{j}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

o The objective cost then becomes $f_{j} y_{j}+h_{j} x_{j}$.

- Matchings

o General formulation of problem

- A matching is a set of edges such that no two edges share a common node.
- Decision variables

$$
x_{\{i, j\}}=\left\{\begin{array}{lc}
1 & \text { if edge }\{i, j\} \text { is on the matching } \\
0 & \text { otherwise }
\end{array}\right.
$$

- For each node, ensure only one adjacent edge selected

$$
\sum_{\{i, k\}} x_{\{i, k\}} \leq 1
$$

[This applies for each node i]

- Objective function is $\max \sum_{\{i, j\}} w_{\{i, j\}} x_{\{i, j\}}$, where w is the weight of a given pairing, if any.

- Graph colouring

o An assignment of colours to nodes such that no two adjacent nodes have the same colour. Need at most n colours if n nodes.
o General formulation of problem

- $\quad x_{i, c}$ is 1 if colour c is assignment to node $I, 0$ otherwise.
- y_{c} is 1 if colour c is used, 0 otherwise.
- Objective is to minimise $\sum_{c \in K} y_{c}$
- Every node is assigned only one colour, so $\sum_{i} x_{i, c}=1$
- Each colour can be assigned to an edge at most once, so

$$
x_{i, c}+x_{j, c} \leq 1 \quad \text { for all }\{i, j\} \text { and } c
$$

- Require

$$
x_{i, c} \leq y_{c} \quad \text { each } i \text { and } c
$$

o In general, any graph arising from a planar map can be coloured with four colours.

- Travelling salesman problem

o Decision variables $x_{\{i, j\}}=1$ if node is on tour, 0 otherwise.
o Objective function is simple; minimise $\sum c_{\{i, j\}} x_{\{i, j\}}$.
o Require it to be a tour - so $\sum_{\{i, k\}} x_{\{i, k\}}=2$ for each node i. This ensures that a single edge enters and leaves each node.
o To ensure that there are no subtours, we require $\sum_{\{i, j\} \in \delta(S)} x_{\{i, j\}} \geq 2$ where S is any proper subset of nodes, and $\delta\{S\}$ is the set of all edges with one point in S and one point outside S.

Relaxation

- An IP P can be relaxed to an LP P^{\prime} by allowing integer variables to become continuous (though with the same range).
- The relaxed model must have an equal or better than optimal solution than the unrelaxed model.
- If the relaxed model is unfeasible, then so is the unrelaxed model.
- If the optimal solution of P^{\prime} is also feasible in P, then it is the optimal solution of P.
- We might be able to round the optimal solution of P^{\prime} and get a feasible solution of P, which gives us a bound for that linear program.
- A valid inequality for a given program P holds for all integer feasible solutions to P. To strengthen a relaxation, a valid inequality must cut off some feasible solution to the current LP relaxation that are not valid in the true ILP model.
- If we add such a valid inequality, we get a stronger relaxation, and an optimal value that is closer to the true one.
- In short - solution to P^{\prime} gives upper bound on solution, rounding solution to P^{\prime} gives lower bound on solution.

Branch \& Bound

- Create enumeration tree one branch and one node at a time.
- Before branching, solve relaxation of candidate LP at that node
- Could terminate because of
o Infeasibility
o Bound: best possible solution (solution of relaxation) is less than incumbent solution
o Solving: if the solution of the relaxed LP is integer, stop there. If it's better than the incumbent, replace the incumbent. Otherwise, ignore it.
- Otherwise, we branch, changing the variable that is non-integer to change.
- When we discover a new incumbent solution, any active node with candidate optimal solution less than the new one can be eliminated.
- Active nodes have no children, and have not been terminated.
- Can take the highest parent bound on all active nodes to find the upper bound on the solution.
- Depth first: always do the deepest next. Best first: each iteration, start with the bets. Depth forward best back: do it normally, but when finishing an iteration, go back to the best.

