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15.053 Exam 3 Notes 

 

Minimum Cost Flow 
 

 General formulation of problem 

o Specified net demand bi for every node. > 0 for demand node, < 0 

for supply node, = 0 for transhipment node. 

o Cost ci,j and capacity ui,j for every arc. 

o Objective – minimize 
, ,

all arcs
i j i j

c x = ⋅å c x  

o Conservation constraints 
, ,

all arcs in all arcs out
i k k j k

x x b  =- =å å Ax b  

o Non-negativity and capacity constraints for each arc 

, ,
0 0

i j i j
x u£ £  £ £x u  

 Dummy indices 

o If 0
k

bå > , the problem is infeasible – demand exceeds supply. 

o If 0
k

bå < , need to add a dummy index to consume excess demand 

via zero-cost arcs from all source/supplies. 

 The matrix A 

o Items are either +1 and –1. 

o Column  arc and row  node conservation constraint. 

o Obviously, each column has exactly one “+1” and one “–1”. 

 Notes 

o Any LP method will work to solve this 

o Network simplex method works better for minimum cost flow (MCF) 

problem. 

o If supplies, demands and capacities are integer, the optimal solution 

will be integer. 

 Formulating shortest path as MCF problem 

o Start node capacity –1, final node capacity +1, other capacity 0, 

arcs have capacity 1. 

o Integrality of solutions implies that each arc will have flow 0 or 1. 

o Thus, can solve shortest path as LP. 
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Other problems 
 

 Maximum flow problem 

o General formulation of problem 

 Source and sink node, and capacity for each arc (no costs). 

o Dealing with it as MCP 

 Insert return arc from t to s to capture max flow. Cost –1, 

infinite capacity. 

 All other arcs are given cost 0. All nodes are transhipment. 

 Transportation problem 

o General formulation of problem 

 Set of factories N1 with supply si and of markets N2 with 

demand dj 

 ci,j cost of shipping from factory i to market j. 

 
i j

s då = å  

 Choosing bids optimally 

o General formulation of problem 

 Group N1 and N2 

 Set of allowable assignments with costs ci, j 

o Formulation as MCP 

 Each assignment becomes a directed edge of infinite capacity. 

 Each in N1 becomes a source of 1, each in N2 becomes a sink 

of 1 

 Require flow to minimise cost  

 If N1 > N2, add dummies with cost 0 linked to all the N1. 

 Including time effects 

o Just replicate every node for every time period – flows can be 

between nodes of different times or same times. 

 Multi-commodity flow problem 

o General formulation 

 Set of commodities Q 
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 cq, i, j and uq, i, j – unit cost and capacity of flow of commodity 

Q on arc (i, j) 

 ui, j – shared capacity of arc (i, j). 

 bq, k – net demand of commodity q at node k. 

 Decision is xq, i, j – net flow of commodity q on arc (i, j). 

o Program 

 Minimise 
, , , ,

( , )
q i j q i j

q i j

c xåå  

 Flow constraint for each node and each commodity  

, , , , ,
flow in flow out

q i k q k j q k
x x b- =å å  

 Total capacity constraint at each arc 

,, ,q i j
Q

i j
x u£å  

 Non-negativity and flow capacity at each arc for each 

capacity 

, , , ,
0

q i j q i j
x u£ £  

 

Integral Linear Programming 
 

 Knapsack problem 

o General formulation of problem 

 Items {1, …, n} to put into sack. 

 Each item has weight wi and value ci 

 Maximum weight knapsack can hold is b 

 Decision variables 

1 choose item 

0 otherwisei

i
x

ìïï= íïïî
 

 Maximise 
i i

c xå  such that 
i i

w x bå £  and { }0,1
i

x Î  

o Modifications  

 If E is a set of mutually exclusive choices, we require 

1
i iE

xÎå £ . 
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 If we want at least one element from E to be chosen (we 

want to cover E), we require 1
i iE

x
Î

å ³ . 

 If we want exactly some element from E to be chosen, we 

require 1
i iE

x
Î

å = . 

 If j can only be chosen if k is also chosen, require xj < xk 

 Fixed Charges 

o Let’s imagine we have a cost that is non-linear 

0
( )

0 otherwise
j j j j

j

f h x x
xq

ìï + >ï= íïïî
 

o We can deal with this non-linear cost by introducing a new binary 

variable. We require that 
jj

x My£ , with M a very large number, or 

the upper bound on x. This ensures that 

1 0

0 otherwise
j

j

x
y

ìï >ï= íïïî
 

o The objective cost then becomes 
j j j j

f y h x+ . 

 Matchings 

o General formulation of problem 

 A matching is a set of edges such that no two edges share a 

common node. 

 Decision variables 

{ , }

1 if edge { , } is on the matching

0 otherwisei j

i j
x

ìïï= íïïî
 

 For each node, ensure only one adjacent edge selected 

{ , }
{ , }

1
i k

i k

x £å  

[This applies for each node i] 

 Objective function is max 
{ , } { , } { , }i j i j i j

w xå , where w is the 

weight of a given pairing, if any. 

 Graph colouring 

o An assignment of colours to nodes such that no two adjacent nodes 

have the same colour. Need at most n colours if n nodes. 

o General formulation of problem 
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 xi, c is 1 if colour c is assignment to node I, 0 otherwise. 

 yc is 1 if colour c is used, 0 otherwise. 

 Objective is to minimise 
c cK

yÎå  

 Every node is assigned only one colour, so 
,

1
i i c
xå =  

 Each colour can be assigned to an edge at most once, so  

, ,
1 for all { , } and 

i c j c
i j cx x+ £  

 Require  

,
each  and 

i c c
x y i c£  

o In general, any graph arising from a planar map can be coloured 

with four colours. 

 Travelling salesman problem 

o Decision variables 
{ , }i j

x  = 1 if node is on tour, 0 otherwise. 

o Objective function is simple; minimise 
{ , } { , }i j i j

c xå . 

o Require it to be a tour – so 
{ , } { , }

2
i k i k

xå =  for each node i. This 

ensures that a single edge enters and leaves each node. 

o To ensure that there are no subtours, we require 
{ , } { , }( )

2
Si j i j

xdÎ ³å  

where S is any proper subset of nodes, and { }Sd  is the set of all 

edges with one point in S and one point outside S. 

 

Relaxation 
 

 An IP P can be relaxed to an LP P ¢  by allowing integer variables to 

become continuous (though with the same range). 

 The relaxed model must have an equal or better than optimal solution 

than the unrelaxed model. 

 If the relaxed model is unfeasible, then so is the unrelaxed model. 

 If the optimal solution of P ¢  is also feasible in P, then it is the optimal 

solution of P. 

 We might be able to round the optimal solution of P ¢  and get a feasible 

solution of P, which gives us a bound for that linear program. 
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 A valid inequality for a given program P holds for all integer feasible 

solutions to P. To strengthen a relaxation, a valid inequality must cut off 

some feasible solution to the current LP relaxation that are not valid in 

the true ILP model. 

 If we add such a valid inequality, we get a stronger relaxation, and an 

optimal value that is closer to the true one. 

 In short – solution to P ¢  gives upper bound on solution, rounding solution 

to P ¢  gives lower bound on solution. 

 

Branch & Bound 
 

 Create enumeration tree one branch and one node at a time. 

 Before branching, solve relaxation of candidate LP at that node 

 Could terminate because of 

o Infeasibility 

o Bound: best possible solution (solution of relaxation) is less than 

incumbent solution 

o Solving: if the solution of the relaxed LP is integer, stop there. If 

it’s better than the incumbent, replace the incumbent. Otherwise, 

ignore it. 

 Otherwise, we branch, changing the variable that is non-integer to change. 

 When we discover a new incumbent solution, any active node with 

candidate optimal solution less than the new one can be eliminated. 

 Active nodes have no children, and have not been terminated. 

 Can take the highest parent bound on all active nodes to find the upper 

bound on the solution. 

 Depth first: always do the deepest next. Best first: each iteration, start 

with the bets. Depth forward best back: do it normally, but when finishing 

an iteration, go back to the best. 

 


