15.053 Exam 2 Notes

Linear Programming - The End

- Sensitivity analysis
o Relaxing or removing/tightening or adding constraints makes more/less solutions available. This can be done by modifying the LHS or RHS.
o Similarly adding/removing variables makes more/less solutions available.
o Less/more feasible solutions means that the optimal value must stay the same or get worse/better.
o It turns out, however, that this effect is not linear.
o Changing an objective function coefficient will also change the result. It's also non-linear, but that's less obvious.
- LP Duality
o Every LP has a dual, which characterises the sensitivity of the original solution.
o One dual variable for each main LP constraint - change in primal optimal value per unit increase in constraint RHS.
o In a way, it's the "fair price" of unit thing on the RHS of the constraint. We also call it the marginal price or shadow price.
o Marginal/shadow price can be worked out from a simple linear program by increasing the RHS of a constraint by Δ, manually finding the new optimal solution, and seeing by how much in improves the objective function.
o Marginal/shadow price can be worked out from a Simplex tableau. Simply work out the reduced cost for taking a slack variable into the basis, multiply it by -1 , and this gives the shadow price.
o Can also work out from Simplex tableau what range certain objective function coefficients can take before the current optimal solution stops being optimal.
- Find every improving direction
- Require that the reduced cost for every improving direction be bad - otherwise, the current optimal solution is no longer optimal, because we could go along the "good" directions.
- Constructing the dual
o Consider an LP with n variables, m constraints:

$$
\begin{gathered}
\min \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } \sum_{j=1}^{n} a_{i, j} x_{j} \geq=\leq b_{i} \\
x_{j} \geq=\leq 0
\end{gathered}
$$

o The dual will have

- One decision variable v_{i} for each constraint
- Objective function $\max \sum_{i=1}^{m} b_{i} v_{i}$
- For each primal decision variable, a constraint of the form

$$
\sum_{i=1}^{m} a_{i, j} v_{i} \leq=\geq c_{j}
$$

[Going "down the columns" of the primal problem]. The type of each constraint depends on the non-negativity constraint of the original variable.

- For each dual decision variable, make it $\geq / \leq /$ free if the original inequality was $\geq / \leq /=$

o Swapping signs

- MINIMISATION PROBLEM: keep signs of inequality going from constraint \rightarrow non-negativity, and flip the sign when going from non-negativity \rightarrow constraint.
- MAXIMISATION PROBLEM: vice-versa.
- Strong duality - the optimal value of the primal and dual are the same.
- Primal complimentary slackness - either the optimal solution makes a main inequality constraint active or the corresponding dual variable has optimal value $=0$. This reflects the fact that if something is not in short supply in the primal, its shadow cost is 0 .

- Computer output

o Constraint sensitivity analysis gives us

- Type $\rightarrow L \Leftrightarrow \geq, U \Leftrightarrow \leq, L U \Leftrightarrow=$
- Optimal dual \rightarrow optimal value of the dual variable corresponding to the constraint [= marginal]
- RHS coef \rightarrow the specified RHS coefficient in the original primal problem.
- Max increase/decrease \rightarrow the amount by which the RHS can be increased/decreased for which the dual solution remains valid.

o Variable sensitivity analysis

- Optimal value \rightarrow optimal value of primal variable
- Bas Sts \rightarrow basic (B) or non-basic (NL/NU)
- Lower bound/upper bound/object coef \rightarrow specified stuff in the primal problem
- Reduced object \rightarrow |reduced cost of variable| at optimality. This is how much more attractive the variable's coefficient in the objective function must be before the variable is worth using.
- Max decrease/increase \rightarrow change of objective function coefficient for which primal optimal solution remains unchanged.

Games

- 0-sum game: whatever someone wins, the other loses.
- Pure strategy: choose same thing every time. Mixed strategy: assign probability to each strategy.
- Want to MAXIMISE your MINIMUM payoff or want to MINIMISE their MAXIMUM payoff.
- Turns out these two aims/programs are duals of each other.

Graphs

- Principle of optimality (for shortest path problem) - in a graph with no negative dicycles (directed paths that start and end at the same node), optimal paths must have optimal subpaths.

- Bellman-Ford algorithm

o Set $v=0$ for the source, ∞ otherwise.
o At each iteration, set v as the minimum of

- Its previous value
- For any node that leads into it, the v for that node + the length of the path that leads there.

Set d to the neighbouring node that was used to work out v.
o Terminate if

- All the vs stay the same for one cycle
- $t=n$ and they're not, which means there's a negative dicycle.
- The critical path is the longest path through a graph.

