15.053 Exam 1 Notes

- Linear program terminology
o Decision variables - the variables we need to determine
o Input parameters - the costs, times taken for things, etc...
o Objective function - the thing that needs to be maximised or minimized.
o Unbounded - feasible choices of the decision variables can produce arbitrarily good objective function values.
o Linear program - constraints and objective function are linear (ie: weighed sums of the decision variables).
- Solving problems graphically
o Optimal solution - optimal line minimised only at "corner point".
o Plotting a line of the form $a x+b y=C$
- Get the x by itself and set y to 0 . Vice versa.
- For the objective function, let $C=$ some random value.
- Step sizes and directions
o As long as the step size is finite, there's no indication that the program is unbounded.
o To find the conditions required for a feasible direction Δw at a given point...
- Find the active (tight) constraints at that point
- Require that $\Delta w \cdot($ constraint vector $) \geq=\leq 0$ as needed.
o To check whether a direction is improving, dot it with the objective function vector, and look at the sign of the result.
o To find the maximum step size, λ, assuming you make the change $\lambda \Delta w$, change all the variables accordingly, solve, and take the smallest one.
- Improving search
o The feasible region of an LP is convex [the line segment between every pair of feasible points falls entirely within the feasible region].
o This means that every local optimal solution is a global optimal solution.
o Algorithm
- Initialisation - choosing stating solution
- Check for local optimality (no improving solution)
- Find improving and feasible direction
- Find step size
- Advance
- Standard-form LP
o All variables must be non-negative, and only equalities are included.
o Add slack variables to make up for it.
o Objective function is $\boldsymbol{c} \cdot \boldsymbol{x}$ and constraints are $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq 0$.
o For a negative variable, make a new variable $\bar{x}=-x$. For a variable that can be positive or negative, make two new variables $x=x^{+}+x^{-}$.
o For an absolute value $|x|$, replace it with a new variable z and add constraints $z \geq x$ and $z \geq-x$, with $z_{1}, z_{2}, z_{3} \geq 0$.
o For a maximin (maximise the minimum), introduce a new variable f, and maximise f subject to $f \leq$ [said variable].
o n is the number of decision variables, m is the number of constraints, c_{j} is the objective function coefficient of x_{j} and $a_{i, j}$ is the coefficient of x_{j} in the $i^{\text {th }}$ constraints and b_{j} is the RHS of main constraint i.
- Types of points
o Interior point - no inequality is active
o Boundary point - at least one inequality constraint is satisfied as equality at a given point
o Extreme points of convex sets - those that do not lie within the line segment between any two other points in the set. Generally a solution of a system of n equations and n variables. Some can be determined by different sets of active constraints.
o Adjacent extreme points - determined by active constraints differing in only 1 element.
- Simplex - intro
o Effectively an improving search algorithm
o Starts at an extreme point, and moves to adjacent extreme point with better objective value...
o ...until no adjacent extreme point has better objective value.
o Algorithm
- Initialization - choose starting feasible solution
- If no improving feasible direction, stop
- Construct improving feasible direction
- Choose step size [if no limit, stop]
- Advance
- Simplex - standard display

	x_{1}	x_{n}	
$\operatorname{Max} \mathbf{c}$	c_{1}	c_{n}	\mathbf{b}
	a_{11}		b_{1}

A
$a_{n n} \quad b_{n}$

Basic var?		
$\boldsymbol{x}^{(0)}$	$\boldsymbol{c} \cdot \boldsymbol{x}^{(0)}$	
$\Delta \boldsymbol{x}$ for $\boldsymbol{x}_{?}$		$\bar{c}_{?}$
	\ldots ratios...	
New bas. var?		
$\boldsymbol{x}^{(1)}$	$\boldsymbol{c} \cdot \boldsymbol{x}^{(1)}$	

- Simplex - basic solutions
o Fix $n-m$ variables (nonbasic variables) to 0 . Obtain a unique solution for the remaining system of m variables (basic variables) and m equations.

0 Qualifications

- A basic solution is feasible (BFS) if it satisfies all nonnegativity constraints.
- Sometimes, we can't even get a basic solution, if the system of equations obtained after setting nonbasic variables to 0 doesn't have a unique solution.
o For a standard-form LP, the BFSs are exactly the extreme points of the feasible region. We need to cycle through them.
- Simplex - first phase
o This phase finds a basic solution, by creating an artificial linear program.
o Procedure
- Multiply constraints by -1 as necessary to make b positive.
- Add a non-negative artificial variable for each constraint, and set to objective function to minimise the sum of these artificial variables.
- This has an easy to find BFS - set all the non-artifical variables to 0 .
o This is good because
- It can't be infeasible (because it has a BFS)
- It can't be unbounded (because the variables are ≥ 0)
o Solve.
o If the solution of A doesn't make all artificial variables 0 , then the original program is infeasible.

0 If the solution of A has all the artificial variables 0 , then what's left over is a BFS for the original program.

- Simplex - finding an improving direction
o In improving a direction, we choose one nonbasic variable, and move it out of the basis. To decide which, we see which improves our cost best.
o Procedure
- Choose a nonbasic variable x_{j}
- Move direction

$$
\Delta x_{i}=\left\{\begin{array}{cc}
+1 & i=j \\
0 & i \neq j \quad\left(x_{i} \text { nonbasic }\right) \\
? & \text { otherwise }
\end{array}\right.
$$

- Need

$$
\begin{gathered}
\boldsymbol{A}(\boldsymbol{x}+\lambda \Delta \boldsymbol{x})=\boldsymbol{b} \\
\boldsymbol{A \Delta x = \boldsymbol { \theta }}
\end{gathered}
$$

m variable, m equations, has unique solution because \boldsymbol{x} is a BFS.

- The change in our objective function is

$$
\boldsymbol{c} \cdot(\boldsymbol{x}+\lambda \Delta \boldsymbol{x})-\boldsymbol{c} \cdot \boldsymbol{x}=\lambda \boldsymbol{c} \cdot \Delta \boldsymbol{x}
$$

And so we calculate the reduced cost for the variable j

$$
\bar{c}_{j}=\boldsymbol{c} \cdot \Delta \boldsymbol{x}
$$

o We calculate those for each nonbasic variable, and then choose the one with the best reduced cost to move into the basis.
o If there is no improving direction - stop. We're done

- Simplex - step size
o This is an LP, so the improving directions are improving forever, and we constructed the system such that equality constraints are satisfied, so problems must come from violating non-negativity. We want to increase λ until we violate one of those.

0 Increasing λ can only lead to bad things for $\Delta x_{j}<0$.
o We therefore use step size

$$
\lambda=\min \left\{\frac{x_{j}^{(t)}}{-\Delta x_{j}}: \Delta x_{j}<0\right\}
$$

Calculate this ratio for every variable in the basis for our chosen direction, add to standard display, and pick the minimum one.

- Simplex - updating the basis

○ $\quad \boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{x}^{(t)}+\lambda \Delta \boldsymbol{x}$
o Nonbasic variable used to generate direction becomes basic.
o Basic variable that determines step size becomes nonbasic.

- Simplex - degeneracy
o Happens if more than the required number of constraints are active at a given extreme point.
o In other words, one of the basic variables is 0 .
o The simplex method may generate a step size of 0 (if the simplex direction involves decreasing a variable that is already equal to 0) and can then "get stuck" for a few steps.
o Computations will (usually) escape these zero-length moves and eventually produce a direction where improving progress can be made.
o Thus, the simplex method does not necessary move to an adjacent extreme point, but it does move to an adjacent basis.

