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Exam 3 Review Questions 
8.02 – Spring 2009 

 

 

Question 1 

Which of the following expressions could be a valid representation of the E and B 

fields in an electromagnetic wave? (Remember that 1´ = ´ = ´ =i j j k k i  but 

1´ = ´ = ´ = -j i k j i k ) 

1. ( ) ( )0 0
cos cosE ky t B ky tw w= - = -E j B k  

2. ( ) ( )2cos N/C 5cos Tkx t kx tw w= - = -E j B k  

3. ( ) ( )0 0
cos cosE kx t B kx tw w= - = -E k B j  

4. ( ) ( )0 0
cos cosE ky t B ky tw w= + = +E i B k  

5. ( ) ( )0 0
cos cosE kx t B ky tw w= - = -E j B k  

6. ( ) ( )0 0
cos cosE kx t B kx tw w= - = -E k B k  

7. ( ) ( )0 0
cos cosE kx t B kx tw w= - = +E j B k  

 

The answer is 4. 

1. …is not valid because the direction of propagation is +y, but the E fields 

are along the +y direction. The wave is therefore not transverse. 

2. …is not valid because the B field is larger than the E field. 

3. …is not valid because the wave propagates in the +x direction, but the 

Poynting vector is in the = ´ = ´ =-S E B k j i  direction. 

4. …is valid! 

5. …is not valid because the E and B field depend on different spatial 

coordinates (x and y). 

6. …is not valid because the E and B fields point in the same direction, not 

orthogonal to each other. 

7. …is not valid because the E and B fields travel in different directions. The 

E field is travelling forwards, and the B field is travelling backwards. 
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Question 2 

I have, in my kitchen, a very long serving dish, with a very narrow flat base and 

large slowly slanting sides. Some 8.02 students, wanting to take revenge for how 

hard the last PSet was, came along and filled it with diesel oil. Here’s a side view 

of what it looked like: 

 
When I looked directly down at the dish, I saw a beautiful colourful pattern. 

Here’s a simplified sketch of what I saw in which I only considered two of the 

many colours visible (not to scale): 

 

 
 

 

 

Oil 

Flat part of dish Slanted edge 
qq

Side view 

0.005 m 
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Why did interference occur? Here’s a sketch explaining it: 

 
A beam that falls on the oil surface can either reflect straight back (solid arrow) 

or go through the oil, reflect from the dish and then back up through the oil 

(dotted arrow). Since the dotted beam has travelled longer than the solid beam, 

they interfere. 

 

You may find the following data useful in answering this problem 

Colour Wavelength (nm) 

Red 650 

Orange 600 

Green 500 

Violet 400 

Note: 1 nm = 10–9 m 

 

Part A 

Why did I only see fringes in the slanted parts of the dish, and not in the flat 

parts? 

 

The path difference between the two interfering beams was constant over the flat 

part of the dish. Therefore, no fringes appeared – the intensity was constant over 

the whole flat part. 

 

qq

D
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Part B 

In the last diagram above, in which a beam enters the oil at a distance D from 

the edge of the oil, find the path difference between the two beams. Give your 

answer in terms of D and q . [Hint: the dotted beam travels through the oil twice 

– once on its way down, and once on its way back up] 

 

Using simple trigonometry, distance from the top of the oil to the dish at that 

point is 

tanh D q=  
The path difference is twice this distance, because the beam goes down and back 

up, and so 

2 tanDd q=  

 

Part B 

For this part, consider the green fringes only, and find tanq . 

 

We know that at each of the maxima, the path difference is an integer number of 

wavelengths. At the first maximum, we know that it’s exactly one wavelength, 

and at the second maximum, we know that it’s exactly two wavelengths: 

first maximum first maximum

second maximum second maximum

2 tan

2 tan 2

D

D

d q l
d q l

= =
= =

 

 

But we know from the diagram that 

first maximum second maximum
0.025mD D- =  

 

Therefore, using the data in the table 

( )
9

4

5

500nm
0.025m tan

2
500 10

250 10 tan
2

tan 10

q

q

q

-
-

-

=

´
´ =

=

 

[My bowl really wasn’t very slanted at all!] 



Exam 3 Review  Page 5 of 20 

Daniel Guetta, 2009 

guetta@cantab.net 

 

Part C 

Why did different colours produce maxima at different places? 

 

Different colours have different wavelengths, and so will interfere constructively 

at different path differences, which correspond to different locations on the 

surface of the oil. 

 

Part E 

What was colour X? 

 

Let 
X

l  be the wavelength of colour X, and 
G
l  be the colour of green light. We 

know (since we are considering first maximum) that 

first green green

first X

2 tan

2 tan
X

D

D

q l
q l
=
=

 

Furthermore, we know from the diagram that 

first X first green
0.005mD D- =  

 

Therefore 

( )
( )

2 0.005m tan

2 0.005m tan

X G

X G

q l l

l q l

= -

= +
 

Using our value of tanq  from the previous part and of 
G
l  from the table, we get 

( )( ) ( )
( )
5 9

8 9

2 0.005m 10 500 10

10 10 500 10

600nm

X

X

X

l

l

l

- -

- -

= + ´

= ´ + ´

=

 

Looking at the table above, we see that colour X is in fact orange. 
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Question 3 

Consider the following setups: 

 A parallel-plate capacitor with circular plates of radius R is charging 

constantly (ie: a constant current I is flowing through it and increasing 

the charge on the plates). 

 A solenoid with turns-per-unit-length n which is discharging (ie: the 

current through it is decreasing at a constant rate). 

 A cylindrical resistor of length  , radius a and resistance R through which 

a current I is flowing, and which is dissipating energy. 

 Two large parallel square plates of side length L a small distance d apart 

with no resistance carrying current to a resistor and back 
 

 
 

For each of these cases, calculate 

 The E field 

 The B field 

 The Poynting vector, S 

In each case, check whether the answer your obtain for the Poynting vector 

makes sense. 

 

THE CHARGING CAPACITOR 
 

Let’s imagine that the capacitor is charging as follows: 

 

e
R

k̂

( )Q t+

( )Q t-Area A R



Exam 3 Review  Page 7 of 20 

Daniel Guetta, 2009 

guetta@cantab.net 

 

 

In this case, the “obvious” field is the electric field. If the charge on the plates is 

Q at any given time, then we’ve worked out a million times before that 

0

2

0

( ) ˆ( )

( ) ˆ( )

Q t
t

A

Q t
t

R

e

p e

=

=

E k

E k
 

 

Now, what about the magnetic field? There are two possible sources (a) free 

currents and (b) displacement currents (changing electric fields). Obviously, in 

this case, only (b) applies. And so 

,

0 0
d E S

C t
m e

¶F
⋅ =

¶ò B l  

The question is, what surface S and curve C should we use to evaluate this 

integral? By symmetry in the problem, it looks like the B field should only 

depend on distance from the centre of the capacitor, and should be tangential 

everywhere. Looking from the top of the capacitor: 

 
How do I know the direction? Well, the field is going up and is increasing, and so 

/ t¶F ¶  is also pointing up. Thus, by the right-hand-rule, the field is as above. 

 

In any case – it seems like a concentric circle of radius r works nicely – I’ve 

shown it dotted in the diagram above. 

 

r
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Doing the integral: 

( )2

0 0

2

0 0

0 0

ˆ2

ˆ2

1 ˆ
2

rB r E
t

E
rB r

t
E

B r
t

p m e p

p m e p

m e

¶
=

¶
¶

=
¶

¶
=

¶

q

q

q

 

Using our expression for E above, we get 

0 0
2

0

0
2

1 ˆ
2

ˆ
2

r Q
B

tR

r
I

R

m e

p e

m

p

¶
=

¶
æ ö÷ç ÷ç= ÷ç ÷÷çè ø

B

q

q
 

 

Note that both the E and B fields depend on the radius r from the centre. 

 

Finally, the Poynting vector! 

( )

( )
( )

0

0
2 2

0 0

2
2

0

1

1 ( ) ˆˆ
2

1
ˆ( )

2

rQ t
I

R R

rIQ t
R

m
m

m p e p

p e

= ´

= ´

= -

S E B

S k

S r

q  

This is pointing inwards, towards the inside of the capacitor. This makes sense, 

because the capacitor is charging, and so energy is flowing into it. 

 

Let’s see if it makes sense quantitatively. To find the total power flowing into the 

capacitor, we need to integrate S over the area through which it is flowing at the 

outmost radius. In this case, it’s flowing through the sides of the capacitor. We 

need 

sides of capacitor
dP = ⋅òò S A  



Exam 3 Review  Page 9 of 20 

Daniel Guetta, 2009 

guetta@cantab.net 

Since the vector is constant over that area, we simply multiply the vector by that 

area ( 2 Rdp= ). We get 

( )22

0

2

0

2
( )

2

Rd
P RIQ t

R

dIQ
P

R

p

p e

p e

=

=

 

Now, consider the total energy stored in the capacitor. We only consider the 

electric energy, because that’s the only field that will store energy in the 

capacitor. We get an electric energy density of 

( ) ( )

2 2

0 2 2
2 2 2

0 0

1

2 2
E

Q Q
U

R R
e

p e p e
= =  

The volume in which this exists is 2R dp , and so 

( )

2 2 2

2 2
2

0
0

22

R dQ dQ
U

RR

p
p ep e

= =  

Finally, differentiating with respect to time 

2

0

2

0

d d

d d

U dQ Q
P

t tR

dQI
P

R

p e

p e

= =

=
 

Which is precisely the same as the expression we calculated for the power flowing 

into the capacitor. 

 

THE DISCHARGING SOLENOID 
 

Imagine the solenoid is as follows: 

 
 

As usual, let’s first ask – which is the obvious field in this case? Clearly, it’s the 

magnetic field, because its produced by the current in the coils of the solenoid. 

k̂
I

A B
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As you’ve worked out a million times before, the magnetic field in a solenoid 

carrying a current I is 

0
ˆnIm=B k  

 

What the bout the electric field? Clearly, there are no charges in sight (remember: 

the charges moving in the wires are cancelled by fixed positive ions, so the wires 

are electrically neutral). Therefore, it’s a change in magnetic field that is causing 

the electric field, and we need Faraday’s Law 

,d B S

C t

¶F
⋅ = -

¶ò E l  

Once again, we ask – which curve should we use to evaluate the law? By 

symmetry, the field in the solenoid should look something like this (looking down 

end B of the solenoid): 

 
Why this direction? Well, the field is in the ˆ+k  direction, but it’s decreasing, 

and so /
B

t¶F ¶  is in the ˆ-k  direction. Therefore, /
B

t-¶F ¶  is in the k̂  

direction, and this gives the field above. 

  

It looks like a good loop to choose is therefore a concentric circle of radius r 

(shown dotted in the diagram). 

 

Faraday’s Law then becomes 

2 ˆ2

ˆ
2

B
rE r

t
r B

E
t

p p
¶

=
¶

¶
=

¶

q

q
 

r

I

k̂
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Feeding in our expression for B 

0
ˆ

2

r I
n

t
m

¶
=

¶
E q  

 

The Poynting vector is then given by 

( )0 0
0

2
0

1 ˆ ˆ
2

1
ˆ

2

r I
n nI

t

I
rn I

t

m m
m

m

¶
= ´

¶

¶
=

¶

S k

S r

q
 

It looks like power is flowing out of the solenoid, which makes perfect sense 

because it’s discharging. 

 

Note, once again, that this Poynting vector depends on the radius. 

 

Once again, let’s see if the total amount of power flowing out of our solenoid is 

consistent with our expression for the energy in an solenoid. 

 

To find the total power flowing out, we need to integrate the Poynting vector 

over the outmost area through which it flows. 

dP A= ⋅òò S  

In this case, the Poynting vector is constant over that outer surface, and so we 

simply need to multiply it by the area of that surface ( 2 Rp=  , where R is the 

radius of the solenoid). We get 

2

0

2 2

0

1
2

2

I
P Rn I R

t
I

P R n I
t

m p

m p

¶
=

¶
¶

=
¶




 

 

Now, consider the magnetic energy stored in the solenoid (again, we ignore 

electric energy, because only magnetic energy will be stored). The energy density 

is 
2 2

2 0

0

1

2 2B

n I
U B

m
m

= =  
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This is, mercifully, constant. So multiplying by the volume of the solenoid, we 

find that the total stored energy is 
2 2

2 0

2

n I
U R

m
p=   

Differentiating with respect to time 

2 2

0

d d

d d

U I
P R n I

t t
p m= =   

Precisely as above. 

 

THE RESISTOR 
 

Imagine our resistor is a cylinder, with a current flowing through it 
 

 
 

In this case, both the E field and the B field are “obvious”. Let’s look at each 

one: 

 There must be an E field parallel to the resistor, in the k̂  direction, to 

“push” the electrons along through the resistor, which is resisting the 

motion of the electrons. This comes from the potential difference V IR=  

across the resistor. It’s pretty obvious from V = Ed that 

ˆIR
=E k


 

 There must be an E field produced by the current flowing. We can use a 

circular Amperian loop at a distance r from the centre of the cable: 

0 enc

0 enc

d

2
C

I

rB I

m

p m

⋅ =

=
ò B l  

Assuming the current is uniformly distributed through the wire, we get 

I k̂



a
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2

0 2

0
2

2

ˆ
2

I r
rB

a
I

B r
a

p
p m

p
m

p

=

= q
 

 

And finally, the Poynting vector 

( )

( )

0

0
2

0

2

2

1

1 ˆˆ
2

ˆ
2

IIR
r

a

I R
r

a

m
m

m p

p

= ´

= ´ ´

= -

S E B

S k

S r

q




 

Once again, the Poynting vector varies depending on radius. 

 

The direction in this case is slightly more difficult to understand – why is energy 

flowing into the resistor? Surely it should be flowing out, because energy is 

dissipating as heat! 

 

The key point to understand here is that the Poynting vector talks of 

electromagnetic energy. True, energy is flowing out of the resistor as heat, but 

where does that energy come from? It turns out that it comes from the 

electromagnetic energy that is flowing into the resistor, as we’ve just calculated. 

 

To make sure both results are consistent, let’s integrate the Poynting vector over 

the entire surface of the resistor at a radius r = a, to find the total power coming 

into the resistor (if we did it at another radius, we wouldn’t find the power 

coming into the whole resistor). 

dP = ⋅òò S A  

Since S is constant at the surface (which is at constant r), we simply need to 

multiply S by the relevant area (which is the curved surface area of the resistor, 

2 ap  ), and we get 
2

2

2
2

2

I Ra
P a I R

a
p

p
= =
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Which is indeed the power dissipated in a resistor. 

 

THE TWO PLATES 
 

First, let’s ask what the “obvious” field is. In this case, both are obvious – an 

electric field is caused by the potential difference between the plates, and a 

magnetic field is caused by the current. 
 

 
 

Let’s begin with the electric field. Trivially, V = Ed, and so 

ˆ
d

e
=E k  

Note: it is crucial to realise that there is no E fields along the plates here, 

because there is no resistant. There’s no need for anything to “push” the 

electrons along. 

 

For the magnetic field, we need to use Ampere’s Law. A few points: 

 First, we note that there’ll only be a magnetic field between the plates – 

outside the plates, the currents cancel. 

 Second, we note that the field will be in the ˆ+j  direction – use the right 

hand rule on the currents to see why. 

We can use following Amperian loop: 
 

 
 

We have 

0 enc
d

C
Im⋅ =ò B l  

k̂
ĵ

î

L



e
R

k̂
ĵ

î
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Let’s look at each side: 

 The left-hand-side is clearly 

d
C

B⋅ =ò B l   

Because the only side of the loop that contributes is the one in between 

the plates. 

 The right-hand-side is a bit more tricky. Let’s imagine a total current I is 

flowing through the plates. The current “spreads out” over the length of 

the plates, so the current per unit length is I/L. This means that the total 

current flowing through the loop is 

enc

I
I

L
=


 

Using Ampere’s Law, we then get 

0

0 ˆ

I
B

L
I

L

m

m

=

=B j


 

 

Finally, the Poynting vector: 

( )

( )

0

0

1 ˆ ˆI

d L

I

dL

me
m

e

= ´

= -

S k j

S i

 

As expected, power flows in the –i direction, from the battery to the resistor. 

 

We can gain even further insight by finding the total flux from the batter to the 

resistor. It is 

dP = ⋅òò S A  

Because the Poynting vector is constant, we just need to multiply by the area 

through which the Poynting vector flows, which I’ve sort of shaded in grey in this 

diagram: 

 

k̂
ĵ

î

L

d
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We then get 

I
P Ld

dL
P I

e

e

=

=
 

This makes complete sense – the power dissipate through a resistor is equal to VI, 

and this is indeed what we get for the power that flows from the battery to the 

resistor. 
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Question 4 

Look at these three diffraction/interference patterns, obtained by diffracting laser 

light through two slits of width a, a distance d apart: 

 

 

 
 

Classify these three patterns in order of a and in order of d. 

 

CLASSIFYING IN ORDER OF a 
 

To classify in order of a, we need to look at the larger envelope. The larger the 

envelope, the smaller a. So the ordering in this case is 

 
 

> =



Exam 3 Review  Page 18 of 20 

Daniel Guetta, 2009 

guetta@cantab.net 

CLASSIFYING IN ORDER OF d 

 

To classify in order of d, we need to look at the small “squiggles”. The further 

apart these squiggles are, the smaller d. Therefore, in this case 

 
 

 

Here’s a fourth pattern, obtained by changing the wavelength of light in one of 

the cases above: 

 
Which of the patterns above was used, and was the wavelength made longer or 

shorter? 

 

Both the width of the envelope maxima and of the individual squiggle maxima 

are related to l . In fact, in both cases, y lD µ . So we expect a change in 

wavelength to change both these features. 

 

We can exclude two of the patterns: 

 It isn’t the third pattern above, because this new pattern has the same 

envelope size, and we know that this would have had to change with 

wavelength. 

 It isn’t the first pattern, because even though the envelope size has shrunk, 

the individual squiggle sizes have not. 

It must therefore be the second pattern. 

 

< =
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Since both the envelope and the squiggles have shrunk, the wavelength of the 

light must have got shorter. 

 

Finally, the situation that gave rise to the first pattern above was altered in some 

way, and the resulting diffraction pattern looked like this 

 
How was the situation changed? 

 

The pattern exactly the same, except that the peaks are much sharper. This 

happens when the number of slits is increased. The pattern above was made with 

2 slits, this one was probably made with many more. 
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Question 5 (spring 2008 exam) 

The magnetic vector of a plane electromagnetic wave is described as follows 

( ) ( ) ( )1 9 11 T cos 10 m 3 10 sx tm - -é ù= + ⋅ê úë û
B j  

Which of the following is true? 

1. The wave has velocity ( )8 13 10 ms-= ⋅v i  and angular frequency 

9 13 10 sw -= ⋅  

2. At x = 0 and t = 0, the electric field is 150V/m=E k  

3. The intensity (time averaged Poynting vector magnitude) is 
21500 / 4 W/mI p=  

4. At x = 0, the Poynting vector ( )2 9 1cos 3 10 s t-é ùµ ⋅ê úë ûS j  

 

The answer is 3. Let’s see why the others are wrong 

1. In this case, the wavefunction is in terms of kx tw+ . That “plus” sign 

tells us that the wave is travelling in the –i direction, not the i direction. 

2. We know that 
0 0
/E B c= , and so in this case, 

0
300N/CE = . At t = 0 

and x = 0, the magnitude of E will therefore be 300 N/C, not 150 N/C. 

3. This is correct. The magnitude of the Poynting vector is [I have omitted 

units for clarity – you should check that they match] 

( ) ( )6 2 9

0

1
300 1 10 cos 10 3 10x w

m
- é ù´ ´ + ⋅ê úë û

 

Averaging cos2 gives a factor of ½ 
6

0

150 10

m

-´
 

Remembering that 7

0
4 10m p -= ´ , we get 

6 7150 10 10 1500

4 4p p

-´ ´
=  

4. The wave is not travelling in the j direction. 


